Comparative Analysis of Automated and Handheld Breast Ultrasound Findings for Small (≤1 cm) Breast Cancers Based on BI-RADS Category
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subject
2.2. US Examinations
2.2.1. ABUS
2.2.2. HHUS
2.3. Analysis of US Features and Pathologic Data
2.4. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zanotel, M.; Bednarova, I.; Londero, V.; Linda, A.; Lorenzon, M.; Girometti, R.; Zuiani, C. Automated breast ultrasound: Basic principles and emerging clinical applications. Radiol. Med. 2018, 123, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Ko, K.H.; Jung, H.K.; Kim, S.J.; Kim, H.; Yoon, J.H. Potential role of shear-wave ultrasound elastography for the differential diagnosis of breast non-mass lesions: Preliminary report. Eur. Radiol. 2014, 24, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Kolb, T.M.; Lichy, J.; Newhouse, J.H. Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: An analysis of 27,825 patient evaluations. Radiology 2002, 225, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Pisano, E.D.; Gatsonis, C.; Hendrick, E.; Yaffe, M.; Baum, J.K.; Acharyya, S.; Conant, E.F.; Fajardo, L.L.; Bassett, L.; D’Orsi, C.; et al. Diagnostic performance of digital versus film mammography for breast-cancer screening. N. Engl. J. Med. 2005, 353, 1773–1783. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, S.; Venet, W.; Strax, P.; Venet, L.; Roeser, R. Ten- to fourteen-year effect of screening on breast cancer mortality. J. Natl. Cancer Inst. 1982, 69, 349–355. [Google Scholar]
- Brem, R.F.; Tabár, L.; Duffy, S.W.; Inciardi, M.F.; Guingrich, J.A.; Hashimoto, B.E.; Lander, M.R.; Lapidus, R.L.; Peterson, M.K.; Rapelyea, J.A.; et al. Assessing improvement in detection of breast cancer with three-dimensional automated breast US in women with dense breast tissue: The SomoInsight Study. Radiology 2015, 274, 663–673. [Google Scholar] [CrossRef]
- Wilczek, B.; Wilczek, H.E.; Rasouliyan, L.; Leifland, K. Adding 3D automated breast ultrasound to mammography screening in women with heterogeneously and extremely dense breasts: Report from a hospital-based, high-volume, single-center breast cancer screening program. Eur. J. Radiol. 2016, 85, 1554–1563. [Google Scholar] [CrossRef]
- Hellgren, R.; Dickman, P.; Leifland, K.; Saracco, A.; Hall, P.; Celebioglu, F. Comparison of handheld ultrasound and automated breast ultrasound in women recalled after mammography screening. Acta Radiol. 2017, 58, 515–520. [Google Scholar] [CrossRef]
- Choi, E.J.; Choi, H.; Park, E.H.; Song, J.S.; Youk, J.H. Evaluation of an automated breast volume scanner according to the fifth edition of BI-RADS for breast ultrasound compared with hand-held ultrasound. Eur. J. Radiol. 2018, 99, 138–145. [Google Scholar] [CrossRef]
- Vourtsis, A.; Kachulis, A. The performance of 3D ABUS versus HHUS in the visualisation and BI-RADS characterisation of breast lesions in a large cohort of 1886 women. Eur. Radiol. 2018, 28, 592–601. [Google Scholar] [CrossRef]
- Jeh, S.K.; Kim, S.H.; Choi, J.J.; Jung, S.S.; Choe, B.J.; Park, S.; Park, M.S. Comparison of automated breast ultrasonography to handheld ultrasonography in detecting and diagnosing breast lesions. Acta Radiol. 2016, 57, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Helal, M.; Mansour, S.; Khaled, R.; Bassam, L. The role of automated breast ultrasound in the assessment of the local extent of breast cancer. Breast J. 2021, 27, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Yun, G.; Kim, S.M.; Yun, B.; Ahn, H.S.; Jang, M. Reliability of automated versus handheld breast ultrasound examinations of suspicious breast masses. Ultrasonography 2019, 38, 264–271. [Google Scholar] [CrossRef] [PubMed]
- Fracheboud, J.; Otto, S.; Van Dijck, J.; Broeders, M.; Verbeek, A.; De Koning, H. Decreased rates of advanced breast cancer due to mammography screening in The Netherlands. Br. J. Cancer 2004, 91, 861–867. [Google Scholar] [CrossRef] [PubMed]
- Bland, K.I.; Menck, H.R.; Scott-Conner, C.E.; Morrow, M.; Winchester, D.J.; Winchester, D.P. The National Cancer Data Base 10-year survey of breast carcinoma treatment at hospitals in the United States. Cancer Interdiscip. Int. J. Am. Cancer Soc. 1998, 83, 1262–1273. [Google Scholar] [CrossRef]
- Houvenaeghel, G.; Goncalves, A.; Classe, J.M.; Garbay, J.R.; Giard, S.; Charytensky, H.; Cohen, M.; Belichard, C.; Faure, C.; Uzan, S.; et al. Characteristics and clinical outcome of T1 breast cancer: A multicenter retrospective cohort study. Ann. Oncol. 2014, 25, 623–628. [Google Scholar] [CrossRef]
- Hanrahan, E.O.; Gonzalez-Angulo, A.M.; Giordano, S.H.; Rouzier, R.; Broglio, K.R.; Hortobagyi, G.N.; Valero, V. Overall survival and cause-specific mortality of patients with stage T1a, bN0M0 breast carcinoma. J. Clin. Oncol. 2007, 25, 4952–4960. [Google Scholar] [CrossRef]
- Hanrahan, E.O.; Valero, V.; Gonzalez-Angulo, A.M.; Hortobagyi, G.N. Prognosis and management of patients with node-negative invasive breast carcinoma that is 1 cm or smaller in size (stage 1; T1a, bN0M0): A review of the literature. J. Clin. Oncol. 2006, 24, 2113–2122. [Google Scholar] [CrossRef]
- Kennedy, T.; Stewart, A.K.; Bilimoria, K.Y.; Patel-Parekh, L.; Sener, S.F.; Winchester, D.P. Treatment trends and factors associated with survival in T1aN0 and T1bN0 breast cancer patients. Ann. Surg. Oncol. 2007, 14, 2918–2927. [Google Scholar] [CrossRef]
- D’Orsi, C.; Sickles, E.; Mendelson, E.; Morris, E.; Creech, W.; Butler, P. Acr BI-rAdS® Atlas: Breast Imaging Reporting and Data System; American College of Radiology: Reston, VA, USA, 2013. [Google Scholar]
- Chang, J.M.; Moon, W.K.; Cho, N.; Park, J.S.; Kim, S.J. Breast cancers initially detected by hand-held ultrasound: Detection performance of radiologists using automated breast ultrasound data. Acta Radiol. 2011, 52, 8–14. [Google Scholar] [CrossRef]
- Berg, W.A.; Vourtsis, A. Screening breast ultrasound using handheld or automated technique in women with dense breasts. J. Breast Imaging 2019, 1, 283–296. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-Y.; Jiang, Y.-X.; Zhu, Q.-L.; Zhang, J.; Dai, Q.; Liu, H.; Lai, X.-J.; Sun, Q. Differentiation of benign and malignant breast lesions: A comparison between automatically generated breast volume scans and handheld ultrasound examinations. Eur. J. Radiol. 2012, 81, 3190–3200. [Google Scholar] [CrossRef] [PubMed]
- Hong, A.S.; Rosen, E.L.; Soo, M.S.; Baker, J.A. BI-RADS for sonography: Positive and negative predictive values of sonographic features. Am. J. Roentgenol. 2005, 184, 1260–1265. [Google Scholar] [CrossRef] [PubMed]
- Elverici, E.; Barca, A.N.; Aktas, H.; Ozsoy, A.; Zengin, B.; Cavusoglu, M.; Araz, L. Nonpalpable BI-RADS 4 breast lesions: Sonographic findings and pathology correlation. Diagn. Interv. Radiol. 2015, 21, 189. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-Y.; Han, B.-K.; Kim, E.-K.; Choi, W.J.; Choi, Y.; Kim, H.H.; Moon, W.K. Breast Cancer Detected at Screening US: Survival Rates and Clinical-Pathologic and Imaging Factors Associated with Recurrence. Radiology 2017, 284, 354–364. [Google Scholar] [CrossRef]
- Berg, W.A.; Gilbreath, P.L. Multicentric and multifocal cancer: Whole-breast US in preoperative evaluation. Radiology 2000, 214, 59–66. [Google Scholar] [CrossRef]
- Costantini, M.; Belli, P.; Bufi, E.; Asunis, A.M.; Ferra, E.; Bitti, G.T. Association between sonographic appearances of breast cancers and their histopathologic features and biomarkers. J. Clin. Ultrasound 2016, 44, 26–33. [Google Scholar] [CrossRef]
- Yamaguchi, R.; Watanabe, H.; Mihara, Y.; Yamaguchi, M.; Tanaka, M. Histopathology of non-mass-like breast lesions on ultrasound. J. Med. Ultrason. 2023, 50, 375–380. [Google Scholar] [CrossRef]
- Sabek, E.A.S.; Salem, H.T. Technical Factors Affecting Ultrasound Breast Tumor Size as Correlated with Pathological Type. Medicina 2019, 55, 713. [Google Scholar] [CrossRef]
- Nakamura, M.; Ishizuka, Y.; Horimoto, Y.; Shiraishi, A.; Arakawa, A.; Yanagisawa, N.; Iijima, K.; Saito, M. Clinicopathological features of breast cancer without mammographic findings suggesting malignancy. Breast 2020, 54, 335–342. [Google Scholar] [CrossRef]
- Park, K.W.; Ko, E.Y.; Park, S.; Han, B.-K.; Choi, J.S.; Kwon, M.-R. Reproducibility of Automated Breast Ultrasonography and Handheld Ultrasonography for Breast Lesion Size Measurement. Ultrasound Q. 2022, 38, 13–17. [Google Scholar] [CrossRef]
US Feature | Category | Number (n, (%)) | Median (Q1, Q3) | p-Value |
---|---|---|---|---|
Shape | Agree | 49 (96.8) | NA | |
ABUS more suspicious | 2 (3.2) | |||
ABUS less suspicious | 0 (0) | |||
Margin | Agree | 31 (61.3) | 0.221 | |
ABUS more suspicious | 7 (12.9) | |||
ABUS less suspicious | 13 (25.8) | |||
Orientation (H-W ratio) | ABUS | 0.98 (0.72, 1.12) | 0.166 | |
HHUS | 0.86 (0.74, 1.10) | |||
Echo Pattern | Agree | 35 (67.7) | 0.532 | |
Disagree | 16 (32.3) | |||
Posterior Feature | Agree | 49 (96.8) | 0.801 | |
Disagree | 2 (3.2) | |||
BI-RADS Category | Agree | 28 (54.8) | 0.005 | |
ABUS more suspicious | 4 (7.8) | |||
ABUS less suspicious | 19 (37.3) |
Mass Margins (n = 51) | |||||
---|---|---|---|---|---|
ABUS | HHUS | ||||
Circumscribed | Microlobulated | Indistinct/Angular | Spiculated | Total (n, %) | |
Circumscribed | 2 | 0 | 0 | 0 | 2 (3.9) |
Microlobulated | 0 | 0 | 2 | 0 | 2 (3.9) |
Indistinct/angular | 0 | 2 | 8 | 11 | 21 (41.2) |
Spiculated | 0 | 0 | 5 | 21 | 26 (51.0) |
Total (n, %) | 2 (3.9) | 2 (3.9) | 15 (29.4) | 32 (62.7) | 51 |
ABUS | HHUS | ||||
---|---|---|---|---|---|
4A | 4B | 4C | 5 | Total (n, %) | |
4A | 3 | 2 | 2 | 0 | 7 (13.7) |
4B | 0 | 2 | 5 | 0 | 7 (13.7) |
4C | 0 | 0 | 13 | 10 | 23 (45.1) |
5 | 0 | 0 | 4 | 10 | 14 (27.5) |
Total (n, %) | 3 (5.9) | 4 (7.8) | 24 (47.1) | 20 (39.2) | 51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mun, H.S.; Ko, E.Y.; Han, B.-K.; Ko, E.S.; Choi, J.S.; Kim, H.; Kim, M.K.; Kim, J. Comparative Analysis of Automated and Handheld Breast Ultrasound Findings for Small (≤1 cm) Breast Cancers Based on BI-RADS Category. Diagnostics 2025, 15, 212. https://doi.org/10.3390/diagnostics15020212
Mun HS, Ko EY, Han B-K, Ko ES, Choi JS, Kim H, Kim MK, Kim J. Comparative Analysis of Automated and Handheld Breast Ultrasound Findings for Small (≤1 cm) Breast Cancers Based on BI-RADS Category. Diagnostics. 2025; 15(2):212. https://doi.org/10.3390/diagnostics15020212
Chicago/Turabian StyleMun, Han Song, Eun Young Ko, Boo-Kyung Han, Eun Sook Ko, Ji Soo Choi, Haejung Kim, Myoung Kyoung Kim, and Jieun Kim. 2025. "Comparative Analysis of Automated and Handheld Breast Ultrasound Findings for Small (≤1 cm) Breast Cancers Based on BI-RADS Category" Diagnostics 15, no. 2: 212. https://doi.org/10.3390/diagnostics15020212
APA StyleMun, H. S., Ko, E. Y., Han, B.-K., Ko, E. S., Choi, J. S., Kim, H., Kim, M. K., & Kim, J. (2025). Comparative Analysis of Automated and Handheld Breast Ultrasound Findings for Small (≤1 cm) Breast Cancers Based on BI-RADS Category. Diagnostics, 15(2), 212. https://doi.org/10.3390/diagnostics15020212