Machine-Learning Parsimonious Prediction Model for Diagnostic Screening of Severe Hematological Adverse Events in Cancer Patients Treated with PD-1/PD-L1 Inhibitors: Retrospective Observational Study by Using the Common Data Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection Source
2.2. Study Population Selection with Inclusion and Exclusion Criteria
2.3. Outcome Definition
2.4. Analytical Procedures
2.4.1. Analytical Instruments and Tools
2.4.2. Full Model Development
2.4.3. Model Simplification
2.4.4. Statistical Comparison of Full and Parsimonious Models
3. Results
3.1. Study Population Selection
3.2. Characteristics of Study Population
3.3. Characterization of Cases with irHAE Outcomes
3.4. Development of Full Prediction Model
3.5. Simplification of Full Prediction Models
3.6. Cross-Comparison of Simplified Prediction Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wojtukiewicz, M.Z.; Rek, M.M.; Karpowicz, K.; Górska, M.; Polityńska, B.; Wojtukiewicz, A.M.; Moniuszko, M.; Radziwon, P.; Tucker, S.C.; Honn, K.V. Inhibitors of immune checkpoints—PD-1, PD-L1, CTLA-4—New opportunities for cancer patients and a new challenge for internists and general practitioners. Cancer Metastasis Rev. 2021, 40, 949–982. [Google Scholar] [CrossRef] [PubMed]
- Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2016, 375, 1823–1833. [Google Scholar] [CrossRef] [PubMed]
- Robert, C.; Thomas, L.; Bondarenko, I.; O’Day, S.; Weber, J.; Garbe, C.; Lebbe, C.; Baurain, J.F.; Testori, A.; Grob, J.J.; et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N. Engl. J. Med. 2011, 364, 2517–2526. [Google Scholar] [CrossRef]
- Ruggiero, R.; Fraenza, F.; Scavone, C.; di Mauro, G.; Piscitelli, R.; Mascolo, A.; Ferrajolo, C.; Rafaniello, C.; Sportiello, L.; Rossi, F.; et al. Immune Checkpoint Inhibitors and Immune-Related Adverse Drug Reactions: Data From Italian Pharma-covigilance Database. Front. Pharmacol. 2020, 11, 830. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.; Day, D.; Nicholls, S.J.; Segelov, E. Immune Checkpoint Inhibitor Therapy in Oncology: Current Uses and Future Directions: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol. 2022, 4, 579–597. [Google Scholar] [CrossRef]
- Ohashi, T.; Takase-Minegishi, K.; Maeda, A.; Hamada, N.; Yoshimi, R.; Kirino, Y.; Teranaka, H.; Kunimoto, H.; Hagihara, M.; Matsumoto, K.; et al. Incidence and Risk of Hematological Adverse Events Associated With Immune Checkpoint Inhibitors: A Systematic Literature Review and Meta-Analysis. J. Hematol. 2023, 12, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Kramer, R.; Zaremba, A.; Moreira, A.; Ugurel, S.; Johnson, D.B.; Hassel, J.C.; Salzmann, M.; Gesierich, A.; Weppler, A.; Spain, L.; et al. Hematological immune related adverse events after treatment with immune checkpoint inhibitors. Eur. J. Cancer 2021, 147, 170–181. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, A.; Kostine, M.; Barnetche, T.; Truchetet, M.E.; Schaeverbeke, T. Immune related adverse events associated with anti-CTLA-4 antibodies: Systematic review and meta-analysis. BMC Med. 2015, 13, 211. [Google Scholar] [CrossRef]
- Wang, P.F.; Chen, Y.; Song, S.Y.; Wang, T.J.; Ji, W.J.; Li, S.W.; Liu, N.; Yan, C.X. Immune-Related Adverse Events Associated with Anti-PD-1/PD-L1 Treatment for Malignancies: A Meta-Analysis. Front. Pharmacol. 2017, 8, 730. [Google Scholar] [CrossRef]
- Conroy, M.; Naidoo, J. Immune-related adverse events and the balancing act of immunotherapy. Nat. Commun. 2022, 13, 392. [Google Scholar] [CrossRef]
- Delanoy, N.; Michot, J.M.; Comont, T.; Kramkimel, N.; Lazarovici, J.; Dupont, R.; Champiat, S.; Chahine, C.; Robert, C.; Herbaux, C.; et al. Haematological immune-related adverse events induced by anti-PD-1 or anti-PD-L1 immunotherapy: A descriptive observational study. Lancet Haematol. 2019, 6, e48–e57. [Google Scholar] [CrossRef] [PubMed]
- Michot, J.M.; Lazarovici, J.; Tieu, A.; Champiat, S.; Voisin, A.L.; Ebbo, M.; Godeau, B.; Michel, M.; Ribrag, V.; Lambotte, O. Haematological immune-related adverse events with immune checkpoint inhibitors, how to manage? Eur. J. Cancer 2019, 122, 72–90. [Google Scholar] [CrossRef] [PubMed]
- Rouvinov, K.; Nalbandyan, K.; Kozlov, V.; Peled, N.; Yakobson, A. Nivolumab Induced Lethal Aplastic Anemia in a Patient with Metastatic Melanoma. Case Rep. Oncol. 2019, 12, 29–32. [Google Scholar] [CrossRef] [PubMed]
- Helgadottir, H.; Kis, L.; Ljungman, P.; Larkin, J.; Kefford, R.; Ascierto, P.A.; Hansson, J.; Masucci, G. Lethal aplastic anemia caused by dual immune checkpoint blockade in metastatic melanoma. Ann. Oncol. 2017, 28, 1672–1673. [Google Scholar] [CrossRef]
- Kroll, M.H.; Rojas-Hernandez, C.; Yee, C. Hematologic complications of immune checkpoint inhibitors. Blood 2022, 139, 3594–3604. [Google Scholar] [CrossRef]
- Brahmer, J.R.; Lacchetti, C.; Schneider, B.J.; Atkins, M.B.; Brassil, K.J.; Caterino, J.M.; Chau, I.; Ernstoff, M.S.; Gardner, J.M.; Ginex, P.; et al. Management of Immune-Related Adverse Events in Patients Treated with Immune Checkpoint Inhibitor Therapy: American Society of Clinical Oncology Clinical Practice Guideline. J. Clin. Oncol. 2018, 36, 1714–1768. [Google Scholar] [CrossRef] [PubMed]
- Shin, Y.S.; Lee, Y.W.; Choi, Y.H.; Park, B.; Jee, Y.K.; Choi, S.K.; Kim, E.G.; Park, J.W.; Hong, C.S. Spontaneous reporting of adverse drug events by Korean regional pharmacovigilance centers. Pharmacoepidemiol. Drug Saf. 2009, 18, 910–915. [Google Scholar] [CrossRef]
- Ahn, E.K. A brief introduction to research based on real-world evidence: Considering the Korean National Health Insurance Service database. Integr. Med. Res. 2022, 11, 100797. [Google Scholar] [CrossRef] [PubMed]
- Park, E.S.; Choi, H.S.; Lee, K.S.; Kim, S.W.; Lee, J.M. Venous Thromboembolism in Children and Young Adults in Korea: Analysis of the Korean Health Insurance Review and Assessment Service Database. J. Korean Med. Sci. 2019, 34, e316. [Google Scholar] [CrossRef] [PubMed]
- Yeung, S.J.; Qdaisat, A.; Chaftari, P.; Lipe, D.; Merlin, J.; Rajha, E.; Wechsler, A.; Sandoval, M.; Viets, J.; Al-Breiki, A.; et al. Diagnosis and management of immune-related adverse effects of immune checkpoint therapy in the emergency department. J. Am. Coll. Emerg. Physicians Open 2020, 1, 1637–1659. [Google Scholar] [CrossRef]
- Roden, D.M.; Xu, H.; Denny, J.C.; Wilke, R.A. Electronic medical records as a tool in clinical pharmacology: Opportunities and challenges. Clin. Pharmacol. Ther. 2012, 91, 1083–1086. [Google Scholar] [CrossRef] [PubMed]
- Hallinan, C.; Ward, R.; Hart, G.; Sullivan, C.; Pratt, N.; Ng, A.; Capurro, D.; Vegt, A.; Liaw, S.-T.; Daly, O.; et al. Seamless EMR data access: Integrated governance, digital health and the OMOP-CDM. BMJ Health Care Inform. 2024, 31, e100953. [Google Scholar] [CrossRef] [PubMed]
- Lippenszky, L.; Mittendorf, K.F.; Kiss, Z.; LeNoue-Newton, M.L.; Napan-Molina, P.; Rahman, P.; Ye, C.; Laczi, B.; Csernai, E.; Jain, N.M.; et al. Prediction of Effectiveness and Toxicities of Immune Checkpoint Inhibitors Using Real-World Patient Data. JCO Clin. Cancer Inform. 2024, 8, e2300207. [Google Scholar] [CrossRef] [PubMed]
- Giddings, R.; Joseph, A.; Callender, T.; Janes, S.M.; van der Schaar, M.; Sheringham, J.; Navani, N. Factors influencing clinician and patient interaction with machine learning-based risk prediction models: A systematic review. Lancet Digit. Health 2024, 6, e131–e144. [Google Scholar] [CrossRef] [PubMed]
- Wan, B.; Caffo, B.; Vedula, S.S. A Unified Framework on Generalizability of Clinical Prediction Models. Front. Artif. Intell. 2022, 5, 872720. [Google Scholar] [CrossRef]
- European Medicines Agency. Guideline on Good Pharmacovigilance Practices (GVP): Module VIII—Post-Authorisation Safety Studies (Rev 3). European Medicines Agency, Heads of Medicines Agencies; 9 October 2017. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-good-pharmacovigilance-practices-gvp-module-viii-post-authorisation-safety-studies-rev-3_en.pdf (accessed on 1 January 2025).
- U.S. National Cancer Institute. Common Terminology Criteria for Adverse Events (CTCAE). Available online: https://ctep.cancer.gov/protocoldevelopment/electronic_applications/ctc.htm#ctc_60 (accessed on 17 July 2024).
- Srivastava, A.K.; Safaei, N.; Khaki, S.; Lopez, G.; Zeng, W.; Ewert, F.; Gaiser, T.; Rahimi, J. Winter wheat yield prediction using convolutional neural networks from environmental and phenological data. Sci. Rep. 2022, 12, 3215. [Google Scholar] [CrossRef]
- Salminen, J.; Corporan, J.; Marttila, R.; Salenius, T.; Jansen, J. Using Machine Learning to Predict Ranking of Webpages in the Gift Industry: Factors for Search-Engine Optimization. In Proceedings of the ICIST 2019: 9th International Conference on Information Systems and Technologies, Cairo, Egypt, 24–26 March 2019; pp. 1–8. [Google Scholar]
- Addeo, A.; Banna, G.L.; Metro, G.; Di Maio, M. Chemotherapy in Combination with Immune Checkpoint Inhibitors for the First-Line Treatment of Patients With Advanced Non-small Cell Lung Cancer: A Systematic Review and Literature-Based Meta-Analysis. Front. Oncol. 2019, 9, 264. [Google Scholar] [CrossRef]
- Dall’Olio, F.G.; Maggio, I.; Massucci, M.; Mollica, V.; Fragomeno, B.; Ardizzoni, A. ECOG performance status ≥2 as a prognostic factor in patients with advanced non small cell lung cancer treated with immune checkpoint inhibitors—A systematic review and meta-analysis of real world data. Lung Cancer 2020, 145, 95–104. [Google Scholar] [CrossRef]
- Shin, S.; Moon, J.; Oum, C.; Kim, S.; Cho, S.I.; Lim, Y.; Ock, C.-Y.; Shin, S. Discontinuation risk from adverse events: Immunotherapy alone vs. combined with chemotherapy: A systematic review and network meta-analysis. BMC Cancer 2024, 24, 152. [Google Scholar] [CrossRef]
- Fujimoto, D.; Miura, S.; Yoshimura, K.; Wakuda, K.; Oya, Y.; Haratani, K.; Itoh, S.; Uemura, T.; Morinaga, R.; Takahama, T.; et al. A Real-World Study on the Effectiveness and Safety of Pembrolizumab Plus Chemotherapy for Nonsquamous NSCLC. JTO Clin. Res. Rep. 2022, 3, 100265. [Google Scholar] [CrossRef]
- Hasan Ali, O.; Berner, F.; Bomze, D.; Fässler, M.; Diem, S.; Cozzio, A.; Jörger, M.; Früh, M.; Driessen, C.; Lenz, T.L.; et al. Human leukocyte antigen variation is associated with adverse events of checkpoint inhibitors. Eur. J. Cancer 2019, 107, 8–14. [Google Scholar] [CrossRef]
- Stamatouli, A.M.; Quandt, Z.; Perdigoto, A.L.; Clark, P.L.; Kluger, H.; Weiss, S.A.; Gettinger, S.; Sznol, M.; Young, A.; Rushakoff, R.; et al. Collateral Damage: Insulin-Dependent Diabetes Induced With Checkpoint Inhibitors. Diabetes 2018, 67, 1471–1480. [Google Scholar] [CrossRef] [PubMed]
- Yano, S.; Ashida, K.; Sakamoto, R.; Sakaguchi, C.; Ogata, M.; Maruyama, K.; Sakamoto, S.; Ikeda, M.; Ohe, K.; Akasu, S.; et al. Human leucocyte antigen DR15, a possible predictive marker for immune checkpoint inhibitor-induced secondary adrenal insufficiency. Eur. J. Cancer 2020, 130, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Cappelli, L.C.; Dorak, M.T.; Bettinotti, M.P.; Bingham, C.O.; Shah, A.A. Association of HLA-DRB1 shared epitope alleles and immune checkpoint inhibitor-induced inflammatory arthritis. Rheumatology 2019, 58, 476–480. [Google Scholar] [CrossRef] [PubMed]
- Inaba, H.; Kaido, Y.; Ito, S.; Hirobata, T.; Inoue, G.; Sugita, T.; Yamamoto, Y.; Jinnin, M.; Kimura, H.; Kobayashi, T.; et al. Human Leukocyte Antigens and Biomarkers in Type 1 Diabetes Mellitus Induced by Immune-Checkpoint Inhibitors. Endocrinol. Metab. 2022, 37, 84–95. [Google Scholar] [CrossRef] [PubMed]
- Shahabi, V.; Berman, D.; Chasalow, S.D.; Wang, L.; Tsuchihashi, Z.; Hu, B.; Panting, L.; Jure-Kunkel, M.; Ji, R.R. Gene expression profiling of whole blood in ipilimumab-treated patients for identification of potential biomarkers of immune-related gastrointestinal adverse events. J. Transl. Med. 2013, 11, 75. [Google Scholar] [CrossRef] [PubMed]
- Marschner, D.; Falk, M.; Javorniczky, N.R.; Hanke-Müller, K.; Rawluk, J.; Schmitt-Graeff, A.; Simonetta, F.; Haring, E.; Dicks, S.; Ku, M.; et al. MicroRNA-146a regulates immune-related adverse events caused by immune checkpoint inhibitors. JCI Insight 2020, 5, e135350. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Wahab, N.; Diab, A.; Yu, R.K.; Futreal, A.; Criswell, L.A.; Tayar, J.H.; Dadu, R.; Shannon, V.; Shete, S.S.; Suarez-Almazor, M.E. Genetic determinants of immune-related adverse events in patients with melanoma receiving immune checkpoint inhibitors. Cancer Immunol. Immunother. 2021, 70, 1939–1949. [Google Scholar] [CrossRef] [PubMed]
- Sung, C.; An, J.; Lee, S.; Park, J.; Lee, K.S.; Kim, I.H.; Han, J.Y.; Park, Y.H.; Kim, J.H.; Kang, E.J.; et al. Integrative analysis of risk factors for immune-related adverse events of checkpoint blockade therapy in cancer. Nat. Cancer 2023, 4, 844–859. [Google Scholar] [CrossRef] [PubMed]
- Chennamadhavuni, A.; Abushahin, L.; Jin, N.; Presley, C.J.; Manne, A. Risk Factors and Biomarkers for Immune-Related Adverse Events: A Practical Guide to Identifying High-Risk Patients and Rechallenging Immune Checkpoint Inhibitors. Front. Immunol. 2022, 13, 779691. [Google Scholar] [CrossRef] [PubMed]
- Tak, Y.W.; You, S.C.; Han, J.H.; Kim, S.S.; Kim, G.T.; Lee, Y. Perceived Risk of Re-Identification in OMOP-CDM Database: A Cross-Sectional Survey. J. Korean Med. Sci. 2022, 37, e205. [Google Scholar] [CrossRef] [PubMed]
- Quiroz, J.C.; Chard, T.; Sa, Z.; Ritchie, A.; Jorm, L.; Gallego, B. Extract, Transform, Load Framework for the Conversion of Health Databases to OMOP. PLoS ONE 2022, 17, e0266911. [Google Scholar] [CrossRef] [PubMed]
- Divasón, J.; Ceniceros, J.F.; Sanz-Garcia, A.; Pernia-Espinoza, A.; Martinez-de-Pison, F.J. PSO-PARSIMONY: A method for finding parsimonious and accurate machine learning models with particle swarm optimization. Application for predicting force–displacement curves in T-stub steel connections. Neurocomputing 2023, 548, 126414. [Google Scholar] [CrossRef]
Primary Model Development Cohort a | Cross-Comparison Cohort b | |||
---|---|---|---|---|
Cases (N = 212) | Controls (N = 185) | Cases (N = 118) | Controls (N = 137) | |
Age (years) c | ||||
Mean ± SD | 67.8 ± 10.3 | 68.4 ± 11.3 | 66.2 ± 9.8 | 67.8 ± 10.6 |
Gender d, N (%) | ||||
Male | 169 (79.7) | 140 (75.7) | 71 (60.2) | 98 (71.5) |
Female | 43 (20.3) | 45 (24.3) | 47 (39.8) | 39 (28.5) |
Type of cancer being treated, N (%) | ||||
Solid organ | 161 (77.8) | 124 (67.0) | 45 (38.1) | 89 (65.0) |
Hematological | 61 (28.8) | 33 (17.8) | 37 (31.4) | 58 (42.3) |
Both | 10 (4.7) | 0 (0.0) | 0 (0.0) | 10 (7.3) |
Unknown | 0 (0.0) | 28 (15.1) | 36 (30.5) | 0 (0.0) |
CCI score d,e, mean ± SD | 7.4 ± 3.7 | 7.0 ± 3.9 | 6.7 ± 3.0 | 6.2 ± 3.2 |
CHA2DS2VASc score d,f, mean ± SD | 2.4 ± 1.4 | 2.2 ± 1.5 | 1.9 ± 1.2 | 1.7 ± 1.3 |
Comorbid disease, N (%) | ||||
Atrial fibrillation c | 7 (3.3) | 4 (2.2) | 5 (4.2) | 6 (4.4) |
Chronic kidney disease c | 8 (3.8) | 16 (8.6) | 4 (3.4) | 5 (3.6) |
Diabetes mellitus d | 63 (29.7) | 44 (23.8) | 26 (22.0) | 19 (13.9) |
Hypertension d | 98 (46.2) | 65 (35.1) | 31 (26.3) | 30 (21.9) |
Thromboembolism c | 11 (5.2) | 7 (3.8) | 8 (6.8) | 3 (2.2) |
Concomitant chemotherapy d, N (%) | 125 (59.0) | 167 (90.3) | 41 (34.7) | 98 (71.5) |
Immune checkpoint inhibitor c, N (%) | ||||
Atezolizumab | 65 (30.7) | 55 (29.7) | 31 (26.3) | 36 (26.3) |
Nivolumab | 22 (10.4) | 26 (14.1) | 23 (19.5) | 22 (16.1) |
Pembrolizumab | 127 (59.9) | 86 (46.5) | 65 (55.1) | 80 (58.4) |
Concurrent therapy, N (%) | ||||
Acetylcysteine c | 76 (35.8) | 31 (16.8) | 32 (27.1) | 23 (16.8) |
Chlorpheniramine d | 149 (70.3) | 64 (34.6) | 105 (89.0) | 63 (46.0) |
Cimetidine d | 89 (42.0) | 40 (21.6) | 15 (12.7) | 14 (10.2) |
Dexamethasone c | 131 (61.8) | 61 (33.0) | 63 (53.4) | 60 (43.8) |
Filgrastim c | 24 (11.3) | 0 (0.0) | 9 (7.6) | 2 (1.5) |
Folic acid c | 59 (27.8) | 21 (11.4) | 29 (24.6) | 34 (24.8) |
Furosemide c | 98 (46.2) | 47 (25.4) | 69 (58.5) | 33 (24.1) |
Glucose c | 76 (35.8) | 29 (15.7) | 23 (19.5) | 7 (5.1) |
Megestrol c | 92 (43.4) | 44 (23.8) | 46 (39.0) | 31 (22.6) |
Metoclopramide c | 119 (56.1) | 62 (33.5) | 55 (46.6) | 50 (36.5) |
Naloxone/oxycodone c | 73 (34.4) | 38 (20.5) | 33 (28.0) | 25 (18.2) |
Oxygen gas c | 101 (47.6) | 53 (28.6) | 63 (53.4) | 43 (31.4) |
Piperacillin/tazobactam c | 91 (42.9) | 33 (17.8) | 46 (39.0) | 24 (17.5) |
irHAE Cases (N = 212) | |||
---|---|---|---|
Anemia (N = 171) | Thrombocytopenia (N = 78) | Leukopenia b (N = 98) | |
Age (years) | |||
Mean ± SD | 68.0 ± 8.7 | 67.7 ± 9.2 | 68.5 ± 9.4 |
Gender, N (%) | |||
Male | 130 (76.0) | 64 (82.1) | 82 (83.7) |
Female | 41 (24.0) | 14 (17.9) | 16 (16.3) |
Type of cancer being treated, N (%) | |||
Solid organ | 133 (77.8) | 61 (78.2) | 76 (77.6) |
Hematological | 50 (29.2) | 22 (28.2) | 28 (28.6) |
Both | 8 (4.7) | 5 (6.4) | 6 (6.1) |
Unknown | 0 (0.0) | 0 (0.0) | 0 (0.0) |
CCI score c, mean ± SD | 8.5 ± 3.6 | 8.9 ± 3.8 | 7.8 ± 3.5 |
CHA2DS2VASc score d, mean ± SD | 2.4 ± 1.5 | 2.2 ± 1.6 | 2.3 ± 1.5 |
Comorbid disease, N (%) | |||
Atrial fibrillation | 6 (3.5) | 7 (9.0) | 7 (7.1) |
Chronic kidney disease | 8 (4.7) | 6 (7.7) | 5 (5.1) |
Diabetes mellitus | 52 (30.4) | 16 (20.5) | 29 (29.6) |
Hypertension | 84 (49.1) | 32 (41.0) | 44 (44.9) |
Thromboembolism | 9 (5.3) | 4 (5.1) | 3 (3.1) |
Concomitant chemotherapy, N (%) | 101 (59.1) | 46 (59.0) | 58 (59.2) |
Immune checkpoint inhibitor, N (%) | |||
Atezolizumab | 59 (34.5) | 30 (38.5) | 36 (36.7) |
Nivolumab | 30 (17.5) | 9 (11.5) | 10 (10.2) |
Pembrolizumab | 85 (49.7) | 39 (50.0) | 53 (54.1) |
Concurrent therapy, N (%) | |||
Acetylcysteine | 52 (30.4) | 28 (35.9) | 29 (29.6) |
Chlorpheniramine | 121 (70.8) | 63 (80.8) | 66 (67.3) |
Cimetidine | 61 (35.7) | 34 (43.6) | 59 (60.2) |
Dexamethasone | 95 (55.6) | 53 (68.0) | 73 (74.5) |
Filgrastim | 19 (11.1) | 9 (11.5) | 11 (11.2) |
Folic acid | 33 (19.3) | 18 (23.1) | 22 (22.4) |
Furosemide | 75 (43.9) | 41 (52.6) | 43 (43.9) |
Glucose | 52 (30.4) | 34 (43.6) | 33 (33.7) |
Megestrol | 71 (41.5) | 28 (35.9) | 45 (45.9) |
Metoclopramide | 86 (50.3) | 48 (61.5) | 66 (67.3) |
Naloxone/oxycodone | 59 (34.5) | 27 (34.6) | 34 (34.7) |
Oxygen gas | 77 (45.0) | 53 (28.6) | 63 (53.4) |
Piperacillin/tazobactam | 69 (40.4) | 38 (48.7) | 36 (36.7) |
irHAE Cases (N = 118) b | ||
---|---|---|
Thrombocytopenia (N = 84) | Leukopenia c (N = 83) | |
Age (years) | ||
Mean ± SD | 64.4 ± 9.6 | 64.9 ± 9.6 |
Gender, N (%) | ||
Male | 44 (52.4) | 54 (65.1) |
Female | 40 (47.6) | 29 (34.9) |
Type of cancer being treated, N (%) | ||
Solid organ | 32 (38.1) | 31 (37.3) |
Hematological | 26 (31.0) | 27 (32.5) |
Both | 0 (0.0) | 0 (0.0) |
Unknown | 26 (31.0) | 25 (30.1) |
CCI score d, mean ± SD | 7.0 ± 3.0 | 6.3 ± 3.2 |
CHA2DS2VASc score e, mean ± SD | 1.9 ± 1.2 | 1.6 ± 1.1 |
Comorbid disease, N (%) | ||
Atrial fibrillation | 1 (1.2) | 2 (2.4) |
Chronic kidney disease | 3 (3.6) | 3 (3.6) |
Diabetes mellitus | 15 (17.9) | 9 (10.8) |
Hypertension | 19 (22.6) | 15 (18.1) |
Thromboembolism | 4 (4.8) | 2 (2.4) |
Concomitant chemotherapy, N (%) | 29 (34.5) | 29 (34.9) |
Immune checkpoint inhibitor, N (%) | ||
Atezolizumab | 14 (21.5) | 18 (31.6) |
Nivolumab | 12 (18.5) | 9 (15.8) |
Pembrolizumab | 39 (60.0) | 31 (54.4) |
Concurrent therapy, N (%) | ||
Acetylcysteine | 21 (25.0) | 14 (16.9) |
Chlorpheniramine | 62 (73.8) | 48 (57.8) |
Cimetidine | 14 (16.7) | 13 (15.7) |
Dexamethasone | 36 (42.9) | 36 (43.4) |
Filgrastim | 2 (2.4) | 7 (8.4) |
Folic acid | 17 (20.2) | 13 (15.7) |
Furosemide | 43 (51.2) | 29 (34.9) |
Glucose | 17 (20.2) | 9 (10.8) |
Megestrol | 26 (31.0) | 37 (44.6) |
Metoclopramide | 32 (38.1) | 32 (38.6) |
Naloxone/oxycodone | 24 (28.6) | 29 (34.9) |
Oxygen gas | 35 (41.7) | 22 (26.5) |
Piperacillin/tazobactam | 26 (31.0) | 23 (27.7) |
Algorithms | Primary Model Development Cohort | Cross-Comparison Cohort | ||||
---|---|---|---|---|---|---|
AUROC | AUPRC | F1 Score | AUROC | AUPRC | F1 Score | |
Lasso logistic regression | 0.97 | 0.95 | 0.7 | 0.67 | 0.24 | 0.4 |
Random forest | 0.88 | 0.83 | 0.8 | 0.88 | 0.60 | 0.7 |
Ada boost | 0.81 | 0.70 | 0.7 | 0.90 | 0.77 | 0.4 |
Decision tree | 0.63 | 0.51 | 0.6 | 0.79 | 0.53 | 0.5 |
Naïve Bayes | 0.63 | 0.50 | 0.6 | 0.51 | 0.18 | 0.2 |
Multilayer perception | 0.52 | 0.43 | 0.5 | 0.49 | 0.17 | 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.J.; Yang, S.; Lee, S.; Joo, S.H.; Park, T.; Kim, D.H.; Kim, H.; Park, S.; Kim, J.-T.; Kwack, W.G.; et al. Machine-Learning Parsimonious Prediction Model for Diagnostic Screening of Severe Hematological Adverse Events in Cancer Patients Treated with PD-1/PD-L1 Inhibitors: Retrospective Observational Study by Using the Common Data Model. Diagnostics 2025, 15, 226. https://doi.org/10.3390/diagnostics15020226
Park SJ, Yang S, Lee S, Joo SH, Park T, Kim DH, Kim H, Park S, Kim J-T, Kwack WG, et al. Machine-Learning Parsimonious Prediction Model for Diagnostic Screening of Severe Hematological Adverse Events in Cancer Patients Treated with PD-1/PD-L1 Inhibitors: Retrospective Observational Study by Using the Common Data Model. Diagnostics. 2025; 15(2):226. https://doi.org/10.3390/diagnostics15020226
Chicago/Turabian StylePark, Seok Jun, Seungwon Yang, Suhyun Lee, Sung Hwan Joo, Taemin Park, Dong Hyun Kim, Hyeonji Kim, Soyun Park, Jung-Tae Kim, Won Gun Kwack, and et al. 2025. "Machine-Learning Parsimonious Prediction Model for Diagnostic Screening of Severe Hematological Adverse Events in Cancer Patients Treated with PD-1/PD-L1 Inhibitors: Retrospective Observational Study by Using the Common Data Model" Diagnostics 15, no. 2: 226. https://doi.org/10.3390/diagnostics15020226
APA StylePark, S. J., Yang, S., Lee, S., Joo, S. H., Park, T., Kim, D. H., Kim, H., Park, S., Kim, J.-T., Kwack, W. G., Kang, S. W., Song, Y.-K., Cha, J. M., Rhee, S. Y., & Chung, E. K. (2025). Machine-Learning Parsimonious Prediction Model for Diagnostic Screening of Severe Hematological Adverse Events in Cancer Patients Treated with PD-1/PD-L1 Inhibitors: Retrospective Observational Study by Using the Common Data Model. Diagnostics, 15(2), 226. https://doi.org/10.3390/diagnostics15020226