Diffusion Nitride Surface Layers on Aluminum Substrates Produced by Hybrid Method Using Gas Nitriding
Abstract
:1. Introduction
1.1. Aluminum Nitriding—State of the Art
1.2. Hybrid Treatment Concept
2. Materials and Methods
2.1. Substrate Materials
2.2. Coatings
2.3. Thermo-Chemical Treatment
2.4. Methods
3. Results and Discussion
3.1. SIMS Analyses
3.1.1. Metal–Aluminum Substrate Systems
3.1.2. Iron Nitride–Aluminum Substrate System
3.2. Microstructure and Surface Morphology of Layers
3.3. Properties of Layers
4. Conclusions
- The results of the work prove that a surface treatment of aluminum substrates, consisting of subsequent electrochemical processes aimed to remove the passive aluminum oxide layer and then protect the substrate against its re-oxidation by plating with a coating of one of such metals as chromium, copper, nickel and iron, combined with gas nitriding, is an effective hybrid method enabling the diffusion of nitrogen through the protective coating into the aluminum substrate, resulting in the formation of a diffusion layer. The most favorable nitriding effects are obtained at 530 °C/10 h in the case of electroplated iron and nickel coatings, for which the nitrogen range in the substrate reaches approximately 12 µm and its concentration in the diffusion zone is at the level of 1023 at·cm−3. An important measure ensuring the efficiency of nitriding, by reducing the risk of the re-passivation of aluminum, is the use of high-purity ammonia in the processes, which guarantees limiting gas contamination with traces of oxygen at a maximum of 2 ppm.
- Treatment of aluminum substrates in a hybrid process combining in sequence the removal of the passive aluminum oxide layer, iron coating deposition, and gas nitriding carried out at a temperature of 530 °C for 10 h, enabling the diffusion of nitrogen into the substrate, and the nitriding of the iron coating, is an effective method of producing diffusion nitride layers on aluminum substrates with a surface the Fe3N-type iron nitride zone and a nitrogen diffusion zone in the substrate.
- In the case of the hybrid processing of iron-precoated dural-type aluminum alloy substrates, the formation of a magnesium oxide zone, most likely of the MgO type, is observed in the substrate near-surface zone. The thickness of this zone, which can reach several µm, depends on the magnesium content in the alloy. The formation of the magnesium oxide zone is the result of the selective diffusion of magnesium towards the surface, where it reduces the aluminum oxide residues of the passive coating and reacts with oxygen, present as trace contamination of the ammonia atmosphere. Although the magnesium oxide zone decreases the hardness and adhesion of the diffusive layers of iron nitride with a nitrogen diffusion zone in the substrate produced on the AlCu2Mg2NiS dural, improved wear resistance by approximately 70% is observed, as demonstrated in the roll-on-block test, under loads up to10 N.
- The suggested direction for further research for obtaining the perspectives for industrial application of the proposed hybrid treatment of aluminum alloys using gas nitriding requires, first of all, eliminating the problem of the near-surface segregation of magnesium. It may be achieved by selecting an appropriate aluminum alloy that does not contain magnesium, e.g., from the Al-Ti group, which would be best for precipitation hardening in order to increase the load-bearing capacity of the substrate and thus reduce the risk of the so-called ice-on-mud effect characteristic for hard layer–soft substrate systems.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dong, H. (Ed.) Surface Engineering of Light Alloys; Woodhead Publishing Limited: Oxford, UK; Cambridge, UK; New Delhi, India, 2010; pp. 323–397. [Google Scholar]
- Arai, T.; Fujita, H.; Tachikawa, H. Ion Nitriding of Aluminum and Aluminum Alloys. In Proceedings of the First International Conference Ion Nitriding, Cleveland, OH, USA, 15–17 September 1986; pp. 37–41. [Google Scholar]
- Chen, H.-Y.; Stock, H.-R.; Mayr, P. Plasma-Assisted Nitriding of Aluminum. Surf. Coat. Technol. 1994, 64, 139–147. [Google Scholar] [CrossRef]
- Renevier, N.; Czerwiec, T.; Billard, A.; von Stebut, J.; Michel, H. A Way to Decrease the Aluminum Nitriding Temperature: The Low Pressure Arc-Assisted Nitriding Process. Surf. Coat. Technol. 1999, 116–119, 380–385. [Google Scholar] [CrossRef]
- Reinhold, R.; Naumann, J.; Spies, H.-J. Plasma nitriding of aluminum alloys. In Proceedings of the Seminar Heat Treatment and Surface Enginering of Light Alloys, Budapest, Hungary, 15–17 September 1999; pp. 341–349. [Google Scholar]
- Telbizova, T.; Parascandola, S.; Kreissig, U.; Gunzel, R.; Moller, W. Mechanism of Diffusional Transport during Ion Nitriding of Aluminum. Appl. Phys. Lett. 2001, 76, 1404–1406. [Google Scholar] [CrossRef]
- Visuttipitukul, P.; Aizawa, T.; Kuwahara, H. Advanced Plasma Nitriding for Aluminum and Aluminum Alloys. Mater. Trans. 2003, 44, 2695–2700. [Google Scholar] [CrossRef]
- Visuttipitukul, P.; Aizawa, T. Wear of Plasma-Nitrided Aluminum Alloys. Wear 2005, 59, 482–489. [Google Scholar] [CrossRef]
- Spies, H.-J.; Dalke, A. Nitriding of Aluminium and its Alloys. In ASM Handbook Volume 4E: Heat Treating of Nonferrous Alloys; Totten, G.E., Ed.; ASM International: Almere, The Netherlands, 2016; pp. 302–306. ISBN 978-1-62708-112-2. [Google Scholar]
- Kanno, I.; Nomoto, K.; Nishijima, P.; Nishiura, T.; Okada, T.; Katagiri, K.; Mori, H.; Iwamoto, K. Tribological Properties of Aluminum Modified with Nitrogen Ion Implantation and Plasma Treatment. Nucl. Instrum. Methods Phys. Res. B 1991, 59–60, 920–924. [Google Scholar] [CrossRef]
- Blawert, C.; Mordike, B. Plasma Immersion Ion Implantation of Pure Aluminum at Elevated Temperatures. Nucl. Instrum. Methods Phys. Res. B 1997, 127–128, 873–878. [Google Scholar] [CrossRef]
- Meletis, E.; Yan, S. Formation of Aluminium Nitride by Intensified Plasma Ion Nitriding. J. Vac. Sci. Technol. A 1991, 9, 2279–2284. [Google Scholar] [CrossRef]
- Hino, H.; Fujita, I.; Nishikawa, M. Nitriding of Zirconium and Aluminium by Using ECR Nitrogen Plasmas. Plasma Sources Sci. Technol. 1991, 5, 424–428. [Google Scholar] [CrossRef]
- Jarms, C.; Stock, H.-R.; Mayr, P. Nitrieren von Aluminium im Hochfrequenz-Plasma. HTM J. Heat Treat. Mater. 1996, 51, 113–118. (In German) [Google Scholar] [CrossRef]
- Ebisawa, T.; Saikudo, R. Formation of Aluminum Nitride on Aluminum Surfaces by ECR Nitrogen Plasmas. Surf. Coat. Technol. 1996, 86–87, 622–627. [Google Scholar] [CrossRef]
- Carpene, E.; Schaaf, C. Laser Nitriding of Iron and Aluminum. Appl. Surf. Sci. 2002, 186, 100–104. [Google Scholar] [CrossRef]
- Barnikel, J.; Bergmann, H.W.; Reichstein, S. Aufbau und Eigenschaften von lasernitrierten Randschichten auf Aluminiumwerkstoffen. HTM J. Heat Treat. Mater. 1998, 53, 337–342. (In German) [Google Scholar] [CrossRef]
- Taherkhani, K.; Soltanieh, M. Composite coatings created by new method of active screen plasma nitriding on aluminium alloy 6061. J. Alloys Compd. 2018, 741, 1247–1257. [Google Scholar] [CrossRef]
- Taherkhani, K.; Soltanieh, M. Investigation of nanomechanical and adhesion behavior for AlN coating and AlN/Fe2-3N composite coatings created by Active Screen Plasma Nitriding on Al 1050. J. Alloys Compd. 2019, 783, 113–127. [Google Scholar] [CrossRef]
- Taherkhani, K.; Soltanieh, M. Spectroscopy study of composite coating creadted by a new mecthod of active screen plasma nitriding on pure alumnium. Surf. Coat. Technol. 2020, 393, 125820. [Google Scholar] [CrossRef]
- Phulera, N.; Kaushik, S.; Kshetri, R.; Kanojia, N.; Rawat, K.; Uniyal, V. Effects of plasma nitriding on mechanical, tribological and corrosion properties of friction stir welded joints of Al 2024. Mater. Today Proc. 2021, 46, 6726–6732. [Google Scholar] [CrossRef]
- Ma, Z.; Sun, H.; Zheng, H.; Zhao, Y.; Sui, S.; Zhang, C.; Ni, G. Aluminum surface nitriding by an atmospheric-pressure non-thermal plasma technique. Jpn. J. Appl. Phys. 2022, 61, 026001. [Google Scholar] [CrossRef]
- Lee, J.-L.; Kuo, K.-N.; Chiu, K.K.-S.; Kao, J.-Y.; Lin, B.-H. Feasibility Study of AlN/Al2O3 Coating on Aluminum Alloy Using Microarc Oxidation Method. IEEE Trans. Plasma Sci. 2016, 44, 3148–3152. [Google Scholar] [CrossRef]
- Okumiya, M.; Tsunekawa, Y.; Murayama, T. Surface modification of aluminium using ion nitriding and fluidized bed. Surf. Coat. Technol. 2001, 142–144, 235–240. [Google Scholar] [CrossRef]
- Kent, D.; Drennan, J.; Schaffer, G.B. A morphological study of nitride formed on Al at low temperature in the presence of Mg. Acta Mater. 2011, 59, 2469–2480. [Google Scholar] [CrossRef]
- Soni, R.; Sarin, V.K.; Rao, P.; Srinivasan, E.; Basu, S.N. Growth of AlN coating on Al-6061 alloy surface. Surf. Coat. Technol. 2024, 476, 130254. [Google Scholar] [CrossRef]
- Quast, M.; Stock, H.-R.; Mayr, P. Plasma assisted nitriding of aluminum-alloy parts. Met. Sci. Heat Treat. 2004, 46, 299–304. [Google Scholar] [CrossRef]
- Dalke, A.; Buchwalder, A.; Spies, H.-J.; Biermann, H.; Zenker, R. EB Surface Alloying and Plasma Nitriding of Different Al Alloys. Mater. Sci. Forum 2011, 690, 91–94. [Google Scholar] [CrossRef]
- Klemm, M.; Haase, I.; Rose, A.; Zenker, R.; Franke, R.; von Hehl, A.; Franke, A. Liquid Phase Surface Engineering of Aluminium and Aluminium Alloys Using Novel Electron Beam Deflection Techniques and Its Influence on Microstructure-Property Relationships. Int. Heat Treat. Surf. Eng. 2012, 6, 171–177. [Google Scholar] [CrossRef]
- Gjonnes, L.; Olsen, A. Laser-Modified Aluminium Surfaces with Iron. J. Mater. Sci. 1994, 29, 728–735. [Google Scholar] [CrossRef]
- Almeida, A.; Anjos, M.; Vilar, R.; Li, R.; Ferreira, M.G.S.; Steen, W.M.; Watkins, K.G. Laser Alloying of Aluminium Alloys with Chromium. Surf. Coat. Technol. 1995, 70, 221–229. [Google Scholar] [CrossRef]
- Dalke, A.; Buchwalder, A.; Zenker, R.; Spies, H.-J. Effect of Nitride Layer Thickness on Reciprocating Sliding Wear Behavior of AlN Layers on Spray-Formed Al Alloys. Tribol. Lett. 2019, 67, 6. [Google Scholar] [CrossRef]
- Tacikowski, M.; Ulbin-Pokorska, I.; Wierzchoń, T. Microstructure of the composite oxynitrided chromium layers produced on steel by a duplex method. Surf. Coat. Technol. 2006, 201, 2776–2781. [Google Scholar] [CrossRef]
- Tacikowski, M.; Kamiński, J.; Rudnicki, J.; Borowski, T.; Trzaska, M.; Wierzchoń, T. The effect of the diffusive, composite chromium nitride layers produced by a hybrid surface treatment on the corrosion behaviour of AZ91D magnesium alloy. Vacuum 2011, 85, 938–942. [Google Scholar] [CrossRef]
- Maseekh, M.H.; Ataiwi, A.H.; Dawood, J.J. Reducing erosion rate of aluminum—Copper alloy by surface processes. AIP Conf. Proc. 2023, 2834, 070002. [Google Scholar] [CrossRef]
- Figueroa, U.; Salas, O.; Oseguera, J. Production of AlN films: Ion nitriding versus PVD coating. Thin Solid Films 2004, 469–470, 295–303. [Google Scholar] [CrossRef]
- Staszuk, M. Investigations of CrN/TiO2 coatings obtained in a hybrid PVD/ALD method on Al-Si-Cu alloy substrate. Bull. Pol. Acad. Sci. Tech. Sci. 2023, 71, e144622. [Google Scholar] [CrossRef]
- Nakamura, M.; Kubota, S.; Suzuki, H.; Haraguchi, T. Wear and Friction Characteristics of AlN/Diamond-Like Carbon Hybrid Coatings on Aluminum Alloy. J. Mater. Eng. Perform. 2015, 24, 3789–3797. [Google Scholar] [CrossRef]
- Gao, T.; Li, Z.; Hu, K.; Bian, Y.; Liu, X. Assessment of AlN/Mg–8Al Composites Reinforced with In Situ and/or Ex Situ AlN Particles. Materials 2021, 14, 52. [Google Scholar] [CrossRef]
- PN-EN 573-3+A1: 2022-11; Aluminium and Aluminium Alloys-Chemical Composition and Form of Wrought Products—Part 3: Chemical Composition and Form of Products. PKN: Warsaw, Poland, 2022.
- UNI SPERIMENTALE 3057; Primary magnesium-aluminium alloy for casting. (Mg 7%). UNI: Rome, Italy, 1950.
- Bagdach, S. Poradnik Galwanotechnika, 3rd ed.; Wydawnictwa Naukowo-Techniczne WNT: Warsaw, Poland, 2002. (In Polish) [Google Scholar]
- Jakieła, R. The Role of Atmospheric Elements in the Wide Band-Gap Semiconductors. Acta Phys. Pol. A 2019, 136, 916–939. [Google Scholar] [CrossRef]
- Gorobez, J.; Maack, B.; Nilius, N. Growth of Self-Passivating Oxide Layers on Aluminum—Pressure and Temperature Dependence. Phys. Status Solidi B 2021, 258, 2000559. [Google Scholar] [CrossRef]
- Zhang, F.; Ding, Y.; Yan, S.; He, J.; Yin, F. Microstructure evolution and mechanical performance of Cr-N/Al-Cr multilayer coatings produced by plasma nitriding Cr-coated Al alloy. Vacuum 2020, 180, 109540. [Google Scholar] [CrossRef]
- Tacikowski, M.; Łukaszewicz, G.; Kulka, M.; Diduszko, R.; Wierzchoń, T. The Effect of Chemical Composition on the Microstructureand Properties of Multicomponent Nickel-Based Boride Layers Produced on C45 Steel by the Hybrid Method. Coatings 2024, 14, 197. [Google Scholar] [CrossRef]
- Aizawa, T.; Kuwahara, H.; Luangvaranunt, T. Surface Modification of Magnesium Base Alloys by Gas/Plasma Nitridation. Mater. Sci. Forum 2000, 350–351, 247–252. [Google Scholar] [CrossRef]
- Buchwalder, A.; Böcker, J.; Hegelmann, E.; Klemm, V. Investigations on the Microstructure of an Aluminium Nitride Layer and Its Interface with the Aluminium Substrate (Part I). Coatings 2022, 12, 618. [Google Scholar] [CrossRef]
- Kimura, A.; Shibata, M.; Kondoh, K.; Takeda, Y.; Katayama, M.; Kanie, T.; Takada, H. Reduction mechanism of surface oxide in aluminum alloy powders containing magnesium studied by x-ray photoelectron spectroscopy using synchrotron radiation. Appl. Phys. Lett. 1997, 70, 3615–3617. [Google Scholar] [CrossRef]
- Bolduc, M.; Popovici, D.; Terreault, B. Giant segregation effect and surface mechanical modification of aluminum alloys by oxygen plasma source ion implantation. Nucl. Instrum. Methods Phys. Res. B 2001, 175–177, 458–462. [Google Scholar] [CrossRef]
Material | Substrate Denotation | Chemical Composition [wt.%] | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Cu | Mg | Mn | Zn | Cr | Si | Ni | Fe | Al | ||
EN AW-1050A (1) | Al | max 0.05 | max 0.05 | max 0.05 | max 0.07 | - | max 0.25 | - | max 0.4 | rest |
AlCu4Mg1 (1) | S1 | 4.3 ± 0.5 | 0.75 ± 0.35 | 0.7 ± 0.3 | - | - | - | - | - | rest |
AlCu2Mg2NiSi (1) | S2 | 2.2 ± 0.3 | 1.6 ± 0.2 | - | - | - | 0.85 ± 0.35 | 1.05 ± 0.25 | 1.05 ± 0.25 | rest |
AlZn6Mg2Cu2 (1) | S3 | 1.7± 0.3 | 2.3 ± 0.5 | 0.4 ± 0.2 | 6 ± 1 | 0.175 ± 0.075 | - | - | - | rest |
G-AlMg7 (2) | S4 | - | 7 ± 0.6 | 0.35 ± 0.15 | - | - | - | - | - | rest |
Coating—Substrate System | Denotation | Coating Type | Coating Thickness [µm] | Substrate | Substrate State |
---|---|---|---|---|---|
- | Al | - | - | EN AW-1050A | ADS (1) |
Cu-Al | Cu-Al | Cu | ~1 | EN AW-1050A | ADS |
Cr-Al | Cr-Al | Cr | ~1 | EN AW-1050A | ADS |
Nich-Al | NiP-Al | chemical Ni | ~1 | EN AW-1050A | ADS |
Ni-Al | Ni-Al | Ni | ~1 | EN AW-1050A | ADS |
Fe-Al | Fe_1-Al | Fe | ~1 | EN AW-1050A | ADS |
γ’-Al | γ’-Al | Fe4N (γ’) | ~1 | EN AW-1050A | ADS |
ε-Al | ε-Al | Fe3N (ε) | ~1 | EN AW-1050A | ADS |
Fe-Al | Fe_5-Al | Fe | ~5 | EN AW-1050A | ADS |
Fe-S1 | Fe-S1 | Fe | ~5 | AlCu4Mg1 | ADS |
Fe-S2 | Fe-S2 | Fe | ~5 | AlCu2Mg2NiSi | ADS |
Fe-S2 | Fe-S2_HT | Fe | ~5 | AlCu2Mg2NiSi | HT (2) |
Fe-S3 | Fe-S3 | Fe | ~5 | AlZn6Mg2Cu2 | ADS |
Fe-S4 | Fe-S4 | Fe | ~5 | G-AlMg7 | ADS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tacikowski, M.; Słoma, J.; Jakieła, R.; Marciniak, S.; Diduszko, R.; Wierzchoń, T. Diffusion Nitride Surface Layers on Aluminum Substrates Produced by Hybrid Method Using Gas Nitriding. Metals 2024, 14, 524. https://doi.org/10.3390/met14050524
Tacikowski M, Słoma J, Jakieła R, Marciniak S, Diduszko R, Wierzchoń T. Diffusion Nitride Surface Layers on Aluminum Substrates Produced by Hybrid Method Using Gas Nitriding. Metals. 2024; 14(5):524. https://doi.org/10.3390/met14050524
Chicago/Turabian StyleTacikowski, Michał, Jacek Słoma, Rafał Jakieła, Szymon Marciniak, Ryszard Diduszko, and Tadeusz Wierzchoń. 2024. "Diffusion Nitride Surface Layers on Aluminum Substrates Produced by Hybrid Method Using Gas Nitriding" Metals 14, no. 5: 524. https://doi.org/10.3390/met14050524
APA StyleTacikowski, M., Słoma, J., Jakieła, R., Marciniak, S., Diduszko, R., & Wierzchoń, T. (2024). Diffusion Nitride Surface Layers on Aluminum Substrates Produced by Hybrid Method Using Gas Nitriding. Metals, 14(5), 524. https://doi.org/10.3390/met14050524