Corrosion Mechanism of Press-Hardened Steel with Aluminum-Silicon Coating in Controlled Atmospheric Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Sample Preparation
2.3. Corrosion Tests
2.4. Test Procedure and Performed Analyses
3. Results
3.1. Corrosion Properties of PHS AS
3.2. Balance of Substances Involved in the Corrosion Process
3.3. Corrosion Product Composition
3.4. Corrosion Product Composition Models
- Soluble Si4+ is present in Na2SiO3;
- Soluble Fe2+/Fe3+ is present in Fe(OH)x;
- Soluble Al3+ is present in Al(OH)x;
- Soluble Cl– is present in NaCl;
- Remaining soluble Na+ is present in Na2CO3.
- Water-insoluble Si4+ in present in analcime, NaAlSi2O6∙H2O;
- Remaining water-insoluble Na+ is present in dawsonite, NaAlCO3(OH)2;
- Water-insoluble Fe2+/Fe3+ is equimolarly split between akaganeite, β-FeOOH, and magnetite, Fe3O4, except the Low chlorides test where Fe3+ is present only in akaganeite;
- Remaining water-insoluble Cl– is present in AlCl3;
- Remaining water-insoluble Al3+ is present in bayerite, Al(OH)3.
- All applied SO42– is present in basaluminite, Al4SO4(OH)10∙5H2O;
- Water-insoluble Si4+ is present in analcime, NaAlSi2O6∙H2O;
- Remaining water-insoluble Na+ is present in dawsonite, NaAlCO3(OH)2;
- Water-insoluble Fe2+/Fe3+ is equimolarly split between akaganeite, β-FeOOH, and magnetite, Fe3O4;
- Remaining water-insoluble Cl– is present in AlCl3;
- Remaining water-insoluble Al3+ is present in bayerite, Al(OH)3.
4. Discussion
4.1. Corrosion Mechanism of PHS AS in Atmospheric Conditions
4.2. Influence of Environmental Conditions on Corrosion Behaviour of PHS AS
5. Conclusions
- Press-hardened steel coated with Al-Si was susceptible to the localized corrosion of steel in coating cracks under chloride deposits.
- The Al-Si coating acted as a barrier between the corrosive environment and steel. It did not provide galvanic protection to the substrate. High iron content of the coating participated in the formation of red corrosion products immediately at the beginning of the exposure.
- The Al5Fe2 phase corroded preferentially in the coating, whereas the Si-rich phases Al8Fe2Si and AlFe were more corrosion-resistant.
- Analcime, bayerite, AlCl3, dawsonite, and akaganeite were identified as the main stable corrosion products. Magnetite formed preferentially in oxygen-depleted pits. The corrosion products had a low protective ability.
- Wet–dry cycling and a high level of chloride contamination led to a higher ratio of soluble corrosion products.
- The addition of sulphates to surface deposits increased the corrosion rate by 65%, probably due to the acidification of the surface electrolyte.
- Lower relative humidity caused a drop in the pit depth in steel at the expense of a more intense corrosion of the coating.
- Constant high relative humidity and the addition of sulphate to the surface deposits were critical for the acceleration of steel corrosion in coating cracks.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cao, Z.; Wang, Z.; Ngiam, Y.; Luo, Z.; Geng, Z.; Wang, J.; Zhang, Y.; Huang, M. Hydrogen Embrittlement Evaluation and Prediction in Press-Hardened Steels. Steel Res. Int. 2023, 94, 2200685. [Google Scholar] [CrossRef]
- Valentini, R.; Tedesco, M.M.; Corsinovi, S.; Bacchi, L.; Villa, M. Investigation of mechanical tests for hydrogen embrittlement in automotive PHS steels. Metals 2019, 9, 934. [Google Scholar] [CrossRef]
- Golem, L.; Cho, L.; Speer, J.G.; Findley, K.O. Influence of austenitizing parameters on microstructure and mechanical properties of Al-Si coated press hardened steel. Mater. Des. 2019, 172, 107707. [Google Scholar] [CrossRef]
- Jo, K.R.; Cho, L.; Sulistiyo, D.H.; Seo, E.J.; Kim, S.W.; De Cooman, B.C. Effects of Al-Si Coating and Zn Coating on the Hydrogen Uptake and Embrittlement of Ultra-High Strength Press-Hardened Steel. Surf. Coat. Technol. 2019, 374, 1108–1119. [Google Scholar] [CrossRef]
- Kročil, T.; Macháčková, N.; Prošek, T.; Steck, T.; Sharif, R. Hydrogen Embrittlement of Galvanized Press-Hardened Steels: A Review. Metals 2024, 14, 1285. [Google Scholar] [CrossRef]
- Cho, L.; Bradley, P.E.; Lauria, D.S.; Connolly, M.J.; Seo, E.J.; Findley, K.O.; Speer, J.G.; Golem, L.; Slifka, A.J. Effects of hydrogen pressure and prior austenite grain size on the hydrogen embrittlement characteristics of a press-hardened martensitic steel. Int. J. Hydrogen Energy 2021, 46, 24425–24439. [Google Scholar] [CrossRef]
- Abbasi, M.; Naderi, M.; Saeed-Akbari, A. Isothermal versus non-isothermal hot compression process: A comparative study on phase transformations and structure–property relationships. Mater. Des. 2013, 45, 1–5. [Google Scholar] [CrossRef]
- Autengruber, R.; Luckeneder, G.; Hassel, A.W. Corrosion of press-hardened galvanized steel. Corros. Sci. 2012, 63, 12–19. [Google Scholar] [CrossRef]
- Macháčková, N.; Rudomilova, D.; Prošek, T.; Luckeneder, G. Corrosion mechanism of press-hardened steel with zinc coating in controlled atmospheric conditions: A laboratory investigation. Corros. Sci. 2024, 240, 112477. [Google Scholar] [CrossRef]
- Taryba, M.; Cruz, A.; Macháčková, N.; Montemor, F.; Prošek, T.; Thierry, D. The effect of acidification on hydrogen uptake and corrosion resistance of advanced high-strength steels. J. Mater. Res. Technol. 2024, 33, 4149–4161. [Google Scholar] [CrossRef]
- Allely, C.; Dosdat, L.; Clauzeau, O.; Ogle, K.; Volovitch, P. Anticorrosion mechanisms of aluminized steel for hot stamping. Surf. Coat. Technol. 2014, 238, 188–196. [Google Scholar] [CrossRef]
- Nicard, C.; Allély, C.; Volovitch, P. Effect of Zn and Mg alloying on microstructure and anticorrosion mechanisms of Al-Si based coatings for high strength steel. Corros. Sci. 2019, 146, 192–201. [Google Scholar] [CrossRef]
- Vu, A.Q.; Vuillemin, B.; Oltra, R.; Allély, C. In situ investigation of sacrificial behaviour of hot dipped AlSi coating in sulphate and chloride solutions. Corros. Sci. 2013, 70, 112–118. [Google Scholar] [CrossRef]
- bin Zaman, S.; Hazrati, J.; de Rooij, M.; van den Boogaard, T. Numerical and experimental studies of AlSi coating microstructure and its fracture at high temperatures. Mater. Sci. Eng. A 2021, 827, 142067. [Google Scholar] [CrossRef]
- Dosdat, L.; Petitjean, J.; Vietoris, T.; Clauzeau, O. Corrosion resistance of different metallic coatings on press-hardened steels for automotive. Steel Res. Int. 2011, 82, 726–733. [Google Scholar] [CrossRef]
- Drillet, P. Overview on coatings developed on press hardened steels for automotive applications. In Advanced High Strength Steel and Press Hardening: Proceedings of the 4th International Conference on Advanced High Strength Steel and Press Hardening (ICHSU2018), Hefei, China, 20–22 August 2018; Zhang, Y., Ma, M., Eds.; World Scientific: Singapore, 2019; pp. 55–61. [Google Scholar]
- Du, Y.; Schuster, J.C.; Liu, Z.-K.; Hu, R.; Nash, P.; Sun, W.; Zhang, W.; Wang, J.; Zhang, L.; Tang, C. A thermodynamic description of the Al–Fe–Si system over the whole composition and temperature ranges via a hybrid approach of CALPHAD and key experiments. Intermetallics 2008, 16, 554–570. [Google Scholar] [CrossRef]
- Windmann, M.; Röttger, A.; Theisen, W. Phase formation at the interface between a boron alloyed steel substrate and an Al-rich coating. Surf. Coat. Technol. 2013, 226, 130–139. [Google Scholar] [CrossRef]
- Gui, Z.-X.; Wang, K.; Zhang, Y.-S.; Zhu, B. Cracking and interfacial debonding of the Al–Si coating in hot stamping of pre-coated boron steel. Appl. Surf. Sci. 2014, 316, 595–603. [Google Scholar] [CrossRef]
- Wang, Z.; Lu, Q.; Cao, Z.; Chen, H.; Huang, M.; Wang, J. Review on hydrogen embrittlement of press-hardened steels for automotive applications. Acta Metall. Sin. (Engl. Lett.) 2023, 36, 1123–1143. [Google Scholar] [CrossRef]
- Yoo, J.; Kim, S.; Jo, M.C.; Kim, S.; Oh, J.; Kim, S.-H.; Lee, S.; Sohn, S.S. Effects of Al-Si coating structures on bendability and resistance to hydrogen embrittlement in 1.5-GPa-grade hot-press-forming steel. Acta Mater. 2022, 225, 117561. [Google Scholar] [CrossRef]
- Chen, L.; Chen, W.; Cao, M.; Li, X. Performance Comparison of Zn-Based and Al–Si Based Coating on Boron Steel in Hot Stamping. Materials 2021, 14, 7043. [Google Scholar] [CrossRef] [PubMed]
- Panossian, Z.; Mariaca, L.; Morcillo, M.; Flores, S.; Rocha, J.; Peña, J.J.; Herrera, F.; Corvo, F.; Sanchez, M.; Rincon, O.T.; et al. Steel cathodic protection afforded by zinc, aluminium and zinc/aluminium alloy coatings in the atmosphere. Surf. Coat. Technol. 2005, 190, 244–248. [Google Scholar] [CrossRef]
- Chang, Y.-Y.; Tsaur, C.-C.; Rock, J.C. Microstructure studies of an aluminide coating on 9Cr-1Mo steel during high temperature oxidation. Surf. Coat. Technol. 2006, 200, 6588–6593. [Google Scholar] [CrossRef]
- Cheng, W.-J.; Wang, C.-J. Microstructural evolution of intermetallic layer in hot-dipped aluminide mild steel with silicon addition. Surf. Coat. Technol. 2011, 205, 4726–4731. [Google Scholar] [CrossRef]
- Maitra, T.; Gupta, S.P. Intermetallic compound formation in Fe–Al–Si ternary system: Part II. Mater. Charact. 2002, 49, 293–311. [Google Scholar] [CrossRef]
- ISO 16701:2015; Corrosion of Metals and Alloys—Corrosion in Artificial Atmosphere—Accelerated Corrosion Test Involving Exposure Under Controlled Conditions of Humidity Cycling and Intermittent Spraying of a Salt Solution. ISO: Geneva, Switzerland, 2015.
- Echeverría, M.; Abreu, C.M.; González, A.; Ortega, A.; Echeverría, C.A. Towards the Determination of the Origin of Sulfur Compounds in Marine Zones by Means of the Chloride/Sulfate Ratio: Applications in Atmospheric Corrosion Studies. J. Electrochem. Soc. 2016, 163, C316. [Google Scholar] [CrossRef]
- ISO 8407; Corrosion of Metals and Alloys—Removal of Corrosion Products from Corrosion Test Specimens. ISO: Geneva, Switzerland, 2021.
- Rudomilova, D.; Prošek, T.; Ström, M. Hydrogen Entry into Steel Under Corrosion Products. Corrosion 2021, 77, 427–432. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, L.; Su, Y.; Xiao, Y.; Liu, J. Corrosion behavior of 5A05 aluminum alloy in NaCl solution. Acta Metall. Sin. (Engl. Lett. ) 2013, 26, 581–587. [Google Scholar] [CrossRef]
- Schaller, R.F.; Jove-Colon, C.F.; Taylor, J.M.; Schindelholz, E.J. The controlling role of sodium and carbonate on the atmospheric corrosion rate of aluminum. NPJ Mater. Degrad. 2017, 1, 20. [Google Scholar] [CrossRef]
- Kwakye-Awuah, B.; Radecka, I.; Kenward, M.; Williams, C. Production of silver-doped analcime by isomorphous substitution technique. J. Chem. Technol. Biotechnol. 2008, 83, 1255–1260. [Google Scholar] [CrossRef]
- Veneranda, M.; Aramendia, J.; Bellot-Gurlet, L.; Colomban, P.; Castro, K.; Madariaga, J.M. FTIR spectroscopic semi-quantification of iron phases: A new method to evaluate the protection ability index (PAI) of archaeological artefacts corrosion systems. Corros. Sci. 2018, 133, 68–77. [Google Scholar] [CrossRef]
- Alcántara, J.; de la Fuente, D.; Chico, B.; Simancas, J.; Díaz, I.; Morcillo, M. Marine atmospheric corrosion of carbon steel: A review. Materials 2017, 10, 406. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Li, Q.; Che, Y.; Liu, X.; Dong, C.; Chen, X.; Wang, C. Effect of Na2CO3 on the Microstructure and Macroscopic Properties and Mechanism Analysis of PVA/CMC Composite Film. Polymers 2020, 12, 453. [Google Scholar] [CrossRef] [PubMed]
- De la Fuente, D.; Otero-Huerta, E.; Morcillo, M. Studies of long-term weathering of aluminium in the atmosphere. Corros. Sci. 2007, 49, 3134–3148. [Google Scholar] [CrossRef]
- Wanner, C.; Pöthig, R.; Carrero, S.; Fernandez-Martinez, A.; Jäger, C.; Furrer, G. Natural occurrence of nanocrystalline Al-hydroxysulfates: Insights on formation, Al solubility control and As retention. Geochim. Cosmochim. Acta 2018, 238, 252–269. [Google Scholar] [CrossRef]
- Ståhl, K.; Nielsen, K.; Jiang, J.; Lebech, B.; Hanson, J.C.; Norby, P.; van Lanschot, J. On the akaganéite crystal structure, phase transformations and possible role in post-excavational corrosion of iron artifacts. Corros. Sci. 2003, 45, 2563–2575. [Google Scholar] [CrossRef]
- Chen, X.; Wang, J.; Ju, X.; Wang, X. The role of Na+ in Al surface corrosion studied by single-shot laser-induced breakdown spectroscopy. Appl. Surf. Sci. 2020, 501, 144238. [Google Scholar] [CrossRef]
- Košová Altnerová, T.; Rudomilova, D.; Novák, P.; Prošek, T. The Role of Precipitates in Hydrogen Embrittlement of Precipitation-Hardenable Aluminum Alloys. Metals 2024, 14, 1287. [Google Scholar] [CrossRef]
- Macháčková, N.; Rudomilova, D.; Prošek, T. Respirometry, a new approach for investigation of the relationship between corrosion-induced hydrogen evolution and its entry into metallic materials. Int. J. Hydrogen Energy 2024, 65, 817–828. [Google Scholar] [CrossRef]
- Birbilis, N.; Buchheit, R.G. Electrochemical Characteristics of Intermetallic Phases in Aluminum Alloys: An Experimental Survey and Discussion. J. Electrochem. Soc. 2005, 152, B140. [Google Scholar] [CrossRef]
- Couto, C.P.; Andreatta, F.; Lanzutti, A.; Costa, I.; Panossian, Z.; De Graeve, I.; Terryn, H.; Rossi, J.L.; Revilla, R.I. Depth profiling approach to evaluate the influence of hot stamping on the local electrochemical behaviour and galvanic series of hot-dip Al-Si coating on 22MnB5 steel. Corros. Sci. 2021, 185, 109435. [Google Scholar] [CrossRef]
- Bryzgalov, V.; Kistanov, A.A.; Khafizova, E.; Polenok, M.; Izosimov, A.; Korznikova, E.A. Experimental study of corrosion rate supplied with an ab-initio elucidation of corrosion mechanism of biodegradable implants based on Ag-doped Zn alloys. Appl. Surf. Sci. 2024, 652, 159300. [Google Scholar] [CrossRef]
- Wen, J.; Cui, H.; Wei, N.; Song, X.; Zhang, G.; Wang, C.; Song, Q. Effect of phase composition and microstructure on the corrosion resistance of Ni-Al intermetallic compounds. J. Alloys Compd. 2017, 695, 2424–2433. [Google Scholar] [CrossRef]
- Leygraf, C. Atmospheric Corrosion; A John Wiley and Sons: Hoboken, NJ, USA, 2000; Volume 32. [Google Scholar]
- Labbe, J.P.; Pagetti, J. Study of an inhibiting aluminosilicate interface by infrared reflection spectroscopy. Thin Solid Films 1981, 82, 113–119. [Google Scholar] [CrossRef]
- Singh, A.K.; Ericsson, T.; Häggström, L.; Gullman, J. Mössbauer and x-ray diffraction phase analysis of rusts from atmospheric test sites with different environments in Sweden. Corros. Sci. 1985, 25, 931–945. [Google Scholar] [CrossRef]
- Tanaka, H.; Mishima, R.; Hatanaka, N.; Ishikawa, T.; Nakayama, T. Formation of magnetite rust particles by reacting iron powder with artificial α-, β- and γ-FeOOH in aqueous media. Corros. Sci. 2014, 78, 384–387. [Google Scholar] [CrossRef]
- Graedel, T.E. Corrosion Mechanisms for Aluminum Exposed to the Atmosphere. J. Electrochem. Soc. 1989, 136, 204C. [Google Scholar] [CrossRef]
- Friel, J. Atmospheric corrosion products on Al, Zn, and AlZn metallic coatings. Corrosion 1986, 42, 422–426. [Google Scholar] [CrossRef]
- Arshadi, M.A.; Johnson, J.B.; Wood, G.C. The influence of an isobutane-SO2 pollutant system on the earlier stages of the atmospheric corrosion of metals. Corros. Sci. 1983, 23, 763–776. [Google Scholar] [CrossRef]
- Oesch, S.; Faller, M. Environmental effects on materials: The effect of the air pollutants SO2, NO2, NO and O3 on the corrosion of copper, zinc and aluminium. A short literature survey and results of laboratory exposures. Corros. Sci. 1997, 39, 1505–1530. [Google Scholar] [CrossRef]
C | Si | Mn | P | S | Cr | Ni | Mo | Al | Cu | B | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|
0.22 | 0.24 | 1.06 | 0.01 | <0.005 | 0.18 | 0.02 | 0.01 | 0.04 | 0.01 | 0.0022 | bal. |
Spot | Al | Fe | Si | Phase |
---|---|---|---|---|
1 | 55.0 | 36.5 | 8.5 | AlFe |
2 | 68.4 | 28.9 | 2.7 | Al5Fe2 |
3 | 66.4 | 20.5 | 13.1 | Al8Fe2Si |
4 | 42.8 | 44.5 | 12.6 | AlFe |
5 | 66.8 | 30.3 | 2.9 | Al5Fe2 |
6 | 25.8 | 64.7 | 9.5 | α-Fe |
7 | 10.1 | 85.7 | 4.1 | α-Fe |
Parameters | RH Wet Phase [%] | RH Dry Phase [%] | Chloride Concentration [g∙m−2] | Contamination Salt | Wet/Dry Cycle |
---|---|---|---|---|---|
Initial conditions | 95 | 50 | 0.9 | NaCl | ISO 16701:2015 |
Sulphates | 95 | 50 | 0.9 | NaCl+Na2SO4 | ISO 16701:2015 |
Low chlorides | 95 | 50 | 0.09 | NaCl | ISO 16701:2015 |
Low RH | 80 | 50 | 0.9 | NaCl | ISO 16701:2015 |
Constant RH | 95 | - | 0.9 | NaCl | Only wet phase |
Initial Conditions | Sulphates | Low Chlorides | Low RH | Constant RH | |
---|---|---|---|---|---|
Mass loss [g∙m−2] | 12.8 | 21.1 | 2.0 | 12.0 | 29.1 |
Water-soluble metal ions [g∙m−2] | 2.9 | 0.4 | 0.16 | 2.9 | 1.1 |
Al:Fe:Si [%] | 33:59:8 | 28:56:16 | 39:48:13 | 49:44:7 | 14:84:2 |
Water-insoluble metal ions [g∙m−2] | 9.9 | 20.7 | 1.84 | 9.1 | 28.0 |
% of mass loss | 77 | 98 | 92 | 76 | 96 |
Al:Fe:Si [%] | 31:66:3 | 27:70:3 | 27:69:4 | 36:61:3 | 19:78:3 |
Dry mass gain [g∙m−2] | 15.7 | 19.4 | 5.5 | 14.8 | 23.2 |
Water-insoluble contaminants [g∙m−2] | 4.3 | 4.0 | 0.5 | 4.4 | 4.1 |
Cl– [%] | 79 | 79 | 98 | 83 | 78 |
Na+ [%] | 58 | 43 | 78 | 62 | 55 |
Atmospheric species [g∙m−2] | 11.4 | 15.4 | 5.0 | 10.4 | 19.1 |
Water-soluble compounds and corrosion products | **■ *■ **° *■ | Aluminum chloride, AlCl3 Cadwaladerite, AlCl(OH)2·4H2O Sodium chloride, NaCl Sodium carbonate, Na2CO3 |
Stable corrosion products | *■ **■ *° **■ **■ *° *S■ | Analcime, Na(AlSi2O6)∙H2O Dawsonite, NaAlCO3(OH)2 Boehmite, γ-AlOOH Bayerite, Al(OH)3 Akaganeite, β-FeOOH Magnetite, Fe3O4 Basaluminite, Al4SO4(OH)10∙5H2O |
Phase | Initial Conditions | Sulphates | Low Chlorides | Low RH | Constant RH |
---|---|---|---|---|---|
Soluble compounds and corrosion products [wt.%.] | |||||
Al(OH)x Fe(OH)x Na2SiO3 NaCl Na2CO3 | 25 36 15 19 5 | 8 12 12 53 15 | 30 30 28 3 9 | 37 27 14 16 6 | 8 37 3 42 10 |
Total amount of soluble compounds and corrosion products [g∙m−2] | 6.3 | 2.3 | 0.3 | 6.1 | 3.2 |
Stable corrosion products [wt.%.] | |||||
Analcime Dawsonite Akaganeite Magnetite AlCl3 Bayerite Basaluminite | 5 31 23 18 13 10 - | 5 12 27 22 6 16 12 | 4 24 51 - 6 15 - | 5 34 20 16 14 11 - | 6 11 34 27 4 18 - |
Total amount of stable corrosion products [g∙m−2] | 25.6 | 40.1 | 7.3 | 23.9 | 51.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Macháčková, N.; Rudomilova, D.; Prošek, T.; Sturel, T.; Brossard, M. Corrosion Mechanism of Press-Hardened Steel with Aluminum-Silicon Coating in Controlled Atmospheric Conditions. Metals 2025, 15, 97. https://doi.org/10.3390/met15010097
Macháčková N, Rudomilova D, Prošek T, Sturel T, Brossard M. Corrosion Mechanism of Press-Hardened Steel with Aluminum-Silicon Coating in Controlled Atmospheric Conditions. Metals. 2025; 15(1):97. https://doi.org/10.3390/met15010097
Chicago/Turabian StyleMacháčková, Nikola, Darja Rudomilova, Tomáš Prošek, Thierry Sturel, and Maxime Brossard. 2025. "Corrosion Mechanism of Press-Hardened Steel with Aluminum-Silicon Coating in Controlled Atmospheric Conditions" Metals 15, no. 1: 97. https://doi.org/10.3390/met15010097
APA StyleMacháčková, N., Rudomilova, D., Prošek, T., Sturel, T., & Brossard, M. (2025). Corrosion Mechanism of Press-Hardened Steel with Aluminum-Silicon Coating in Controlled Atmospheric Conditions. Metals, 15(1), 97. https://doi.org/10.3390/met15010097