Relationship Between Myocardial Strain and Extracellular Volume: Exploratory Study in Patients with Severe Aortic Stenosis Undergoing Photon-Counting Detector CT
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. CT Data Acquisition and Image Reconstruction
2.3. Strain Analysis
2.4. ECV Analysis
2.5. Aortic Valve Calcification
2.6. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Overall Patient Sample
3.3. Patients with Known Myocardial Disease
3.4. Patients Without Known Myocardial Disease
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Timmis, A.; Vardas, P.; Townsend, N.; Torbica, A.; Katus, H.; De Smedt, D.; Gale, C.P.; Maggioni, A.P.; Petersen, S.E.; Huculeci, R.; et al. European Society of Cardiology: Cardiovascular disease statistics 2021: Executive Summary. Eur. Heart J. Qual. Care Clin. Outcomes 2022, 8, 377–382. [Google Scholar] [CrossRef] [PubMed]
- Osnabrugge, R.L.J.; Mylotte, D.; Head, S.J.; Van Mieghem, N.M.; Nkomo, V.T.; LeReun, C.M.; Bogers, A.J.J.C.; Piazza, N.; Kappetein, A.P. Aortic stenosis in the elderly: Disease prevalence and number of candidates for transcatheter aortic valve replacement: A meta-analysis and modeling study. J. Am. Coll. Cardiol. 2013, 62, 1002–1012. [Google Scholar] [CrossRef] [PubMed]
- Stens, N.A.; van Iersel, O.; Rooijakkers, M.J.P.; van Wely, M.H.; Nijveldt, R.; Bakker, E.A.; Rodwell, L.; Pedersen, A.L.D.; Poulsen, S.H.; Kjønås, D.; et al. Prognostic Value of Preprocedural LV Global Longitudinal Strain for Post-TAVR-Related Morbidity and Mortality: A Meta-Analysis. JACC Cardiovasc. Imaging 2023, 16, 332–341. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-J.; Lee, H.; Kim, S.M.; Park, J.-B.; Kim, E.K.; Chang, S.-A.; Park, E.; Kim, H.-K.; Lee, W.; Kim, Y.-J.; et al. Diffuse myocardial fibrosis and diastolic function in aortic stenosis. JACC Cardiovasc. Imaging 2020, 13, 2561–2572. [Google Scholar] [CrossRef] [PubMed]
- Bernhard, B.; Grogg, H.; Zurkirchen, J.; Demirel, C.; Hagemeyer, D.; Okuno, T.; Brugger, N.; De Marchi, S.; Huber, A.T.; Berto, M.B.; et al. Reproducibility of 4D cardiac computed tomography feature tracking myocardial strain and comparison against speckle-tracking echocardiography in patients with severe aortic stenosis. J. Cardiovasc. Comput. Tomogr. 2022, 16, 309–318. [Google Scholar] [CrossRef]
- He, X.; Li, Y.; Wang, Y.; Tian, W.; Li, Z.; Ge, L.; Wang, G.; Chen, Z. Prognostic Value of CT-Derived Myocardial Biomarkers: Extracellular Volume Fraction and Strain in Patients with Severe Aortic Stenosis Undergoing Transcatheter Aortic Valve Replacement: A Systematic Review and Meta-analysis. Acad. Radiol. 2024, 31, 4352–4364. [Google Scholar] [CrossRef]
- Bing, R.; Cavalcante, J.L.; Everett, R.J.; Clavel, M.-A.; Newby, D.E.; Dweck, M.R. Imaging and impact of myocardial fibrosis in aortic stenosis. JACC Cardiovasc. Imaging 2019, 12, 283–296. [Google Scholar] [CrossRef]
- Abecasis, J.; Lopes, P.; Santos, R.R.; Maltês, S.; Guerreiro, S.; Ferreira, A.; Freitas, P.; Ribeiras, R.; Andrade, M.J.; Manso, R.T.; et al. Prevalence and significance of relative apical sparing in aortic stenosis: Insights from an echo and cardiovascular magnetic resonance study of patients referred for surgical aortic valve replacement. Eur. Heart J. Cardiovasc. Imaging 2023, 24, 1033–1042. [Google Scholar] [CrossRef]
- Abecasis, J.; Lopes, P.; Maltes, S.; Santos, R.R.; Ferreira, A.; Ribeiras, R.; Andrade, M.J.; Uva, M.S.; Gil, V.; Félix, A.; et al. Histopathological myocardial changes in patients with severe aortic stenosis referred for surgical valve replacement: A cardiac magnetic resonance correlation study. Eur. Heart J. Cardiovasc. Imaging 2024, 25, 839–848. [Google Scholar] [CrossRef]
- Blanke, P.; Weir-McCall, J.R.; Achenbach, S.; Delgado, V.; Hausleiter, J.; Jilaihawi, H.; Marwan, M.; Norgaard, B.L.; Piazza, N.; Schoenhagen, P.; et al. Computed tomography imaging in the context of transcatheter aortic valve implantation (TAVI)/transcatheter aortic valve replacement (TAVR): An expert consensus document of the Society of Cardiovascular Computed Tomography. J. Cardiovasc. Comput. Tomogr. 2019, 13, 1–20. [Google Scholar] [CrossRef]
- Francone, M.; Budde, R.P.J.; Bremerich, J.; Dacher, J.N.; Loewe, C.; Wolf, F.; Natale, L.; Pontone, G.; Redheuil, A.; Vliegenthart, R.; et al. CT and MR imaging prior to transcatheter aortic valve implantation: Standardisation of scanning protocols, measurements and reporting-a consensus document by the European Society of Cardiovascular Radiology (ESCR). Eur. Radiol. 2020, 30, 2627–2650. [Google Scholar] [CrossRef] [PubMed]
- Lisi, C.; Moser, L.J.; Mergen, V.; Klambauer, K.; Uçar, E.; Eberhard, M.; Alkadhi, H. Advanced myocardial characterization and function with cardiac CT. Int. J. Cardiovasc. Imaging 2024. [Google Scholar] [CrossRef] [PubMed]
- Oyama-Manabe, N.; Oda, S.; Ohta, Y.; Takagi, H.; Kitagawa, K.; Jinzaki, M. Myocardial late enhancement and extracellular volume with single-energy, dual-energy, and photon-counting computed tomography. J. Cardiovasc. Comput. Tomogr. 2024, 18, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Muthalaly, R.G.; Tan, S.; Nelson, A.J.; Abrahams, T.; Han, D.; Tamarappoo, B.K.; Dey, D.; Nicholls, S.J.; Lin, A.; Nerlekar, N. Variation of computed tomography-derived extracellular volume fraction and the impact of protocol parameters: A systematic review and meta-analysis. J. Cardiovasc. Comput. Tomogr. 2024, 18, 457–464. [Google Scholar] [CrossRef]
- Lacaita, P.G.; Luger, A.; Troger, F.; Widmann, G.; Feuchtner, G.M. Photon-Counting Detector Computed Tomography (PCD-CT): A New Era for Cardiovascular Imaging? Current Status and Future Outlooks. J. Cardiovasc. Dev. Dis. 2024, 11, 127. [Google Scholar] [CrossRef]
- Mergen, V.; Sartoretti, T.; Klotz, E.; Schmidt, B.; Jungblut, L.; Higashigaito, K.; Manka, R.; Euler, A.; Kasel, M.; Eberhard, M.; et al. Extracellular Volume Quantification with Cardiac Late Enhancement Scanning Using Dual-Source Photon-Counting Detector CT. Investig. Radiol. 2022, 57, 406–411. [Google Scholar] [CrossRef]
- Aquino, G.J.; O’Doherty, J.; Schoepf, U.J.; Ellison, B.; Byrne, J.; Fink, N.; Zsarnoczay, E.; Wolf, E.V.; Allmendinger, T.; Schmidt, B.; et al. Myocardial Characterization with Extracellular Volume Mapping with a First-Generation Photon-counting Detector CT with MRI Reference. Radiology 2023, 307, e222030. [Google Scholar] [CrossRef]
- Emoto, T.; Oda, S.; Kidoh, M.; Nakaura, T.; Nagayama, Y.; Sakabe, D.; Kakei, K.; Goto, M.; Funama, Y.; Hatemura, M.; et al. Myocardial Extracellular Volume Quantification Using Cardiac Computed Tomography: A Comparison of the Dual-energy Iodine Method and the Standard Subtraction Method. Acad. Radiol. 2021, 28, e119–e126. [Google Scholar] [CrossRef]
- Baumgartner, H.; Falk, V.; Bax, J.J.; De Bonis, M.; Hamm, C.; Holm, P.J.; Iung, B.; Lancellotti, P.; Lansac, E.; Rodriguez Muñoz, D.; et al. ESC Scientific Document Group 2017 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. Heart J. 2017, 38, 2739–2791. [Google Scholar] [CrossRef]
- Eberhard, M.; Hinzpeter, R.; Polacin, M.; Morsbach, F.; Maisano, F.; Nietlispach, F.; Nguyen-Kim, T.D.L.; Tanner, F.C.; Alkadhi, H. Reproducibility of aortic valve calcification scoring with computed tomography—An interplatform analysis. J. Cardiovasc. Comput. Tomogr. 2019, 13, 92–98. [Google Scholar] [CrossRef]
- Scully, P.R.; Patel, K.P.; Saberwal, B.; Klotz, E.; Augusto, J.B.; Thornton, G.D.; Hughes, R.K.; Manisty, C.; Lloyd, G.; Newton, J.D.; et al. Identifying cardiac amyloid in aortic stenosis: ECV quantification by CT in TAVR patients. JACC Cardiovasc. Imaging 2020, 13, 2177–2189. [Google Scholar] [CrossRef] [PubMed]
- Bernhard, B.; Leib, Z.; Dobner, S.; Demirel, C.; Caobelli, F.; Rominger, A.; Schütze, J.; Grogg, H.; Alwan, L.; Spano, G.; et al. Routine 4D Cardiac CT to Identify Concomitant Transthyretin Amyloid Cardiomyopathy in Older Adults with Severe Aortic Stenosis. Radiology 2023, 309, e230425. [Google Scholar] [CrossRef] [PubMed]
- Scully, P.R.; Patel, K.P.; Klotz, E.; Augusto, J.B.; Thornton, G.D.; Saberwal, B.; Haberland, U.; Kennon, S.; Ozkor, M.; Mullen, M.; et al. Myocardial fibrosis quantified by cardiac CT predicts outcome in severe aortic stenosis after transcatheter intervention. JACC Cardiovasc. Imaging 2022, 15, 542–544. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.P.; Scully, P.R.; Saberwal, B.; Sinha, A.; Yap-Sanderson, J.J.L.; Cheasty, E.; Mullen, M.; Menezes, L.J.; Moon, J.C.; Pugliese, F.; et al. Regional distribution of extracellular volume quantified by cardiac CT in aortic stenosis: Insights into disease mechanisms and impact on outcomes. Circ. Cardiovasc. Imaging 2024, 17, e015996. [Google Scholar] [CrossRef]
- Khan, J.N.; Singh, A.; Nazir, S.A.; Kanagala, P.; Gershlick, A.H.; McCann, G.P. Comparison of cardiovascular magnetic resonance feature tracking and tagging for the assessment of left ventricular systolic strain in acute myocardial infarction. Eur. J. Radiol. 2015, 84, 840–848. [Google Scholar] [CrossRef]
- Adda, J.; Mielot, C.; Giorgi, R.; Cransac, F.; Zirphile, X.; Donal, E.; Sportouch-Dukhan, C.; Réant, P.; Laffitte, S.; Cade, S.; et al. Low-flow, low-gradient severe aortic stenosis despite normal ejection fraction is associated with severe left ventricular dysfunction as assessed by speckle-tracking echocardiography: A multicenter study. Circ. Cardiovasc. Imaging 2012, 5, 27–35. [Google Scholar] [CrossRef]
- D’Andrea, A.; Carbone, A.; Agricola, E.; Riegler, L.; Sperlongano, S.; Tocci, G.; Scarafile, R.; Formisano, T.; Capogrosso, C.; Cappelli Bigazzi, M.; et al. Predictive Value of Left Ventricular Myocardial Deformation for Left Ventricular Remodeling in Patients With Classical Low-Flow, Low-Gradient Aortic Stenosis Undergoing Transcatheter Aortic Valve Replacement. J. Am. Soc. Echocardiogr. 2019, 32, 730–736. [Google Scholar] [CrossRef]
Characteristic | n = 77 Patients |
---|---|
Sex | |
Female | 28 (36%) |
Male | 49 (64%) |
Age [years] | 81 ± 8 |
Body weight [kg] | 75 ± 16 |
Body mass index [kg/m2] | 27 ± 5 |
Average heart rate during data acquisition [bpm] | 76 ± 15 |
Average hematocrit (%) | 39 ± 0.05 |
Aortic valve calcium score derived by CT [Agatston units] * | 2470 (1740–3656) |
Average EF derived by echocardiography (%) | 64 (46, 73) |
Medical history | |
Arterial hypertension | 67 (87%) |
Dyslipidemia | 50 (65%) |
Smoking history | 24 (31%) |
Diabetes | 21 (27%) |
Prior coronary revascularization | 18 (23%) |
Chronic kidney disease | 21 (27%) |
COPD | 7 (9%) |
Parameter | Patients with Previous Myocardial Infarction | Patients Without Myocardial Diseases | p-Value |
---|---|---|---|
GLS (%) | −9.1 (−9.8, −5.9) | −21.7 (−27.6, −17.0) | <0.001 |
GCS (%) | −12.5 (−14.5, −8.1) | −35.3 (−42.0, −25.4) | <0.001 |
GRS (%) | 12.0% (4.2, 16.5) | 28.9 (21.7, 39.6) | 0.02 |
LVEF (%) | 29.1 (15.9, 34.4) | 67.3 (50.7, 73.7) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lisi, C.; Mergen, V.; Moser, L.J.; Klambauer, K.; Michel, J.; Kasel, A.M.; Alkadhi, H.; Eberhard, M. Relationship Between Myocardial Strain and Extracellular Volume: Exploratory Study in Patients with Severe Aortic Stenosis Undergoing Photon-Counting Detector CT. Diagnostics 2025, 15, 224. https://doi.org/10.3390/diagnostics15020224
Lisi C, Mergen V, Moser LJ, Klambauer K, Michel J, Kasel AM, Alkadhi H, Eberhard M. Relationship Between Myocardial Strain and Extracellular Volume: Exploratory Study in Patients with Severe Aortic Stenosis Undergoing Photon-Counting Detector CT. Diagnostics. 2025; 15(2):224. https://doi.org/10.3390/diagnostics15020224
Chicago/Turabian StyleLisi, Costanza, Victor Mergen, Lukas J. Moser, Konstantin Klambauer, Jonathan Michel, Albert M. Kasel, Hatem Alkadhi, and Matthias Eberhard. 2025. "Relationship Between Myocardial Strain and Extracellular Volume: Exploratory Study in Patients with Severe Aortic Stenosis Undergoing Photon-Counting Detector CT" Diagnostics 15, no. 2: 224. https://doi.org/10.3390/diagnostics15020224
APA StyleLisi, C., Mergen, V., Moser, L. J., Klambauer, K., Michel, J., Kasel, A. M., Alkadhi, H., & Eberhard, M. (2025). Relationship Between Myocardial Strain and Extracellular Volume: Exploratory Study in Patients with Severe Aortic Stenosis Undergoing Photon-Counting Detector CT. Diagnostics, 15(2), 224. https://doi.org/10.3390/diagnostics15020224