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Abstract: As a special type of clay, expansive clay is widely distributed in China. Its characteristics of
swelling and softening when meeting water and shrinking and cracking when losing water bring
many hidden dangers to engineering construction. Expansive clay is known as “engineering cancer”,
and in-depth research on the unloading mechanical response characteristics and the unloading
constitutive relationships of expansive clay is a prerequisite for conducting geotechnical engineering
design and safety analysis in expansive-soil areas. In order to obtain the unloading mechanical
response characteristics and the expression of the unloading tangent modulus of expansive clay,
typical expansive clay in the Hefei area was taken as the research object, and triaxial unloading
stress path tests were conducted. The stress–strain properties, microstructures, macro failure modes,
and strength indexes of the expansive clay were analyzed under unloading stress paths. Through
an applicability analysis of several classical soil strength criteria, an unloading constitutive model
and the unloading tangent modulus expression of the expansive clay were constructed based on
the Mohr–Coulomb (hereinafter referred to as “M-C”) criterion, the Drucker–Prager (hereinafter
referred to as “D-P”) criterion, and the extended Spatial Mobilized Plane (hereinafter referred to
as “SMP”) criterion theoretical frameworks. The following research results were obtained: (1) The
stress–strain curves of the three stress paths of the expansive clay were hyperbolic. The expansive clay
showed typical strain-hardening characteristics and belonged to work-hardening soil. (2) Under the
unloading stress paths, the soil particles were involved in the unloading process of stress release, and
the failure samples showed obvious stretching, curling, and slipping phenomena in their soil sheet
elements. (3) Under both unloading stress paths, the strength of the expansive clay was significantly
weakened and reduced. Under the lateral unloading paths, the cohesive force (c) of the expansive
clay was reduced by 32.7% and the internal friction angle (φ) was increased by 19% compared with
those under conventional loading, while under the axial unloading path, c was reduced by 63.5%
and φ was reduced by 28.7%. (4) For typical expansive clay in Hefei, the conventional triaxial
compression (hereinafter referred to as “CTC”) test, the reduced triaxial compression (hereinafter
referred to as “RTC”) test, and the reduced triaxial extension (hereinafter referred to as “RTE”) test
stress paths were suitable for characterization and deformation prediction using the M-C strength
criterion, D-P strength criterion, and extended SMP strength criterion, respectively. (5) The derived
unloading constitutive model and the unified tangent modulus formula of the expansive clay could
accurately predict the deformation characteristics of the unloading stress path of the expansive clay.
These research results will provide an important reference for future engineering construction in
expansive-clay areas.

Keywords: expansive clay; constitutive model; unloading stress path; triaxial test; tangent modulus
calculation model
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1. Introduction

Expansive clay is a special kind of clay with strong expansion, contraction, and over-
consolidation that is widely distributed in more than 20 provinces in China, including
Guangxi, Yunnan, Hubei, Anhui, Sichuan, Henan, Shandong, etc. Especially in arid and
semi-arid areas, expansive clay in the shallow surface stratum is involved in the wet and
dry cycle of rainfall and evaporation all year round, and it is unsaturated soil in its natural
state [1,2]. Due to the development of internal cracks, its general engineering properties are
poor, which has a great impact on construction projects, and it is known as “engineering
cancer”. A large number of studies [3,4] have shown that in the process of foundation pit
excavation in an expansive-clay layer, the sidewalls and bottom soil of the foundation pit
are in a state of “unloading” stress, and their strength and bearing capacity are significantly
reduced by the excavation unloading effect. The soil in a pit is in an unstable state due to
excavation unloading deformation and strength deterioration, frequently leading to the
occurrence of serious engineering accidents such as deep foundation pit collapse and slope
instability [5]. Therefore, when an underground structure support design is carried out in
an expansive-clay layer, it is crucial to carry out a structural design and safety analysis of
the foundation pit to fully consider the influence of the unloading effect on the unloading
deformation and strength deterioration of the expansive clay [6], to deeply explore the
unloading mechanical response characteristics, and to develop an unloading constitutive
model of the expansive clay.

The stress path has an important influence on the mechanical response characteristics
of soil, so the effects of stress paths should be fully considered when establishing a soil
unloading constitutive model [7,8]. Since Lambe [9] proposed the concept of stress path
correlation in the 1960s, scholars at home and abroad have carried out a series of studies
on nonlinear and elastoplastic constitutive models of soil considering stress paths. In
the study of nonlinear constitutive models of soil considering stress paths, since Duncan
and Chang [10] put forward the nonlinear Duncan–Chang model in 1970, the subsequent
constitutive model research in this field has mostly been based on improving and revising
the Duncan–Chang model. Gao Zhenzhong [11] studied the stress–strain properties of
silty soil under an unloading stress path. He put forward a nonlinear constitutive model
that comprehensively considered strain softening, shear dilatancy (or shear shrinkage)
properties, and unloading effects. He verified the correctness of this model through an
experimental test of a volume change curve. Yin Deshun [12] deduced the calculation
formulas of the Duncan–Chang model under axial and lateral unloading, which addressed
the Duncan–Chang model’s inability to consider the stress path. S. Goto [13] put forward a
nonlinear model of an unloading stress path suitable for small-strain planes. The parameters
of this model could be measured via indoor triaxial and shear-wave velocity tests. It was
found that this model could accurately predict the small-strain behavior of soil under an
unloading path. In 1963, Roscoe [14] established a constitutive model according to triaxial
tests of reshaped clay with normal and weak consolidation (called the “Cam-clay model”).
The subsequent elastoplastic models of soil considering stress paths were mostly based
on the framework of the Cam-clay model [15]. In 1968, Roscoe and Burland [16] further
modified the Cam-clay model, changing its yield surface trajectory into an ellipse, and
obtained a modified Cam-clay model, which is widely used now. On the basis of the
Cam-clay model, Robert Lo [17] adopted the Row dilatancy formula to reflect the shear
dilatancy of soil. He combined this formula with the energy formula of the Cam-clay model,
and a modified elastoplastic model was obtained to predict the stress–strain relationships
of soils under unloading stress paths. Matsuoka [18] embedded the three-dimensional
strength criterion (SMP criterion) into the modified Cam-clay model by transforming
the stress method. He produced a three-dimensional model and further predicted the
stress–strain properties of sandy soil and clayey soil under an unloading path condition.
Yao Yangping [19,20] applied the SMP strength criterion to an elastoplastic model with
double-yield surfaces to produce a three-dimensional model. He subsequently produced a
three-dimensional model of the Tsinghua model [21]. Based on the stress path test results
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of Fengpu sand, Lu Dechun [22] put forward a generalized nonlinear strength criterion by
decomposing the stress path of sand. Then, he established an elastic–plastic constitutive
model of soil stress paths based on the Cam-clay model. Zhang Kunyong [23], based
on the Cam-clay model and drawing lessons from the modeling concepts of the Ohta–
Sechiguchi model, established a three-dimensional elastoplastic constitutive model. This
three-dimensional elastoplastic constitutive model reflects the stress–strain characteristics
of soil excavation unloading under K0 consolidation conditions. As a kind of special clay
with a wide distribution, the unloading deformation and strength properties of expansive
clays are quite different from those of general clay. There have been fewer studies on
the unloading stress path constitutive models of expansive clay. Therefore, it is of great
guiding significance to explore the mechanical response characteristics of expansive clay
under unloading paths and establish a constitutive model for engineering practice in
expansive-clay areas.

In view of this, based on the automatic environmental triaxial test system (ETAS), this
study took expansive clay in typical strata in Hefei as the research object, and a conventional
triaxial compression (hereinafter referred to as “CTC”) test, reduced triaxial compression
(hereinafter referred to as “RTC”) test, and reduced triaxial extension (hereinafter referred
to as “RTE”) test were carried out to analyze the failure modes. The stress–strain properties
and strength indexes of the expansive clay were determined under unloading stress paths.
Through an applicability analysis of several classical soil strength criteria, an unloading
constitutive model of expansive clay was constructed, and a unified formula of the tangent
modulus of expansive clay under an unloading stress path was obtained. These research
results can provide an important reference for future engineering construction in expansive-
clay areas.

2. Stress Path Analysis of Unloading Soil in Foundation Pit Excavation

For common narrow and long foundation pits, the size in one direction is much larger
than that in the other, and the stress state of the foundation pit can be simplified as a two-
dimensional plane strain problem. In the process of foundation pit excavation, the stress
path of the soil at the bottom and on the side of the foundation pit is constantly changing. It
can be roughly divided into two areas according to the position and stress state of the soil in
the pit [24,25]: 1⃝ The first area is a passive area at the bottom of the foundation pit, where
the axial unloading of the soil is greater than the horizontal unloading. It can be idealized
that the horizontal stress remains constant and the vertical stress decreases (axial unloading).
2⃝ The second area is the lateral active area of the foundation pit, where the horizontal

unloading of the soil is greater than the axial unloading. In the idealized situation, the
vertical stress is constant and the horizontal stress is reduced (lateral unloading), as shown
in Figure 1.
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3. Unloading Stress Path Tests on Expansive Clays
3.1. Soil Sample

Hefei City, Anhui Province, is a typical area of expansive clay distribution in China,
and the expansive clay in this area is widely distributed in the first terrace of the Nanfei
River and the undulating plain landform of Jianghuai, as shown in Figure 2. According
to a relevant investigation report [26], a test showed that the mineral composition of the
expansive clay of the Upper Pleistocene Qizui Formation (Q3q) in the undulating Jianghuai
plain is mainly illite, which contains ferromanganese nodules and is expansible. The
expansive clay used in this experiment was excavated from a foundation pit in Hefei, and
the drilling depth was 14~20 m.
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for this article.

According to the basic physical properties of 201 groups of soil samples obtained from
geotechnical tests, such as the boundary moisture content and free-expansion rate, the
average values of the basic physical parameters of all soil samples were calculated [27], as
shown in Table 1.

Table 1. Indicators of basic physical properties of soil samples for testing.

Natural Moisture
Content

ω (%)

Dry Density
ρd (g/cm3)

Void Ratio
e

Plastic Limit
ωp (%)

Liquid
Limit

ωL (%)

Plasticity
Index

IP

Free-Expansion
Rate

δef (%)

23.4 1.73 0.743 21.3 39.6 18.3 47.1

Using the liquid limit as the abscissa and the plasticity index as the ordinate, and
employing consistency states to partition the data points, a plasticity chart of the expansive
clay in Hefei was obtained (as shown in Figure 3). The light gray area above line A in
the plasticity chart represents the clayey soil zone, while the dark gray area below line A
represents the silty soil zone. These two zones are divided into low-liquid-limit, medium-
liquid-limit, and high-liquid-limit regions by lines B and C. From an analysis of Figure 3, it
could be determined that the expansive clay in Hefei fell into the category of medium- to
high-liquid-limit clayey soil and that the plasticity index (IP) was positively correlated with
the liquid limit (ωL) IP = −0.011ω2

L + 1.434ωL − 22.083.
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According to the analysis in Table 1, the free-expansion rate of the Hefei expansive
clay was between 40% and 65%, and the plasticity index was between 18 and 28, which
indicated its weak expansibility. The sample preparation method referred to the Standard
for Geotechnical Test Methods (GB/T 50123-2019, Chinese Standard) [27], with a size of
Φ50 mm × 100 mm, a moisture content of 15%, and a dry density of 1.83 g/cm3.

3.2. Test Apparatus

The test apparatus was an automatic environmental triaxial test system (ETAS)
(Figure 4) from the School of Civil Engineering, Anhui Jianzhu University. This system
could perform back pressure saturation, B value detection, the standard triaxial test, and
the stress path test. In this study, the Advanced Load and Standard Triaxial modules were
adopted for the unloading stress path test. These modules could accurately carry out the
process of sample consolidation and the triaxial loading test, and GDSLAB could collect
data in real time. The specific parameters of the ETAS are shown in Table 2.
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Table 2. Equipment parameters.

Maximum Vertical
Load
kN

Maximum Cell
Pressure

MPa

Load Sensor Range
kN

Pore Pressure Sensor
Range
MPa

Axial Displacement
Sensor Range

mm

100 32 100 32 ±25

3.3. Sample Program

In order to explore the unloading mechanical response characteristics of the expansive
clay, three stress path triaxial test schemes [28] were designed according to the stress
zoning of soil in a foundation pit, namely, CTC, RTC, and RTE. The cell pressure in the test
consolidation stage adopted the isotropic loading mode, and the consolidation cell pressure
was σc. The specific test scheme was as follows:

(1) The CTC test adopted displacement-controlled loading with an axial loading rate of
0.2 mm/min.

(2) The RTC test adopted stress-controlled unloading. The vertical stress remained
unchanged during the shearing process, while the lateral stress decreased at an
unloading rate of 0.2 kPa/min until the shearing was completed.

(3) The RTE test adopted stress-controlled unloading. The lateral stress remained un-
changed, while the axial stress decreased at an unloading rate of 0.2 kPa/min until
the shearing was completed.

The triaxial loading (unloading) test program is shown under different stress paths in
Table 3.

Table 3. Triaxial loading (unloading) test program under different stress paths.

Stress
Path Types

Loading (Unloading)
Methods

Consolidation
Stress/kPa Simulated Soil Position Shearing Rate

CTC LU∞ 100, 200, 300, 400 conventional axial loading load 0.2 mm/min

RTC UU∞ 300, 400, 500, 600 passive zone
unload 0.2 kPa/minRTE UU0 200, 300, 400 active zone

Note: In the stress path labeling, the letters in the front row represent axial stress loading (unloading) and the letters
in the back row represent radial stress loading (unloading), where ‘L’ indicates loading and ‘U’ indicates unloading.
The subscript is numerically equal to the absolute value of the ratio of axial stress to radial stress variation.

4. Analysis of Test Results
4.1. Stress–Strain Curves and Macroscopic Characterization of Shear Failure

Figures 5–7 are schematic diagrams of the stress–strain curves and shear failure
characteristics of the expansive clay under the three stress paths of CTC, RTC, and RTE,
respectively. Figure 8 shows the typical stress–strain properties of the three stress paths
with an initial consolidation pressure (σc) of 400 kPa. From an analysis of Figures 5–8,
it can be seen that the stress–strain curves of the three stress paths of the expansive clay
with different stress levels were hyperbolic. The initial tangent modulus increased with an
increase in the initial consolidation stress, which is typical of strain-hardening properties.
The expansive clay was a work-hardening soil, as its compressibility was not affected by
the stress paths.
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The stress–strain curves of CTC, RTC, and RTE had significant differences in their
growth rates, peak growth values, and failure modes. The stress–strain curve of CTC was
relatively smooth as a whole, and it tended to slow down after the axial strain reached 9%.
The sample showed spindle-like bulging failure. Due to the end-compression shear effect,
there were many fine cracks at both ends, but there was no overall oblique shear fracture
surface [29]. The RTC curve was mutable. The deviatoric stress approached its peak after
the axial strain reached 2%, and then tended to be stable. As the initial consolidation
confining pressure increased, the specimen gradually transitioned from shear failure to
lateral bulging failure during fracture. The overall trend in the RTE curve was similar to
that of the RTC curve, and it was also mutable. When the axial strain was less than 2%, the
deviatoric stress reached its peak. The specimen was dumbbell-shaped and collapsed in the
middle. At the same time, the peak strength of the Hefei expansive clay was significantly
lower under the RTC and RTE unloading paths compared with the CTC path. This strength
attenuation was most obvious in the RTE unloading path, followed by the RTC path.

Affected by the lag of the unloading deformation of the expansive clay, the unloading
strain of RTC and RTE was small in the initial stage of unloading. When the deviatoric
stress reached a certain unloading ratio, the strain suddenly increased, producing a curve
growth rate that was significantly different from that observed during CTC. These kinds of
unloading deformation lag and abruptness also manifest in practical engineering, as soil
usually suffers unloading damage abruptly. This brings great risks to the construction of
expansive-clay unloading engineering.

4.2. Microscopic Properties of Shear Failure

Figures 9 and 10 show scanning microstructure diagrams of the three stress paths of
the shear failure samples in transverse and longitudinal sections, respectively, when the
initial consolidation cell pressure (σc) was 300 kPa. Due to the weak mechanical connections
between the illite minerals in the Hefei expansive clay, when shear failure occurred, the
sheet mineral aggregates were petal-shaped, curled, wrinkled, and warped, and they had
specific directional arrangement properties. With increases in the curling and sliding of the
sheet structure of the clay minerals, the strength of the soil gradually deteriorated. This
phenomenon was consistent with the unloading strength attenuation of the expansive clay.
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The CTC sample was subjected to the combined effects of radial cell pressure constraint
and axial pressure loading compression, and the clay particles were compacted and tended
to be densely arranged. At the same time, the bulging in the middle of the sample during
failure caused the soil particles to slide, which resulted in the clay particles having a certain
degree of directional arrangement in the cross-section. The micro-units in the longitudinal
section were compacted by the loading action, which restricted the curling of the sheet
particles, preventing overall warping. Only slight warping could be observed at the edges.
The soil particles in the RTC and RTE samples were released by the unloading effect.
The soil particles in the transverse section of the shear failure sample were not oriented.
However, there were obvious sheet element stretching and curling phenomena in the
transverse section of the RTE sample. Due to the decrease in the lateral binding force
during the RTC test, the soil particles were easier to move, and the sheet elements of the
longitudinal soil slid and curled, which led to the shear failure behavior of the expansive
clay. During the RTE test, the sheet structure of the soil was seriously curled, and the
structure changed. The directional arrangement was obvious, which led to the necking and
tensile failure of the soil.

4.3. Analysis of Change Rule of Shear Strength Index

Through an analysis of the stress–strain properties of the expansive clay under the
three stress paths, it was found that the strength of the expansive clay significantly deterio-
rated and decayed under unloading. The strength indexes of the three stress paths of the
expansive clay were obtained, as shown in Table 4.

By comparing the strength indexes of the expansive clay under the three stress paths,
it was found that in the RTC and RTE tests, the c of the expansive clay was reduced by
32.7% and 63.5%, respectively, compared with the CTC test. During the RTC test, the initial
consolidated and compacted clay particles slipped twice under lateral unloading, which
led to weakening of the cementing force between the clay particles and a decrease in c.
During the RTE test, the soil sample was in a state of stretching and extrusion. The clay
particles were separated by the stretching, which led to a minimal c value. During the RTC
test, due to the dual effects of lateral unloading and axial compression, the friction and
occlusion between the clay elements were strengthened, which led to a 19% increase in
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the φ in the expansive clay compared with that under conventional loading. During axial
unloading, the unloading effect reduced the sliding friction strength and biting friction
strength between particles, which led to a 28.7% reduction in φ compared with the CTC test.

Table 4. Test results and strength indicators of expansive clay.

Stress Paths
Maximum

Principal Stress
σ1/kPa

Medium
Principal Stress

σ2/kPa

Minimum
Principal Stress

σ3/kPa

Failure Deviatoric
Stress

(qf=σ1−σ3)/kPa

Internal
Friction Angle

φ/◦

Cohesive
Force
c/kPa

CTC

499.18 100 100 399.18

19.1 101.7
711.55 200 200 511.55
925.81 300 300 625.81

1067.68 400 400 667.68

RTC

300 4.97 4.97 295.03

22.73 68.4
400 49.48 49.48 350.52
500 112.86 112.86 387.14
600 184.80 184.80 415.20

RTE
200 200 65.27 134.73

13.64 37.1300 300 126.92 173.08
400 400 185.40 214.60

c and φ are the two most important basic parameters in geotechnical engineering
calculations, and their accuracy is directly related to the stability and deformation analysis
of a foundation pit. When a foundation pit is unloaded in the expansive-clay layer and
the soil is in an unloading state, its strength is greatly reduced. If the strength index of the
CTC test is used for engineering structure design and construction, the influence of the
unloading stress path caused by excavation on the soil parameters is ignored. This easily
leads to irrational engineering design and increases the risk of construction. Therefore, it is
of great significance to determine the soil parameters and strength index of an unloading
stress path and to carry out structural design to ensure the safety of a foundation pit.

5. Applicability Analysis of Strength Criterion for Expansive Clay under Unloading Path

In engineering practice, for the calculation of an expansive-clay layer, the standard
practice is to invert the M-C strength criterion through the CTC test and then establish a
loading constitutive model using this criterion. From the analysis of the unloading stress
path test of the expansive clay, it could be seen that the mechanical response characteristics
of the expansive clay were significantly different under the RTC and RTE unloading stress
paths from those during the CTC test. In order to establish an unloading constitutive model
of the expansive clay, it was necessary to compare and analyze the applicability of various
classical strength criteria according to the test results of the unloading stress path. Then,
unloading constitutive models suitable for the different stress paths of the expansive clay
were established.

Table 5 shows four strength criteria commonly used in soil mechanics. In this section,
the initial average principal stress (p) and the failure deviatoric stress (qf) were obtained
from the unloading stress path test results. The expression of f (p, q, θ) = 0, under the
theoretical framework of the four strength criteria, was derived for the applicability analysis
of the strength criteria.

From the analysis in Table 5, it can be seen that the influence of p is considered
in the four strength criteria, which reflect the compressibility of the soil, while the D-P
strength criterion does not consider the influence of the stress Lode angle (θ). Based on
their deformation properties, the three kinds of stress path triaxial tests designed in this
paper can be divided into triaxial compression tests (CTC and RTC) and a triaxial extension
test (RTE). For the CTC and RTC tests, σ1 > σ2 = σ3 (σ1 is axial stress, while σ2 and σ3
are radial stress), and the stress Lode angle is θ = −30◦. In the RTE test (σ1 and σ2 are
radial stresses, while σ3 is axial stress), the stress Lode angle is θ = 30◦. By substituting the
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test results of the unloading stress path in Table 4 into the four expressions of the strength
criterion ( f (p, q, θ) = 0), as shown in Table 5, the values of failure deviatoric stress of the
expansive clay were compared under different strength criteria. They were compared with
the experimentally measured values (among them, the applicability of the extended SMP
criterion for predicting the strength of expansive clay was analyzed by comparing the
octahedral shear stress value (τ8) of the failure stresses with the τ8SMP calculated using the
extended SMP criterion for validation [33]). The results are shown in Figure 11.

Table 5. Strength criteria and parameters.

Strength Criteria π-Plane Expression Strength
Parameters

Mohr–Coulomb [30] psin φ− 1√
3

q( 1√
3

sin θsin φ+ cos θ)+ ccos φ = 0 c φ

Drucker–Prager [31] q − 3
√

3αm p −
√

3km = 0 αm km
Generalized Tresca [30]

√
J2cos θ − kt − 1

2 α1 I1 = 0 α1 kt

Extended SMP [32]

J2 − B(k−3)I1

2
√

3k
g(θ) = 0,

B =
√

k2(k − 9)/(k − 3)3,

g(θ) = 1/sin
(

π
3 + 1

3 sin−1(Bsin 3 θ)
) k
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Taking the failure stress prediction error as a measure, it can be concluded that the
M-C strength criterion was more accurate in predicting the strength of the expansive clay
under the CTC path. The actual failure values were highly consistent with the theoretical
values. Because the M-C strength criterion could not consider the deterioration effect of
unloading on soil strength under the RTC and RTE paths, the calculation results of failure
strength were too large and could not meet the calculation accuracy requirements of the
unloading engineering of expansive clay. As a theory developed from the maximum shear
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stress theory of metallic materials, the generalized Tresca criterion had poor prediction
accuracy for the three stress path strengths of the expansive clays due to its own limitations.
Neither the D-P criterion nor the generalized Tresca criterion could predict the failure stress
value of the expansive clay under the CTC and RTE stress paths. The theoretical value was
far lower than the measured value. The calculated value of the D-P criterion under the RTC
unloading path was in good agreement with the stretching failure strength of the expansive
clay. This shows that the D-P strength criterion could accurately predict the failure strength
of the RTC path of the expansive clay. The extended SMP strength criterion was applicable
to the strength prediction of the expansive clay under the three stress paths. The error
between the octahedral failure stress calculated using the extended SMP criterion and the
test value under the RTE unloading path was less than 6%, and the prediction effect was
excellent. The priority of the applicability of the four strength criteria under the different
stress paths is shown in Table 6, based on comprehensive analysis.

Table 6. Priority of applicability of four strength criteria.

Stress Paths Strength Criterion Applicability Grade

CTC M-C > extended SMP > generalized Tresca > D-P
RTC D-P > extended SMP > generalized Tresca > M-C
RTE extended SMP > D-P = generalized Tresca = M-C

To sum up, with regard to the expansive clay in the Hefei area, the most applicable
strength criterion under the CTC path is the M-C strength criterion. The failure strength
under the RTC path can be predicted using the D-P criterion, while the failure strength
under the RTE path can be predicted using the extended SMP criterion.

6. Discussion of Unloading Constitutive Model of Expansive Clay

Studying the constitutive model of rock and soil mass is a key problem in the field of
geotechnical engineering that directly affects the safety of engineering structure design. It
is the foundation for establishing a constitutive model of rock and soil mass to describe
the stress–strain behavior and the tangent modulus [34]. Expansive clay is known as
“engineering cancer”, and in-depth research on the unloading constitutive relationships of
expansive clay is a prerequisite for conducting geotechnical engineering design and safety
analysis in expansive-soil areas.

6.1. Analysis of Unloading Constitutive Model of Expansive Clay

In 1970, Duncan and Chang combined the Kondner hyperbolic stress–strain relation-
ship and the M–C criterion [10] to propose the tangent modulus of elasticity under loading
conditions. They established the Duncan–Chang model based on isobaric consolidation
CTC tests under the M–C criterion framework. The Duncan–Chang model is widely used
in stress–deformation analysis, geotechnical engineering simulation, and geotechnical en-
gineering design calculation because it is concise and intuitive and can better reflect the
nonlinear characteristics of soil. However, with the continuous expansion of the scale of
underground construction in China, underground spaces are gradually becoming closer
to sensitive buildings and numerous underground pipelines. Due to the instability of
underground rock and soil mass, the construction environment is becoming more and more
complicated, and the accuracy of the Duncan–Chang model in predicting stratum defor-
mation is gradually decreasing. For one thing, the Duncan–Chang model is a nonlinear
incremental elastic model. Although a deformation modulus is introduced to represent the
irreversible deformation of soil, it is different from the elastic–plastic model and cannot
reflect the complex stress path. For another, the parameters of the Duncan–Chang model
are determined by CTC tests, which are inconsistent with the unloading stress route of
underground engineering. Therefore, due to the limitation of its theoretical basis, the
Duncan–Chang model has many inherent and insurmountable calculation defects, and
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there are sometimes great errors when describing stress–strain curves with simple hyper-
bolas, which lead to great differences between the calculated results of a tangent modulus
and the actual results.

Experts and scholars have revised the parameters of the hyperbolic stress–strain
formula considering the impact of the stress path [12]. However, they have not fully
considered the effects of different unloading stress paths and strength criteria on the tangent
modulus within the model. Based on the aforementioned test results of the unloading
stress path of the expansive clay and the applicability analysis of the strength criteria,
it is known that the unloading deformation of the foundation pit sidewalls and bottom
soil of the expansive clay pit cannot be characterized using the M-C strength criterion.
The applicability of the existing Duncan–Chang model and its related revised models for
representing the tangent modulus of expansive clay needs further research and discussion.
In view of this, establishing a unified formula for calculating the tangent modulus for the
different unloading positions of the expansive clay pit has important theoretical significance
for the structural design and safety analysis of the pit.

6.2. Calculation Model of Tangent Modulus of Expansive Clay under Unloading Path
6.2.1. Model Construction Ideas

In 1963, Kondner [35] proposed a hyperbolic formula to fit the stress–strain curve
(σ1 − σ3) ∼ ε1 based on a large number of stress–strain curves of triaxial tests, that is, a
hyperbolic model:

ε1

(σ1 − σ3)
= a + bε1 (1)

In this formula, σ1 is the axial stress; σ3 is the radial stress; ε1 is the axial strain; and a
and b are parameters of the model-fitting curve.

Duncan and Chang [10] put forward the concept of the failure ratio (Rf) on the basis
of the Kondner hyperbola model, and based on the M-C strength criterion, constructed a
widely used incremental elastic model, that is, the Duncan–Chang model:

Et = Ei

[
1 − Rf(σ1 − σ3)(1 − sin ϕ)

2σ3 sin ϕ + 2c cos ϕ

]2

, (2)

In this formula, (σ1 − σ3) is the deviatoric stress on the soil, and the failure stress of the
soil under the initial consolidation pressure can be calculated using the M-C strength criterion.

Shao Dongchen [36] defined S = (σ1 − σ3)/(σ1 − σ3)f and regarded S as the stress
level parameter of soil. From the analysis of Formula (2), it can be seen that S increases
gradually with an increase in the deviatoric stress on the soil, and the tangent modulus (Et)
of the soil decreases accordingly, which accords with the concept that Et decreases with an
increase in deviatoric stress. Therefore, the tangent modulus of the Duncan–Chang model
is regarded as the initial tangent modulus reduction, and the reduction is controlled by S.
The accuracy of the reduction coefficient determines the accuracy of the Duncan–Chang
model in calculating the tangent modulus of the soil.

The traditional Duncan–Chang model is a soil constitutive model constructed under
the framework of the M-C theory, and Et can only be predicted when the failure stress of
the soil meets the M-C strength criterion. Based on the applicability analysis of the soil
strength criterion under the unloading stress path of the expansive clay, it is known that
the Duncan–Chang model based on the M-C strength criterion can be used to calculate
the Et of expansive clay under CTC loading. However, the M-C strength criterion is not
suitable for failure stress calculation under the RTC and RTE stress paths. Therefore, the
D-P strength criterion and the extended SMP strength criterion should be introduced into
the RTC and RTE stress paths of expansive clay to establish unloading constitutive models
of expansive clay.
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6.2.2. Establishment of Calculation Model for Unloading Tangent Modulus

From the above analysis, it can be seen that the D-P criterion has high accuracy in
predicting the failure strength of expansive clay under the RTC path. According to the
D-P strength criterion, expansive clay under the RTC path can be described using the
following formula:

(σ1 − σ3)
D−P
f = 6(σ3sin φ + ccos φ)/(3 + sin φ), (3)

The complete form of the tangent modulus based on the D-P strength criterion of
expansive clay under the RTC path can be obtained by substituting Formula (3) into
Formula (2).

ED−P
t = Ei

[
1 − Rf(σ1 − σ3)(3 + sin φ)

6σ3 sin φ + 6c cos φ

]2
, (4)

The introduction of the extended SMP criterion under the RTE path is significantly
different from the D-P intensity criterion under the RTC path. As a nonlinear strength
criterion, the extended SMP criterion features an asymmetrical strength curve on the
π-plane, while the D-P criterion is circular in the π-plane, and its shape is not affected
by the Lode angle (θ). In order to introduce the extended SMP criterion into the Duncan–
Chang model, we refer to the transformation stress space method proposed by Matsuoka
H [18]. The extended SMP criterion is endowed with characteristics similar to the D-P
criterion in the new stress space, and thus, the unloading constitutive model of expansive
clay under the RTE path is established.

The transformed stress space requires the following transformation towards stress:

∼
σij = pδij +

qc

q
(
σij − pδij

)
, (5)

In this formula,
∼
σij is the stress in the transformed stress space; σij is the stress in the

original stress space; p and q are the average principal stress and shear stress; and qc is the
deviatoric stress calculated using the extended SMP criterion.

The transformed stress process is shown in Figure 12. The stress points on the extended
SMP criterion are mapped to the D-P criterion in the new stress space by means of stress
transformation, that is, the process of changing stress point A to A∗ and stress point B to
B∗ in the diagram, where l0 is the vector diameter in the new stress space.
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According to the extended SMP criterion expression,

qc =
Î1 Î2 − 9 Î3 + 3

√(
Î1 Î2 − Î3

)(
Î1 Î2 − 9 Î3

)
4 Î2

. (6)
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According to the relationship between the vector diameter and the deviatoric stress (q)
in the plane in Figure 12,

l0 =

√
2
3

Î1 Î2 − 9 Î3 + 3
√(

Î1 Î2 − Î3
)(

Î1 Î2 − 9 Î3
)

4 Î2
, (7)

where l0 is equivalent to the deviatoric stress (σ1 − σ3) on the soil in the original Duncan–
Chang model. The lf corresponding to (σ1 − σ3) in a certain state can be calculated using
Formula (7). Based on the extended SMP criterion in the transformed stress space, the limit
value (lf) of l0 is

lf =

√
2
3

6sin φ

3 + sin φ
σ̂3, (8)

where lf is equivalent to the failure stress value (σ1 − σ3)f of the soil in the original Duncan–
Chang model, and S′ = l0

lf
is defined as the reduction factor in the extended SMP unloading

constitutive model.

ESMP
t = Ei

[
1 − Rfl0

lf

]2
, (9)

By substituting Formulas (7) and (8) into Formula (9), we can obtain

ESMP
t = Ei

1 −
Rf(3 + sin φ)

[
Î1 Î2 − 9 Î3 + 3

√(
Î1 Î2 − Î3

)(
Î1 Î2 − 9 Î3

)]
24 Î2σ̂3sin φ


2

, (10)

Formula (10) is the complete form of the tangent modulus of the unloading constitutive
model of expansive clay based on the extended SMP strength criterion. According to
Formula (10), the lateral stress (σ3) under the RTE path is constant. By substituting a certain
RTE unloading process into Formula (10), the tangent modulus under a certain deviatoric
stress can be obtained.

From Formulas (2), (4), and (10), a unified formula for the unloading constitutive
tangent modulus of expansive clay can be obtained based on the variation conditions of
the major and minor principal stresses in the three stress paths:

Et = Ei



[
1 − Rf(σ1−σ3)(1−sin φ)

2σ3sin φ+2ccos φ

]2
∆σ1 > 0, ∆σ3 = 0, σ1 > σ3[

1 − Rf(σ1−σ3)(3+sin φ)
6σ3sin φ+6ccos φ

]2
∆σ1 = 0, ∆σ3 > 0, σ1 > σ3[

1 −
Rf(3+sin φ)

[
Î1 Î2−9 Î3+3

√
( Î1 Î2− Î3)( Î1 Î2−9 Î3)

]
24 Î2σ̂3sin φ

]2

∆σ1 > 0, ∆σ3 = 0, σ1 < σ3

, (11)

6.3. Verification of Tangent Modulus

In order to verify the accuracy of the unloading constitutive model of expansive clay,
the theoretical value of the tangent modulus was calculated using the unified formula for
the tangent modulus of expansive clay. Then, we compared and analyzed the results with
the actual measurements. Stress–strain data of the whole triaxial test process were collected
in real time using a GDSLAB system with an interval of 10 s. The tangent modulus test
value at T1 was obtained by dividing the deviatoric stress difference between T1 and T2 by
the corresponding axial strain difference. Figures 13–15 show comparisons between the
theoretical values of the unloading constitutive tangent modulus of the expansive clay and
the test values of CTC, RTC, and RTE, respectively.
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Figure 13. Comparison between predicted curve of tangent modulus of unified model and test value 
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Figure 13. Comparison between predicted curve of tangent modulus of unified model and test value
under CTC stress path.
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According to the comparative analysis results in Figures 13–15, the theoretical calcula-
tion formula for the unloading constitutive tangent modulus of expansive clay based on
the M-C criterion, D-P criterion, and extended SMP criterion had high prediction accuracy
for the tangent modulus of the Hefei expansive clay. The error between the theoretical
value and the tangent modulus value measured through the triaxial test was small, so
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the theoretical formula for the tangent modulus is reasonable. Under the RTE unloading
path, the error between the prediction formula based on the extended SMP criterion and
the test value was less than 5%. The prediction effect was excellent. Therefore, when
carrying out unloading engineering construction and design in the expansive-clay layer,
the unloading constitutive model of expansive clay constructed in this paper can meet
the requirements of engineering calculation accuracy. It can provide important theoretical
support for foundation pit structure design and safety analysis.

7. Conclusions

In this study, typical expansive clay in the Hefei area was taken as the research object. A
triaxial test of the unloading stress path was carried out using an automatic environmental
triaxial test system (ETAS). The stress–strain properties, failure mode, and strength index of
the expansive clay under the unloading stress path were explored. Through an applicability
analysis of several classical soil strength criteria, an unloading constitutive model and an
unloading tangent modulus expression of expansive clay were constructed based on the
M-C criterion, D-P criterion, and extended SMP criterion theoretical frameworks. The
following results were obtained:

(1) The stress–strain curves of the three stress paths of the expansive clay were hyperbolic,
with typical strain-hardening properties. They belonged to processed hardened soil.
The initial tangent modulus of the three soils increased with an increase in the initial
consolidation cell pressure. The strain of the samples under lateral unloading and
axial unloading lagged behind the increase in deviatoric stress, and the stress–strain
curves increased sharply.

(2) Under the unloading stress path, the soil particles were involved in the unloading
process of stress release. The failure samples of soil sheet elements showed obvious
stretching, curling, and slipping phenomena. In terms of failure properties, CTC
showed spindle-like swelling failure; RTC showed shear, splitting, and swelling failure
with an increase in cell pressure; and RTE showed dumbbell-shaped necking failure.

(3) The strength of the expansive clay was significantly reduced under the unloading
stress path. In the RTC path, the c of the expansive clay was reduced by 32.7%
compared with the CTC path, and φ increased by 19%. In the RTE path, c was reduced
by 63.5% and the φ was reduced by 28.7%.

(4) In the applicability analysis of the four classical criteria, by comparing the predicted
value of failure shear stress (qf) with the test value, it was found that the M-C strength
criterion was suitable for the CTC stress path, while the D-P strength criterion was
suitable for the RTC stress path. The generalized Tresca strength criterion was not
suitable. By comparing the calculated value of the extended SMP criterion (τ8) with
the calculated value of octahedral shear stress (τ8SMP) from the measured results,
it was found that the error was less than 6%. The extended SMP criterion had an
excellent effect on predicting the failure strength of the RTE path.

(5) The traditional Duncan–Chang model had obvious limitations in describing the me-
chanical behavior of the expansive clay under the RTC and RTE paths. The unloading
constitutive model based on the D-P strength criterion and the extended SMP strength
criterion could accurately predict the tangent modulus of the expansive clay under
the unloading stress path. This verified the reliability of the unloading constitutive
model of expansive clay.
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