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Abstract: Conventional diagnostic methods for glaucoma primarily rely on non-dynamic fundus
images and often analyze features such as the optic cup-to-disc ratio and abnormalities in specific
retinal locations like the macula and fovea. However, hyperspectral imaging techniques focus
on detecting alterations in oxygen saturation within retinal vessels, offering a potentially more
comprehensive approach to diagnosis. This study explores the diagnostic potential of hyperspectral
imaging for glaucoma by introducing a novel hyperspectral imaging conversion technique. Digital
fundus images are transformed into hyperspectral representations, allowing for a detailed analysis of
spectral variations. Spectral regions exhibiting differences are identified through spectral analysis, and
images are reconstructed from these specific regions. The Vision Transformer (ViT) algorithm is then
employed for classification and comparison across selected spectral bands. Fundus images are used to
identify differences in lesions, utilizing a dataset of 1291 images. This study evaluates the classification
performance of models using various spectral bands, revealing that the 610–780 nm band outperforms
others with an accuracy, precision, recall, F1-score, and AUC-ROC all approximately at 0.9007,
indicating its superior effectiveness for the task. The RGB model also shows strong performance,
while other bands exhibit lower recall and overall metrics. This research highlights the disparities
between machine learning algorithms and traditional clinical approaches in fundus image analysis.
The findings suggest that hyperspectral imaging, coupled with advanced computational techniques
such as the ViT algorithm, could significantly enhance glaucoma diagnosis. This understanding
offers insights into the potential transformation of glaucoma diagnostics through the integration of
hyperspectral imaging and innovative computational methodologies.

Keywords: glaucoma detection; hyperspectral imaging; vision transformer

1. Introduction

The physiological structure of the normal eye is similar to a spherical form, which
is approximately 2 cm in diameter. It encapsulates a vital component known as aqueous
humor, which is a watery substance that undergoes regular circulation to sustain various
ocular elements. The dynamic equilibrium of aqueous humor circulation is pivotal, given
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that it necessitates fluid efflux through minute openings at the anterior part of the eye to
re-enter the body. When these apertures become constricted or obstructed, a consequential
fluid backlog ensues, which precipitates elevated intraocular pressure and thus instigates
damage to the optic nerve. This condition is recognized as glaucoma, which may progress
to irreversible blindness if left unattended. Glaucoma materializes when heightened
intraocular pressure adversely impacts the optic nerve, which establishes a vital link
between the eye and the brain. This malady is characterized by its potential to culminate in
vision loss or, ultimately, blindness [1–3]. Therefore, early detection and intervention are
imperative. Given its latent manifestation in the initial stages, glaucoma poses a challenge
for timely recognition, considering the absence of symptomatic indicators. Nevertheless,
prompt identification and judicious therapeutic intervention can halt the progression of the
disease, which mitigates severe vision impairment and visual field loss. Although the exact
cause of glaucoma remains unknown, it is closely linked to increased pressure within the
eye and reduced circulation to the optic nerve. The onset of glaucoma typically occurs in
individuals aged 40 or older, with a predilection for manifestation in the seventh and eighth
decades of life [4]. This condition is particularly observed among females experiencing
heightened anxiety and stress [4–6]. In addition, a hereditary predisposition is discernible,
given that individuals with familial ties to glaucoma-affected individuals face an increased
susceptibility—five to six times more likely—of succumbing to the ailment [7–9]. The
insidious nature of glaucoma is further compounded by its asymptomatic presentation
and the potential for misdiagnosis, especially among elderly individuals who may conflate
it with presbyopia. Consequently, detection is frequently belated, with patients seeking
medical attention only when visual impairment is advanced. This stage signifies irreversible
damage to the optic nerve.

Several diagnostic methods are employed in the detection of glaucoma. Visual acuity,
which is assessed through eye chart testing, serves to measure vision levels at varying
distances [10–14]. Ophthalmoscopy involves the meticulous examination of the retina
and optic nerve using a specialized magnifying lens by a medical professional to discern
potential eye issues. Eye pressure measurement, which is accomplished through a dedicated
instrument, aids in the identification of glaucoma by assessing intraocular pressure [15,16].
Retinal nerve fiber layers (RNFLs) analysis, corneal testing for the measurement of corneal
thickness, and optical coherence tomography (OCT) for detecting damage to the optic
nerve head (ONH) and RNFLs are additional diagnostic approaches [17–22]. Among these
methods, ophthalmoscopy and OCT analysis of ocular nerves are notably regarded as
highly reliable diagnostic modalities [13]. They are primarily employed in the diagnosis
of glaucoma.

The fundus imaging method involves the analysis of images captured by a fundus
camera. Evaluation of fundus images involves detecting irregularities in the structure of
the ONH. Fundus imaging is progressively assuming a requisite role in glaucoma screening
within ophthalmological facilities due to its cost effectiveness [23–26]. Diagnosing glaucoma
through fundus images primarily depends on the ophthalmologist’s skill, with a significant
focus on assessing the ONH. Four primary alterations in retinal nerve structures associated
with glaucoma can be discerned: ONH cupping, neuro-retinal rim thinning, RNFL defects,
and peripapillary atrophy. Furthermore, the analysis of the optic disc size contributes
significantly to glaucoma grading [27,28]. Larger discs often exhibit more prominent
cups, which potentially leads to a semblance of glaucoma and the risk of overestimation.
Meanwhile, in smaller discs, a minor cup may indicate glaucoma, which poses the risk of
underestimation. The World Glaucoma Association emphasizes the importance of optic
disc clinical examination for glaucoma diagnosis, highlighting the assessment of the retinal
nerve rim’s color and shape as crucial for differentiating between glaucomatous and non-
glaucomatous neurological diseases [29–33]. A pallor of the neuroretinal rim is highly
specific (94%) for non-glaucomatous optic neuropathy diagnosis. Similarly, both focal
and diffuse thinning of the neuroretinal rim indicate glaucoma with an 87% specificity.
Additionally, peripapillary atrophy is considered an indicative sign of glaucoma [34].
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2. Literature Review

The integration of fundus imaging with artificial intelligence has been instrumental in
enhancing glaucoma detection. Artificial intelligence approaches frequently employ image
processing algorithms in conjunction with deep learning models for the classification of
normal and glaucomatous eyes. In addition, segmentation algorithms are employed to
delineate the positions of optic discs and cups, which facilitate the analysis of size relation-
ships between them and the identification of potential abnormalities [27,28,35]. However,
existing detection methods commonly depend on traditional convolutional neural network
(CNN) structures, which necessitate substantial and uniform datasets. The aforemen-
tioned methods often incorporate external datasets in conjunction with proprietary data
for training and validation purposes.

In addition to the emergence of advanced observational technologies, hyperspectral
imaging technology is crucial in the exploration of glaucoma detection within the spectral
domain. Approaches employing hyperspectral imaging technology predominantly utilize
a fundus hyperspectral camera. Mordant et al. [36] proposed a method to evaluate retinal
vascular oxygen saturation in normal eyes versus eyes treated for asymmetrical primary
open-angle glaucoma (POAG) using a hyperspectral fundus camera. Utilizing noninvasive
imaging and algorithmic analysis, the results revealed significantly higher retinal venular
oxygen saturations in less- and more-advanced-treated POAG eyes compared with normal
eyes. This condition suggests a potential indication of reduced oxygen consumption in
the inner retinal tissues of advanced-treated POAG eyes. Our research group also has
approaches to diagnosing eye diseases using hyperspectral imaging. In 2020, we pre-
sented a methodology employing hyperspectral imaging on ophthalmoscope images for
diabetic retinopathy (DR) stage identification. By analyzing average reflectance spectra
and utilizing principal component analysis (PCA), the method accurately categorizes DR
stages. It demonstrates high sensitivity and accuracy in diagnosing normal, background
DR, pre-proliferative DR, and proliferative DR based on oxygen saturation patterns in
retinal vessels [37]. In 2023, we investigated hydroxychloroquine-induced retinopathy
using color fundus images and employing hyperspectral conversion technology and deep
learning models for lesion detection. The results demonstrate high overall accuracy, with
EfficientNet achieving 94% accuracy for original images and 97% accuracy for hyper-
spectral images. This method offers a potential advanced diagnostic tool for identifying
imperceptible lesions caused by hydroxychloroquine [38].

Diagnostic methods for glaucoma, whether employed in clinical diagnosis or inte-
grated into computer-aided diagnosis, frequently rely on the analysis of fundus images.
These approaches commonly draw upon identification features outlined in reference docu-
ments, including parameters such as the ratio between the size of the optic cup and the
optic disc. Furthermore, abnormalities at specific locations such as the macula and fovea
are scrutinized. By contrast, techniques utilizing hyperspectral imaging predominantly
focus on investigating alterations in oxygen saturation within retinal vessels [36,39], or ex-
amine the transparency of the neural retinal rim through a reflectance signal [29–31,40–42].
The majority of fundus images utilized in this context are non-dynamic, which facilitates
the application of hyperspectral imaging without the need to address camera kinematics.
Instead, the emphasis is directed toward error correction control and chromatic adaptation.

In this study, our aim is to provide a distinct perspective on the diagnostic approach
to glaucoma, particularly the spectral domain methodology by hyperspectral imaging
(HSI) and the integration of spatial information identification facilitated by the Vision
Transformer (ViT) algorithm. We seek to discern the disparities between the machine
learning algorithm’s perspective and the conventional clinical approach employed in
fundus image analysis. To achieve this purpose, we introduce a hyperspectral imaging
conversion technique designed to transform digital fundus images into hyperspectral
representations as shown in Figure 1. We scrutinize and identify spectral regions exhibiting
variations by employing spectral analysis. Subsequently, image reconstruction from these
specific spectral regions is performed, which yields hyperspectral images corresponding to
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the investigated spectra. An examination of the reflectance signals in the optic disc and
optic cup areas reveals information about the color of the neuroretinal rim. Simultaneously,
the ViT model is utilized to harness spatial information, such as the optic cup to optic
disc ratio (c/d ratio) and the spatial correlation of features surrounding the neuroretinal
rim. The integration of spectral domain analysis through HSI with spatial information
processing by ViT offers a novel perspective in the analysis of fundus images.
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Figure 1. Capturing a novel perspective in glaucoma diagnosis, this study employs a hyperspectral
imaging conversion technique to transform digital fundus images. It integrates spatial information
identification through a ViT deep learning model. By scrutinizing spectral variations and reconstruct-
ing images from specific regions, the research aims to discern disparities between machine learning
and conventional clinical approaches. The ViT model then enables classification and comparison
across the selected spectral bands, which unveil insights into enhanced diagnostic methodologies
for glaucoma.

In this study, our contributions are as follows:

• We propose a hyperspectral imaging method combined with a deep learning model to
help identify glaucoma based on fundus images;

• Band selection is based on computational methods to select the most optimal band
range, thereby minimizing computational resources and improving prediction accuracy;

• The survey compares the prediction results with other state-of-the-art models, demon-
strating that our model shows superiority.

3. Materials and Methods
3.1. Data Preparation

A dataset composed of 1291 fundus images was obtained from the Department of
Ophthalmology at Dalin Hospital in Taiwan. The images were categorized into two groups
based on their pathology: glaucoma and normal. Disease classification was conducted
through diagnostic analyses carried out by ophthalmological specialists, which included the
examination of OCT images and the assessment of the RNFL. The importance of integrating
visual field assessments with evaluations of the nerve fiber layer is underscored, given
that reliance on visual fields alone lacks sufficient reliability. Objective evidence of early
glaucoma damage is primarily located in the optic disc and RNFL. The dataset encompasses
a total of 1291 RNFL data points, comprising OCT images, thickness graphs as part of
the OCT analysis report, and fundus images. Additionally, demographic data, including
age, gender, and underlying health conditions, were collected for each participant. The
process for examining glaucoma consists of a clinical diagnosis phase, an OCT RNFL report
analysis phase, and a subsequent stage for monitoring the progression of the RNFL.

The RNFL data were obtained using a NIDEK RS-3000 Advance OCT (NIDEK Co.,
Ltd, Gamagori, Japan), an OCT system equipped with a scanning laser ophthalmoscope
(SLO), designed for a thorough evaluation of the retina and choroid. The RS-3000 Advance
offers exceptional detail of retinal and choroidal microstructures, thereby aiding in clinical
diagnoses. Its integration of a retinal camera with OCT technology not only conserves
space but also furnishes comprehensive diagnostic information. Notable features of the RS-
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3000 Advance include its capability to provide a holistic solution for retina and glaucoma
analysis, precise image capture utilizing a SLO-based eye tracer, adjustable OCT sensitivity
for the acquisition of B-scan images through media opacities, tracing HD for precise
averaging of up to 120 images, extensive glaucoma analysis with a wide-area standard
database measuring 9 × 9 mm, and high-resolution AngioScan OCT-Angiography imaging.

The RNFL report is depicted in Figure 2, which illustrates the OCT images in Figure 2a.
Accompanying this, Figure 2b displays a red-free fundus photography image that high-
lights RNFL loss and indicates the locations of the scanned quadrants. Figure 2c presents
the TSNIT Thickness Graph, where TSNIT stands for Temporal, Superior, Nasal, Inferior,
and Temporal, delineating the color map area that corresponds to the scan layer thickness
distribution database for the Temporal, Superior, Nasal, Inferior, and Temporal scanned
areas, respectively. Within this graph, the blue area signifies the thickness typical of individ-
uals diagnosed as normal with regard to glaucoma, the red area denotes those diagnosed
with glaucomatous syndrome, and the yellow area indicates a suspected predisposition
towards glaucoma. The line within the graph represents the patient’s measured values,
while bar graphs associated with specific viewing areas depict particular thickness values.
As evidenced in the sample report, the scan and line scan areas align closely with locations
identified as having glaucoma. Nevertheless, a definitive diagnosis of glaucoma necessi-
tates ongoing monitoring through the RNFL. This approach underscores the importance of
comprehensive analysis and regular monitoring in the accurate diagnosis and management
of glaucoma, facilitating early detection and intervention.
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Figure 2. Example of an RNFL report, which includes OCT images, RNFL thickness graphs, and
corresponding digital fundus images: (a) A circular scan image of the optic disc. (b) An enface image
for SLO-based eye tracing, displayed from the nasal (N) to the superior (S), to the temporal (T), to the
inferior (I) quadrants, based on the cube scan of the optic disc. (c) A graph showing the thickness of
the RNFL.

Through the analysis of OCT reports, a total of 1291 fundus images were curated
and subsequently classified into two distinct groups based on the presence or absence of
glaucoma. The classification yielded 638 images categorized under the glaucoma group,
illustrating various stages and manifestations of the disease. Conversely, the remaining
653 images were classified as representing eyeballs without glaucoma, serving as a control
group to facilitate comparative analysis and enhance the understanding of glaucomatous
changes. This classification not only underscores the prevalence of glaucoma in the studied
population but also provides a substantial dataset for further research and analysis aimed
at improving diagnostic criteria and treatment strategies for glaucoma.
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3.2. Optic Disc Localization

The critical information required to analyze the reflectance signal predominantly
resides at the transparent level of the neuro-retinal rim area, which is demarcated by the
boundary between the optic cup and optic disc, as illustrated in Figure 3. In this research,
the process of localization involves the input of RGB retinal images and the output of region
of interest (ROI) images. To ensure coverage of the largest optic disc (OD), the dimension
of the ROI was standardized at 450 × 450 pixels.
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Figure 3. Utilizing the CNN algorithm for automatic cropping of regions containing optic discs and
optic cups.

The ResNet50 model, renowned for its deep CNN architecture, was employed as
the foundational model for this study, excluding the top layer. This exclusion facilitates
automatic cropping of regions encapsulating the optic discs and optic cups. ResNet50’s
efficiency in various computer vision tasks, attributed to its capability to discern complex
hierarchical image features, makes it a prime candidate for transfer learning in this context.
The pre-trained layers of the ResNet model are frozen to preserve their acquired features,
allowing for fine-tuning specific to this application. A novel model is then constructed
atop the ResNet framework, incorporating additional layers where global average pooling
diminishes the spatial dimensions of the feature maps to a singular value per channel.
Subsequently, dense layers interpret these condensed feature vectors, determining the
bounding box coordinates. The compilation of this model utilizes the Adam optimizer
alongside a mean square error loss function, with a minor learning rate, suggested at 0.0001,
to maintain the integrity of the pre-trained weights during fine-tuning.

3.3. Vision Transformer and Experimental Setup

The Vision Transformer (ViT) [43] embeds an input image into a sequence of patches,
which is similar to a sequence of a word. Various studies have been made to apply the
transformer structure to computer vision tasks. However, its application in medical image
processing is still modest compared with that in other fields. Several medical imaging
research studies have utilized the ViT structure in various domains, including esophageal
endoscopic detection, pneumonia detection, MRI imaging, skin cancer detection, and tumor
classification [44–47]. It is evident that image subjects amenable to ViT application are
typically characterized by high spatial information correlation in sequence form, making
them well suited for the incorporation of transformer modules such as the self-attention
mechanism and position encoding, as shown in Figure 4.
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Figure 4. (a) ViT inference pipeline. Spatial information and the autocorrelation of feature positions
in the fundus image are highly suitable for the self-attention mechanism or embedding position
encoding of the transformer encoder module. (b) Transformer encoder.

In this training setup, we utilize a Vision Transformer model pre-trained with a patch
size of 16 and an input image size of 224 pixels. The input images are the ROIs of the optic
disc, which are automatically cropped using an OD localization algorithm described in
Section 3.2. The dimensions of the ROIs were standardized to 450 × 450 pixels to ensure
uniformity. Subsequently, these images were resized to 224 × 224 pixels to meet the input
size requirements of the ViT model. The weights of the Vision Transformer module are
frozen to prevent gradient updates, thereby maintaining the learned representations. For
the classifier module, we designed a sequential neural network head consisting of an initial
linear layer with 512 units, followed by an ReLU activation, a dropout layer with a 25%
dropout rate, a subsequent linear layer with 256 units, another ReLU activation, a dropout
layer with a 50% dropout rate, and a final linear layer outputting two classes. We observed
that the model struggled with binary classification using the binary cross-entropy loss
function, so we proposed using the cross-entropy loss function instead, which is more
suitable for our two-class classification problem. The model was optimized using the SGD
optimizer with a learning rate of 0.0001, momentum set to 0.9, and Nesterov momentum
enabled. The training achieved optimal convergence within 25 epochs, employing early
stopping with a tolerance of 3 epochs and a threshold of 0.03 to prevent overfitting. The
dataset was divided into training, validation, and test sets in the proportions of 80%, 10%,
and 10%, respectively. This allocation ensures that the model has ample data for learning
while retaining a separate and balanced portion for validation to fine-tune hyperparameters
and another portion for unbiased evaluation of its performance.

3.4. Hyperspectral Fundus Camera System

The hyperspectral system utilized in this study comprises a TRC NW8/8F fundus
system integrated with a DSLR camera, which enables color, red-free, and fluorescein
angiography, as shown in Figure 5a. The TRC-NW8 is equipped with a 16.2-megapixel cam-
era. Thus, it delivers high-resolution images featuring a 45◦ field of view. The TRC-NW8F
extends these capabilities by incorporating fluorescein angiography imaging. The spec-
tra were acquired by measuring from a 24-color reference, specifically a 24-color checker,
utilizing a spectrometer (QE65000, Ocean Optics, Orlando, FL, USA). Simultaneously, the
spectrum emitted from the light source employed in the fundus camera was also recorded
(Figure 5b).
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4. Results
4.1. Band Selection Based on Spectral Analysis

In Figure 6a,b, the graphs show the intensity of light across the wavelength spectrum
for both glaucomatous and normal eyes. The shaded areas likely represent the standard
deviation or a confidence interval, indicating the variability of the intensity measurements
among different subjects or images. Figure 6c may represent data derived from a specific
region of interest within the retina, while Figure 6d could represent a different or a more
general region. The intensity patterns observed in the spectral data differentiate between
glaucomatous and normal eyes. These patterns reveal distinct spectral signatures that are
indicative of glaucoma. However, solely relying on spectral data makes it challenging to
distinguish between glaucomatous and normal eyes with high confidence. In addition, a
substantial variation in standard deviation amplitude is observed across the wavelength
spectrum, particularly within the range of 550 nm to 780 nm. This phenomenon elucidates
the spectral regions with a potential for effective exploitation, irrespective of spectral
redundancy factors present throughout the entirety of visible hyperspectral spectra. This
finding underscores the importance of discerning and leveraging specific spectral bands for
optimal analysis and interpretation, despite inherent redundancies within the spectral data.

In Figure 6c,d, t-SNE analyses were conducted on mean spectral data from retinal
rim and optic disc regions. The visual inspection of these analyses reveals significant
overlap in data distribution, with no discernible clustering patterns. This observation
underscores the inherent challenge in employing conventional discrimination algorithms
solely reliant on spectral averages. To address this complexity, advanced classification
methodologies are imperative. Integration of deep neural networks, alongside judicious
data dimensionality reduction via tailored band interval selection, emerges as a promising
avenue for overcoming these limitations and enhancing classification accuracy.

In Figure 7a, this panel shows retinal images captured at different wavelengths, rang-
ing from 380 nm to 780 nm, for both glaucomatous (diseased) and normal (healthy) eyes.
The images are divided into two sections labeled OD (oculus dexter, or right eye) and
OS (oculus sinister, or left eye), which are common terms in ophthalmology. The top
half displays images associated with glaucoma, while the bottom half shows normal eyes.
The progression from left to right demonstrates how the retina appears at each specified
wavelength, with differences in brightness and contrast that may indicate pathological
changes in glaucomatous eyes. In Figure 7b, this section focuses on the optic disc area,
providing a close-up view of the same wavelength progression for both glaucomatous and
normal eyes. These images can reveal changes in the optic nerve head, which are critical for
glaucoma diagnosis. These observations may suggest the presence of significant spectral
variations across different band intervals.
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depicted in red) and normal participants (n = 622, depicted in blue), along with the standard deviation
margin, underscore that the observed differences in variations between the two groups are statistically
insignificant. Consequently, relying solely on analytical calculations of spectral components proves
challenging in discriminating between cases and controls. (b) Similarly, the mean reflectance spectra
obtained from optic disc areas, which consider glaucoma patients (n = 568, represented in red) and
normal participants (n = 622, represented in blue), yield analogous observations. The t-SNE analysis
conducted on mean reflectance spectra data, as depicted in (c) for retinal rim areas and (d) for optic
disc areas, elucidated a lack of distinct clustering patterns between the two groups.
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Figure 7. (a,b) Representative hyperspectral montages of three eyes, which show color-reproduction
in range bands from 380 nm to 780 nm, are compared with the original images. The figures in the
representative bands range from 380 nm to 780 nm show the variability of retina features.

Determining the most appropriate method for analyzing spectral differences involves
careful consideration of various factors. No universally superior method is available;
instead, the suitability depends on specific contextual and data characteristics. Key con-
siderations include the nature of the data, such as noise levels, measurement scale, and
the significance of variability. The purpose of analysis is also pivotal—whether it involves
identifying subtle differences, focusing on large-scale changes, or understanding over-
all variability. Moreover, the complexity and computational resources required for each
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method should be considered, given that some approaches are more computationally
intensive than others.

The signal-to-noise ratio (SNR) is computed for each wavelength by dividing the
mean spectrum values by their respective standard deviations. The subsequent step
involves determining the absolute difference between the SNRs of the two spectra at each
wavelength, as per the following Formula (1):

SNR Difference(i) =
∣∣∣∣Spectrum1(i)

STD1(i)
− Spectrum2(i)

STD2(i)

∣∣∣∣ (1)

The process of identifying peaks in the SNR typically involves the following mathe-
matical approach: If y(x) represents the signal, the peaks are the points xp where y(xp) is
greater than its neighboring points, i.e., y

(
xp

)
> y(xp ± 1), considering discrete signals.

For continuous signals, the criteria involve locating points where the first derivative equals
zero and the second derivative is negative, specifically y′

(
xp

)
= 0 and y′′

(
xp

)
< 0). Once

the peaks are identified, their indices are used to extract the corresponding values from the
signal. The band intervals chosen for investigation correspond to the peaks found in the
SNR difference, as depicted in Table 1.

Table 1. The SNR difference values at the five peak positions correspond to specific wavelengths.

Wavelength Index (nm) 380 440 485 521 680

SNR difference 0.405 0.074 0.158 0.162 0.720

The SNR difference is illustrated in Figure 8. Notably, the peak SNR difference value
(0.720) occurs at 680 nm, followed by 0.405 at 380 nm. Consequently, we determine the
selected band range by identifying the intersection of the SNR difference value at 380 nm
with the SNR difference line at the wavelength point of 610.16. Beyond this intersection
point, the SNR difference values remain consistently higher. Hence, the investigation
focuses on the band range between 610 nm and 780 nm.
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4.2. Performance Evaluation on Different Band Interval

The performance evaluation of two models, RGB and 610–780, reveals significant
differences in their effectiveness, as shown in Table 2. The RGB model achieved an accuracy
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of 0.8473, precision of 0.8698, recall of 0.8464, F1-score of 0.8447, and an AUC-ROC of 0.8463.
These metrics indicate that while the RGB model performs reasonably well, there is room
for improvement, particularly in its ability to balance precision and recall. In contrast, the
610–780 model demonstrates superior performance across all metrics, with an accuracy of
0.9008, precision of 0.9009, recall of 0.9007, F1-score of 0.9007, and an AUC-ROC of 0.9007.
The substantial improvement in these metrics suggests that the 610–780 model is more
adept at correctly classifying instances and distinguishing between classes. The higher
precision and recall values indicate a more reliable model with fewer false positives and
negatives, respectively. Consequently, the 610–780 model’s enhanced performance metrics
underscore its robustness and efficacy, making it a more suitable choice for applications
requiring high classification accuracy and reliability.

Table 2. Performance comparison between fundus images and HS reproduction images from range
of 610 to 780 nm.

Dataset Accuracy Precision Recall F1-Score AUC-ROC

RGB 0.8473 0.8698 0.8464 0.8447 0.8463
610–780 0.9008 0.9009 0.9007 0.9007 0.9007

Additionally, the performance for each narrow spectral band was examined to validate
the accuracy of the spectral analysis method. Table 3 presents a comparative performance
analysis of models using different spectral bands, including RGB and various narrow bands
ranging from 380 to 780 nm. The RGB model achieved an accuracy of 0.8473, precision of
0.8698, recall of 0.8464, F1-score of 0.8447, and AUC-ROC of 0.8463, indicating a strong
overall performance. The 380–440 nm band model showed similar accuracy at 0.8397, but
with higher precision at 0.8793 and lower recall at 0.7846, resulting in an F1-score of 0.8293
and an AUC-ROC of 0.8393. The models using the 440–485 nm and 485–521 nm bands
demonstrated lower performance, with accuracies of 0.7634 and 0.7557, respectively, and
both had relatively lower recall and F1-scores. The 521–680 nm band model had an accuracy
of 0.7710, with high precision at 0.8889 but lower recall at 0.6154, leading to an F1-score
of 0.7273. Notably, the 610–780 nm band model outperformed all others significantly,
achieving an accuracy, precision, recall, F1-score, and AUC-ROC all at 0.9007 or higher.
This suggests that the 610–780 nm band provides the most discriminative features for
the classification task, offering the best balance between precision and recall and overall
superior performance metrics.

Table 3. Performance comparison between different bands.

Band Interval (nm) Accuracy Precision Recall F1-Score AUC-ROC

380–440 0.8397 0.8793 0.7846 0.8293 0.8393
440–485 0.7557 0.8000 0.6769 0.7333 0.7551
485–521 0.7634 0.8148 0.6769 0.7395 0.7627
521–680 0.7710 0.8889 0.6154 0.7273 0.7698
610–780 0.9008 0.9009 0.9007 0.9007 0.9007

4.3. Ablation Study

The purpose of this ablation study involving models Resnet18, Resnet50, EfficientNet-
B0, and ViT (ours) is to systematically evaluate and compare the performance of different
neural network architectures on a specific classification task. By analyzing these models,
the study aims to identify the strengths and weaknesses of each architecture, determine the
most effective model in terms of accuracy, precision, recall, F1-score, and AUC-ROC, and
understand the impact of different design choices on model performance. This comparative
analysis helps in pinpointing the architectural features and configurations that contribute
most significantly to improved classification outcomes, thereby guiding future model
selection and optimization efforts in similar tasks. As shown in Table 4, the comparative
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performance of four models—Resnet18, Resnet50, EfficientNet-B0, and ViT (ours)—reveals
distinct variations in their classification capabilities. Resnet18 achieved an accuracy of
0.7863, with precision, recall, F1-score, and AUC-ROC values of 0.8776, 0.6615, 0.7544, and
0.7853, respectively, indicating moderate overall performance with a notable discrepancy
between precision and recall. Resnet50 showed improved performance, with an accuracy
of 0.8321, precision of 0.8772, recall of 0.7692, F1-score of 0.8197, and AUC-ROC of 0.8316,
suggesting a more balanced and effective classification capability. EfficientNet-B0, with
an accuracy of 0.7634, precision of 0.8148, recall of 0.6769, F1-score of 0.7395, and AUC-
ROC of 0.7627, demonstrated the worst performance among the evaluated models. In
contrast, the ViT (ours) model significantly outperformed the others, with an accuracy of
0.9008, precision of 0.9009, recall of 0.9007, F1-score of 0.9007, and AUC-ROC of 0.9007.
These metrics highlight the ViT model’s superior ability to classify data accurately and
consistently, with high reliability across all evaluated performance indicators. This suggests
that the ViT model’s architecture and feature extraction capabilities are exceptionally well
suited for the classification task at hand.

Table 4. Ablation experiments on the 610–780 nm band dataset with different backbone models.

Model Accuracy Precision Recall F1-Score AUC-ROC

Resnet18 0.7863 0.8776 0.6615 0.7544 0.7853
Resnet50 0.8321 0.8772 0.7692 0.8197 0.8316

EfficientNet–B0 0.7634 0.8148 0.6769 0.7395 0.7627
ViT (ours) 0.9008 0.9009 0.9007 0.9007 0.9007

5. Discussions

The classification results across different band ranges indicate that glaucoma detec-
tion is most effective at long-wavelength light ranges. This effectiveness is due to several
structural and compositional changes in the retina. Glaucoma leads to the thinning of
the RNFL, which reduces light scattering at shorter wavelengths, causing a relative in-
crease in longer wavelength reflectance [48–51]. Additionally, structural changes in the
ONH, such as increased cupping and pallor, further alter reflectance properties favoring
longer wavelengths [52,53]. Damage to the retinal pigment epithelium (RPE) and choroid
also affects light absorption, contributing to this shift [54,55]. These alterations enhance
the detection and monitoring of glaucoma through advanced imaging techniques. The
610–780 nm wavelength band showed superior performance with metrics such as accuracy
(0.9008), precision (0.9009), recall (0.9007), F1-score (0.9007), and AUC-ROC (0.9007). The
signal-to-noise ratio (SNR) difference supports this, with a significant peak at 680 nm
(0.720).

6. Conclusions

In the contemporary landscape of an aging population, retinal diseases, once perceived
as age-related conditions, now exhibit a trend of earlier onset. This shifting demographic
necessitates continuous innovation in drug development and medical testing to enhance
the detection and treatment of patients. The integration of artificial intelligence into medi-
cal imaging, particularly in the context of glaucoma diagnosis, represents a dynamic and
evolving field. Glaucoma is a critical focus due to its potential to cause irreversible blind-
ness if left undiagnosed and untreated. This condition arises when increased intraocular
pressure damages the optic nerve, a crucial conduit between the eye and the brain. The
challenge lies in its often asymptomatic nature during the early stages, which complicates
timely diagnosis. However, early detection through advanced imaging technologies and
AI can significantly mitigate the risk of severe vision loss by enabling prompt therapeutic
interventions.

This study contributes a unique perspective by focusing on the spectral domain
methodology and incorporating spatial information identification through the ViT algo-
rithm. The introduced hyperspectral imaging conversion technique enables the transfor-
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mation of digital fundus images, which enables revealing variations in spectral regions.
The subsequent image reconstruction yields hyperspectral representations, and the ViT
algorithm is utilized for classification and comparison across the selected spectral bands.

The performance evaluation of models across different spectral bands demonstrates
significant variation in their classification capabilities. The 610–780 nm band model exhib-
ited the highest performance across all metrics, with an accuracy, precision, recall, F1-score,
and AUC-ROC all around 0.9007, highlighting its superior discriminative power for the
given classification task. The RGB model also performed well, with an accuracy of 0.8473
and balanced precision and recall metrics. However, models utilizing the 380–440 nm,
440–485 nm, 485–521 nm, and 521–680 nm bands showed relatively lower performance,
particularly in recall, indicating less effectiveness in identifying true positive instances.
These results suggest that while the RGB model is robust, the 610–780 nm band provides
the most optimal features for classification, validating the efficacy of spectral analysis in
improving model performance. This nuanced approach to metric selection underlines the
potential of integrating retinal imaging with artificial intelligence. By leveraging hyper-
spectral imaging—utilizing spectrometer data for lesion analysis—and ophthalmoscope
image analysis, this methodology not only aids healthcare professionals in diagnosing eye
conditions but also supports the expansion of telemedicine. This can significantly improve
healthcare access, bridging the gap between urban and rural areas, and paving the way for
a more inclusive health infrastructure.

The novel hyperspectral imaging approach presents certain limitations. Firstly, the
algorithm’s sensitivity is significantly influenced by the uniformity of the illumination. In
this study, the Gray World white balance algorithm is employed, utilizing a reference such
as the 24 Color Checker. This algorithm estimates the scene’s illuminant as the average
RGB value across the image. Additionally, for chromatic adaptation, the Bradford method
is applied, suggesting that hyperspectral imaging algorithms are capable of managing
chromatic aberration and varying lighting conditions. Secondly, the hyperspectral (HS)
imaging algorithms require the subject to be stationary, as they do not account for dynamic
factors, which could impact the calibration between the camera and the spectrometer.

In summary, this study advances the field of medical imaging by integrating hyper-
spectral imaging with the ViT algorithm for the early detection and diagnosis of glaucoma.
The novel approach of converting digital fundus images into hyperspectral representations
and leveraging the ViT algorithm for classification underscores the potential of this tech-
nique in capturing subtle spectral variations. Our performance analysis reveals that Model
D, focusing on short-wavelength light, excels in diagnostic metrics, thus highlighting the
importance of spectral domain analysis in medical imaging. This research not only demon-
strates the efficacy of hyperspectral imaging in improving diagnostic accuracy but also
underscores the role of AI in transforming retinal disease detection. By addressing both the
strengths and limitations of the proposed methodology, we contribute valuable insights
that support the expansion of telemedicine and the development of more inclusive health-
care infrastructure. Our findings advocate for continued innovation in medical imaging
technologies to meet the evolving challenges posed by an aging population and the early
onset of age-related diseases. This work lays the groundwork for future advancements
in AI-driven diagnostic tools, promising enhanced patient care and broader healthcare
accessibility.
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