
Academic Editor: Gianni Campatelli

Received: 23 December 2024

Revised: 12 January 2025

Accepted: 16 January 2025

Published: 18 January 2025

Citation: Nie, Z.; Zhao, Y.

High-Accuracy and Efficient

Simulation of Numerical Control

Machining Using Tri-Level Grid and

Envelope Theory. Machines 2025, 13,

69. https://doi.org/10.3390/

machines13010069

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

High-Accuracy and Efficient Simulation of Numerical Control
Machining Using Tri-Level Grid and Envelope Theory
Zhengwen Nie * and Yanzheng Zhao

School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; yzh-zhao@sjtu.edu.cn
* Correspondence: zhengwenme@sjtu.edu.cn

Abstract: Virtual simulation of high-resolution multi-axis machining processes nowadays
plays an important role in the production of complex parts in various industries. In order
to improve the surface quality and productivity, process parameters, such as spindle speed,
feedrate, and depth of cut, need to be optimized by using an accurate process model of
milling, which requires both the fast virtual prototyping of machined part geometry for tool
path verification and accurate determination of cutter–workpiece engagement for cutting
force predictions. Under these circumstances, this paper presents an effective volumetric
method that can accurately provide the required geometric information with high and
stable computational efficiency under the condition of high grid resolution. The proposed
method is built on a tri-level grid, which applies two levels of adaptive refinement in space
decomposition to abolish the adverse effect of a large fine-level branching factor on its
efficiency. Since hierarchical space decomposition is used, this multi-level representation
enables the batch processing of affected voxels and minimal intersection calculations,
achieving fast and accurate modeling results. To calculate the instantaneous engagement
region, the immersion angles are obtained by fusing the intersection points between the
bottom-level voxel edges and the cutter surface, which are then trimmed by feasible
contact arcs determined using envelope theory. In a series of test cases, the proposed
method shows higher efficiency than the tri-dexel model and stronger applicability in
high-precision machining than the two-level grid.

Keywords: accuracy; computer-aided manufacturing; efficiency; grazing point; virtual
machining

1. Introduction
Multi-axis milling is a versatile machining technology used for producing delicate

parts with freeform surfaces [1,2]. To verify and optimize the milling process before the
parts are manufactured on real machine tools, virtual machining (VM) technology is pro-
posed to verify NC codes, reduce cycle times and surface errors, and predict instantaneous
cutting states. However, these goals cannot be achieved without accurate geometrical and
physical modeling of the milling process. The former aims to compute the cutter-swept
volume (CSV), machined part geometry, and cutter–workpiece engagement (CWE), while
the latter conducts dynamics analysis using the obtained information.

Cutter–workpiece engagement refers to the instantaneous contact region between the
cutting tool and the in-process workpiece (IPW). Based on this geometry, the in-cut edge
segments can be determined for cutting force predictions, which subsequently initiate the
physical modeling process. In freeform surface machining, CWE varies along a tool path,

Machines 2025, 13, 69 https://doi.org/10.3390/machines13010069

https://doi.org/10.3390/machines13010069
https://doi.org/10.3390/machines13010069
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0000-0001-8626-2578
https://doi.org/10.3390/machines13010069
https://www.mdpi.com/article/10.3390/machines13010069?type=check_update&version=1

Machines 2025, 13, 69 2 of 21

and in general, unless very simple workpiece geometry is machined, it is challenging to
find an exact solution, which has attracted extensive investigation [3–8].

During the milling process, whether the cutting forces are computed or not, it is
necessary to geometrically represent the machined part according to the cutting tools and
their trajectories, that is, according to tool paths. This calculation process is referred to as a
workpiece update in this research, and the obtained geometric information is very useful
in general NC milling simulations. First, this information indicates whether the desired
part can be manufactured by designed tool paths within the specified tolerance. Second,
unexpected collisions between the milling tool and in-process workpieces, such as local
gouging, rear gouging, and global interference, can also be detected [9–11]. Such collisions
will lead to severely compromised surface qualities or even safety accidents.

The basic idea for NC simulations is to remove every cutter-swept volume from the
blank until the final machined part is obtained [3,4,12,13]. Mathematically, this volume is
defined as the totality of all 3D points that belong to the trace of a cutter moving along an
arbitrary path. It can be modeled as the volume enclosed by an ingress surface at the initial
location, an egress surface at the final location, and an envelope surface in between, which
is the collection of the grazing points on each tool instance. According to the envelope
theory, the product of the velocity and the surface normal vector on a grazing point is
always equal to zero. Another way is to remove the workpiece material inside the tool
instance at each cutter location (CL) point sampled along a tool path, which has also been
widely used. Meanwhile, the instantaneous engagement region between the cutter and
in-process workpiece is extracted and represented as a CWE map, where immersion angles
are computed by a further discretization of the contact area.

In modern manufacturing, an efficient geometric modeling method will accelerate
the optimization process of various machining parameters significantly. Meanwhile, with
the rapid development of automotive, aerospace, and biomedical industries, the demand
for high-quality machine parts is increasing sharply. However, few of the existing virtual
machining technologies can trade off high efficiency against high quality satisfactorily,
leading to the necessity of the present study.

The rest of this paper is structured as follows: Section 2 summarizes the geometric
modeling methods utilized in virtual machining and points out their benefits and draw-
backs to help identify the preferred modeling frame. Section 3 illustrates the tri-level
representation of the workpiece, and Section 4 expounds on the implicit function of a gen-
eralized cutter. The simulation procedures of the proposed method are then elaborated in
Section 5. Section 6 provides a quantitative comparison to demonstrate the computational
improvement the proposed method brings over the tri-dexel model and two-level grid,
followed by conclusions and future work in Section 7.

2. Existing Methods
A variety of geometric modeling methods have been proposed and applied in NC

milling simulations, aiming to achieve both computational accuracy and efficiency in
modeling the machining geometry while being flexible enough to handle different types of
cutters and tool movements. These existing methods can be roughly classified into three
groups: solid modeling, vector modeling, and voxel modeling. Solid modeling is able to
provide the highest level of precision by utilizing the exact representation of the cutter and
the workpiece geometry, while the other two groups are discrete modeling approaches,
which strive to achieve higher computational speed at the cost of accuracy.

In solid modeling [14–16], the workpiece material removal process is simulated by
making use of the geometric and topological algorithms built into the solid modeler kernel.
Specifically, constructive solid geometry (CSG) and boundary representation (B-rep) are

Machines 2025, 13, 69 3 of 21

the most widely used data structures in the field of solid modeling. CSG builds a solid
object by combining primitive objects with Boolean operators, while B-rep describes an
object with algebraic and parametric surfaces in the forms of Bezier, B-spline, and NURBS
(Non-Uniform Rational B-Splines) patches. Compared to CSG, B-rep offers a richer set
of operations in terms of modifying workpiece surfaces, hence gaining more attention in
modern NC milling simulations. Because the geometry of both the in-process workpiece
and cutter-swept volume keeps changing, large amounts of intersections between surfaces
need to be solved numerically in order to determine the intersection curves for building
new patches. A typical cutter location data file usually contains a huge number of cutter
movements, so solving these complex intersections has become one of the most time-
consuming processes in virtual machining. Meanwhile, the computation load needed
to maintain and process the tree of numerous tool swept volumes in order to generate
the machined part geometry grows significantly as the program runs. In addition, the
high complexity of the algorithms required to manipulate intersections in multi-axis NC
simulation is more likely to result in computational breakdowns as a result of round-
off errors.

The second modeling method utilizes a collection of spatial geometric elements to
define the cutter and workpiece for simplified Boolean operations. The typical example of
such a discrete modeling method is called Z-map representation [17–20], which represents
the workpiece by a 2D array of vectors with one end on a fixed coordinate plane and
the other end on the top surface of the workpiece. To simulate the cutting operations,
these vectors are updated as the cutter sweeps through different regions of the grid to
capture their new heights, i.e., the in-process workpiece boundary. During the milling
process, the vectors can be updated easily if the cutter geometry is fairly simple. For a
more complicated cutter like a bull-end mill, these vectors are usually updated by solving
high-order nonlinear equations. In order to clip Z-map vectors with less computation time,
Chung et al. [17] represented the cutter-swept surface generated by translational motion by
an implicit function of z = f (x, y) in three-axis milling and determined quadruple roots
using an analytic formula; however, this approach may introduce intolerable numerical
errors. Tunç et al. [18] conducted cutting force and stability simulations through the ex-
tended Z-mapping approach, where multiple dexels are connected at one vector location.
Li et al. [19] developed an improved Z-map algorithm that combines servo rectangular en-
circlement and the angle summation method to simulate the part surface topography, while
Xiao et al. [20] performed the same task based on the sequential quadratic programming
algorithm. Eventually, to resolve the issue of poor sensitivity along the vector direction of
any single set of parallel vectors, the most advanced tri-dexel representation, also called
triple-ray representation, was proposed, which is essentially three orthogonal dexel models
combined together, and it has been used by various computer-aided manufacturing (CAM)
systems [6,15,21].

Voxel modeling or space partitioning is the third geometric modeling method em-
ployed by virtual machining [22–27]. This volumetric modeling method has an evident
advantage over vector modeling since the fundamental operation involved in workpiece
updates is the simple deactivation of any cubic element falling into the cutter-swept vol-
ume. Such an operation has a very low computational cost compared to the operation
involved in updating other classes of models; hence, it is more efficient. A basic uniform
grid, which means the entire volume is uniformly subdivided, is the most fundamental
data structure for workpiece representation [22–24]. However, both memory consumption
and computation time will increase dramatically when a high grid resolution is required
to provide accurate enough modeling results. In order to mitigate such overhead, more
advanced voxel grids are proposed for a milling simulation, which can localize and reduce

Machines 2025, 13, 69 4 of 21

the finest update calculations effectively. Yau et al. [25] utilized the octree to simulate
the cutting process with a generalized automatically programmed tool (APT), while Joy
et al. [26,27] computed the machined part geometry using the two-level grid. In general,
voxel modeling, due to its low computational complexity and hierarchical space decompo-
sition, is regarded as the most promising approach, as it can provide the best combination
of accuracy, efficiency, and flexibility among all geometric modeling methods.

Even though the two-level grid has been widely used by many researchers, the limita-
tion of such a fixed hierarchical structure is still obvious. Since the available grid resolution
is measured by the product of the branching factors at both levels, a higher resolution
suggests that either of the two branching factors should be increased. A large top-level
branching factor increases the number of tiles sharply and hence the memory usage, while
a large bottom-level branching factor indicates a large ratio of inactive-to-active voxels
and redundant storage. More importantly, a large bottom-level subdivision factor will
introduce a large quantity of repetitive fine-level traversal operations since numerous
coarse voxels need to be accessed for an update multiple times due to the small sampling
interval, leading to a longer computation time. Such a limitation reduces its adaptivity
in geometry for extreme-scale volume modeling. Moreover, since a voxel model is a fully
discrete representation of a solid object, the precision of the voxel-based CWE geometry is
not satisfactory [22–24]. Thus, a voxel-based CWE determination method that can achieve
the subvoxel resolution and precision also needs to be developed.

3. Representation of Workpiece
3.1. Basic Concepts

Voxel modeling, as a typical spatial occupancy enumeration type of a solid repre-
sentation scheme, is mainly utilized in fields in which spatial data can be easily obtained
from 3D scans of a surface or a volume, such as volumetric imaging in medicine and the
representation of terrain in simulations. A voxel, essentially a small axis-aligned cube, is
a 3D counterpart to a pixel, and a collection of such elementary cubes constitutes a voxel
model of a solid object. Each voxel in the spatial grid is represented by a set of 3D indexes,
indicating its positions along three orthogonal directions. Voxel modeling can also be
understood as activating specific voxels that belong to the interior of the object. During this
voxelization process, active voxels can include internal voxels (entirely inside the object)
and surface voxels (partially inside the object), while external voxels (entirely outside the
object) should stay inactive. In voxel modeling, the edge length of each voxel element or
the finest edge length in a hierarchical data structure decides the available grid resolution
of the volume. A higher resolution for a given space usually indicates the voxel model
can describe the object with higher precision, but more time is required to manipulate
the model.

3.2. Tri-Level Grid

Voxel modeling, with its enumerative nature through spatial indexing, is very suitable
for simulating the material removal process in virtual machining as it simply deactivates all
voxels inside the cutter-swept volume. It is also sufficiently robust to handle model updates
from complex tool motions since it does not have to maintain topological information
explicitly. However, for the simplest uniform grid, where the voxel space is uniformly
subdivided, the total number of involved voxels is in the order of O

(
N3), where N is

the available grid resolution. As a result, its memory usage and simulation time will rise
drastically when a high modeling accuracy is required, and a uniform grid is thus rarely
adopted by practical simulations.

Machines 2025, 13, 69 5 of 21

In order to mitigate the high memory overhead of a dense uniform grid, an effec-
tive approach is to exploit adaptive refinement in spatial decomposition. The resulting
hierarchical data structure is a two-level grid, also referred to as a tiled grid, where the
volume is first decomposed into uniformly sized cells, also called blocks, bricks, or tiles,
and each cell is then partitioned into a finer subgrid if it intersects the surface of the solid
object. Note that to quickly reach a target subgrid for a workpiece update, every tile that
has been partitioned should be recorded by a key-value container, such as a hash table and
map, where its 3D index serves as the key. To simulate the cutting process, an activated
voxel at the coarse level that has been swept by the cutting tool entirely needs to be deleted
and removed from the container, while an active coarse voxel should be added into the
container and partitioned with all finer voxels that fall into the cutter’s interior removed if
it is partially cut by the tool for the first time.

The two-level grid manages to reduce both memory usage and computation time
significantly; however, the aforementioned shortcoming restricts its further application
in high-precision machining. To increase the adaptivity of the two-level grid, a tri-level
grid, as shown in Figure 1, is employed, where each bottom-level voxel continues to be
subdivided if it intersects with the object surface. Then, the available grid resolution is
measured by the product of the branching factors at all three levels. All surface voxels at
three levels constitute a surface voxel model of the object, and a solid voxel model, which
is used to represent the workpiece model in this study, can be obtained if all internal voxels
are also activated. By adding another level of adaptive refinement, the finest voxels that
need to be updated can be approached very efficiently.

Machines 2025, 13, x FOR PEER REVIEW 5 of 22

In order to mitigate the high memory overhead of a dense uniform grid, an effective
approach is to exploit adaptive refinement in spatial decomposition. The resulting hierar-
chical data structure is a two-level grid, also referred to as a tiled grid, where the volume
is first decomposed into uniformly sized cells, also called blocks, bricks, or tiles, and each
cell is then partitioned into a finer subgrid if it intersects the surface of the solid object.
Note that to quickly reach a target subgrid for a workpiece update, every tile that has been
partitioned should be recorded by a key-value container, such as a hash table and map,
where its 3D index serves as the key. To simulate the cutting process, an activated voxel
at the coarse level that has been swept by the cutting tool entirely needs to be deleted and
removed from the container, while an active coarse voxel should be added into the con-
tainer and partitioned with all finer voxels that fall into the cutter’s interior removed if it
is partially cut by the tool for the first time.

The two-level grid manages to reduce both memory usage and computation time
significantly; however, the aforementioned shortcoming restricts its further application in
high-precision machining. To increase the adaptivity of the two-level grid, a tri-level grid,
as shown in Figure 1, is employed, where each bottom-level voxel continues to be subdi-
vided if it intersects with the object surface. Then, the available grid resolution is meas-
ured by the product of the branching factors at all three levels. All surface voxels at three
levels constitute a surface voxel model of the object, and a solid voxel model, which is
used to represent the workpiece model in this study, can be obtained if all internal voxels
are also activated. By adding another level of adaptive refinement, the finest voxels that
need to be updated can be approached very efficiently.

(a)

(b)

Figure 1. Tri-level grid representation and illustration: (a) layout of the tri-level grid; (b) 2D illustra-
tion of the tri-level grid.

3.3. Surface Reconstruction

Figure 1. Tri-level grid representation and illustration: (a) layout of the tri-level grid; (b) 2D illustra-
tion of the tri-level grid.

3.3. Surface Reconstruction

In order to visualize the in-process workpiece or machined part, a boundary rep-
resentation, such as a triangle mesh, can be built by implementing the marching cubes

Machines 2025, 13, 69 6 of 21

algorithm [28] based on the voxel model. Triangle mesh has been widely used by many
CAM systems due to its strong capability to represent free-form surfaces with simple
triangles. Furthermore, by changing the triangle size according to the local curvature of
the surface, the storage of the mesh model can be optimized for multi-axis milling simula-
tions. The marching cubes algorithm is an effective approach for visualizing a conceptual
surface called an isosurface by extracting its polygonal mesh from a 3D scalar field. An
isosurface is formed from a set of 3D points satisfying the equation f (x, y, z) = c, where c
is a user-specified iso-value and remains constant for any point located on the isosurface.
Therefore, an isosurface can be viewed as a surface within a cube where each point has the
same parametric value. This algorithm works by iterating (“marching”) over a uniform
grid of cubes superimposed over a region of the function, taking eight cube vertices at a
time, and then determining the polygons needed to represent the part of the isosurface
passing through this cube. The obtained polygons are then fused into the final mesh model.
For the first step, an index to a precalculated array of 256 possible polygon configurations
(28 = 256) is generated for each cube being considered, and each of the eight scalar values
corresponds to one bit in an 8-bit integer. A scalar value higher than the user-specified
iso-value sets the bit to one, while a lower scalar value sets the bit to zero. Then, the final
integer would be the actual index to the polygon indices array, which guarantees any
neighboring polygons can be connected appropriately. Finally, each vertex of the extracted
polygons, which should be placed in the appropriate position along the voxel edge, is
determined by linearly interpolating the two scalar values that are connected by that edge.
In this research, the cutting tool is represented by an implicit function, which, however, is
not for the computation of the scalar value of each vertex. The use of this function aims to
identify every intersecting voxel as well as all voxel edges crossed by the cutter surface, as
shown in Figure 2. The edge intersection point is then determined by calculating the real
intersection between the voxel edge and the cutter surface.

Machines 2025, 13, x FOR PEER REVIEW 6 of 22

In order to visualize the in-process workpiece or machined part, a boundary repre-
sentation, such as a triangle mesh, can be built by implementing the marching cubes algo-
rithm [28] based on the voxel model. Triangle mesh has been widely used by many CAM
systems due to its strong capability to represent free-form surfaces with simple triangles.
Furthermore, by changing the triangle size according to the local curvature of the surface,
the storage of the mesh model can be optimized for multi-axis milling simulations. The
marching cubes algorithm is an effective approach for visualizing a conceptual surface
called an isosurface by extracting its polygonal mesh from a 3D scalar field. An isosurface
is formed from a set of 3D points satisfying the equation 𝑓(𝑥, 𝑦, 𝑧) = 𝑐, where 𝑐 is a user-
specified iso-value and remains constant for any point located on the isosurface. There-
fore, an isosurface can be viewed as a surface within a cube where each point has the same
parametric value. This algorithm works by iterating (“marching”) over a uniform grid of
cubes superimposed over a region of the function, taking eight cube vertices at a time, and
then determining the polygons needed to represent the part of the isosurface passing
through this cube. The obtained polygons are then fused into the final mesh model. For
the first step, an index to a precalculated array of 256 possible polygon configurations
(2଼ = 256) is generated for each cube being considered, and each of the eight scalar values
corresponds to one bit in an 8-bit integer. A scalar value higher than the user-specified
iso-value sets the bit to one, while a lower scalar value sets the bit to zero. Then, the final
integer would be the actual index to the polygon indices array, which guarantees any
neighboring polygons can be connected appropriately. Finally, each vertex of the ex-
tracted polygons, which should be placed in the appropriate position along the voxel
edge, is determined by linearly interpolating the two scalar values that are connected by
that edge. In this research, the cutting tool is represented by an implicit function, which,
however, is not for the computation of the scalar value of each vertex. The use of this
function aims to identify every intersecting voxel as well as all voxel edges crossed by the
cutter surface, as shown in Figure 2. The edge intersection point is then determined by
calculating the real intersection between the voxel edge and the cutter surface.

Figure 2. Surface reconstruction by a tri-level grid.

During the reconstruction process, the polygons inside each cube can be built appro-
priately according to the lookup table of the marching cubes algorithm as long as all vertex
states and edge intersection points are correctly computed. However, a simple data regu-
larization procedure is still required to eliminate noises, inconsistent data, or missing data
caused by numerical errors. Specifically, if the distance between a newly computed inter-
section point and an active voxel vertex is smaller than a specified value, this intersection
point is deemed on the vertex whether it is inside or outside the cube. The coordinates of

Figure 2. Surface reconstruction by a tri-level grid.

During the reconstruction process, the polygons inside each cube can be built ap-
propriately according to the lookup table of the marching cubes algorithm as long as all
vertex states and edge intersection points are correctly computed. However, a simple
data regularization procedure is still required to eliminate noises, inconsistent data, or
missing data caused by numerical errors. Specifically, if the distance between a newly
computed intersection point and an active voxel vertex is smaller than a specified value,
this intersection point is deemed on the vertex whether it is inside or outside the cube. The
coordinates of the intersection point are then replaced by those of the vertex, whose state is
set to false in the meantime.

Machines 2025, 13, 69 7 of 21

4. Representation of Generalized Cutter
A generalized cutting tool can be represented by an implicit surface function, which is

used to determine the geometric relationship between an arbitrary 3D point and the cutter
surface by simply putting its coordinates into the function. A negative value means the
point is inside the cutter, a positive value means the point is outside the cutter, and zero
means the point is on the cutter surface. The use of an implicit function is geometrically
precise, and its programming is also very easy and straightforward.

According to the definition of an automatically programmed tool, the generalized
cutter geometry, as shown in Figure 3, can be described fully using the following geometric
parameters [25]: d is the cutter diameter, twice the radial distance between the tool axis and
the intersection between lower and upper line segments; r is the radius of the corner torus;
e is the radial distance between the center of the corner circle and the tool axis; f is the
height of the center of the corner circle measured from the tool tip; α is the angle between
the lower line segment and the cutter bottom line, 0◦ ≤ α < 90◦; β is the angle between the
cutter side and the tool axis, −90◦ < β < 90◦; h is the overall cutting edge length.

Machines 2025, 13, x FOR PEER REVIEW 7 of 22

the intersection point are then replaced by those of the vertex, whose state is set to false in
the meantime.

4. Representation of Generalized Cutter
A generalized cutting tool can be represented by an implicit surface function, which

is used to determine the geometric relationship between an arbitrary 3D point and the
cutter surface by simply putting its coordinates into the function. A negative value means
the point is inside the cutter, a positive value means the point is outside the cutter, and
zero means the point is on the cutter surface. The use of an implicit function is geometri-
cally precise, and its programming is also very easy and straightforward.

According to the definition of an automatically programmed tool, the generalized
cutter geometry, as shown in Figure 3, can be described fully using the following geomet-
ric parameters [25]: 𝑑 is the cutter diameter, twice the radial distance between the tool
axis and the intersection between lower and upper line segments; 𝑟 is the radius of the
corner torus; 𝑒 is the radial distance between the center of the corner circle and the tool
axis; 𝑓 is the height of the center of the corner circle measured from the tool tip; 𝛼 is the
angle between the lower line segment and the cutter bottom line, 0° ≤ 𝛼 < 90°; 𝛽 is the
angle between the cutter side and the tool axis, −90° < 𝛽 < 90°; ℎ is the overall cutting
edge length.

Figure 3. Geometric definition of generalized cutting tool.

Based on these user-specified independent parameters, several dependent parame-
ters also need to be determined for the construction of the implicit function: 𝑟ଵ = 𝑑 2⁄ + (ℎ − (𝑑tan𝛼) 2⁄)tan𝛽 (1)

𝑟ଶ = ቀ𝑢 + ඥ𝑢ଶ − 4cosଶ𝛼(𝑒ଶ + 𝑓ଶ − 𝑟ଶ)ቁ 2⁄ with 𝑢 = 2cosଶ𝛼(𝑒 + 𝑓tan𝛼)
(2)

Figure 3. Geometric definition of generalized cutting tool.

Based on these user-specified independent parameters, several dependent parameters
also need to be determined for the construction of the implicit function:

r1 = d/2 + (h − (dtanα)/2)tanβ (1)

r2 =
(

u +
√

u2 − 4cos2α(e2 + f 2 − r2)
)

/2

with u = 2cos2α(e + f tanα)
(2)

r3 =

d/2 β = 0

e +

(
vsin(2β)+

√
v2sin2(2β)−4(v2−r2)sin2β

)
2 β ̸= 0

with v = (r1 − e)cotβ − h + f

(3)

Machines 2025, 13, 69 8 of 21

huc =

h − f +
√

r2 − (r3 − e)2 β = 0

(r1 − r3)cot β β ̸= 0
(4)

hlc = r2tanα (5)

ht = h − huc − hlc (6)

The implicit function of a universal cutter consists of four standard components with
arbitrary axes. A lower cone, a corner torus, and an upper cone represent the cutting
edge, and a cylinder represents the cutter shank. Then, the implicit functions of these four
components can be expressed as follows:

F(x, y, z) =

u·u − m·u −

Dcyl m·u ≥ h
Duc hlc + ht < m·u < h
Dt hlc < m·u ≤ hlc + ht

Dlc 0 < m·u ≤ hlc

Dbottom m·u = 0

with

Dcyl = r1
2

Duc = (r1 − (h − m·u)tanβ)2

Dt =

(
e +

√
r2 − (f − m·u)2

)2

Dlc =

{
r2

2 α = 0
(cotαm·u)2 α ̸= 0

Dbottom =

{
0 α ̸= 0(
(u·u − m·u) + r2

2 −
∣∣(u·u − m·u)− r2

2
∣∣)/2 α = 0

(7)

where m is the unit vector along the cutter axis, and u is the vector from the tool tip to the
3D point being considered.

The use of the implicit surface function aims to detect the contact conditions of a target
voxel with the cutter surface for workpiece update by inputting the coordinates of all its
vertices into the implicit function. A voxel with all vertices inside the tool is an internal
voxel that should be removed, a voxel with all vertices outside the tool is an external voxel
that should be preserved, and a voxel with vertices partially inside the tool is an intersecting
voxel, which should be decomposed for further updates.

5. Multi-Axis Milling Simulation
The present work employs the method of tool path sampling that takes tool instances

along a tool path at a regular interval in order to construct the machined part surface and
compute the instantaneous contact region. This method can be applied to a generalized
milling tool and any kind of tool path, and it has been widely used for the generation of
the cutter-swept volume in many works.

The simulation process proposed by this research is outlined in Figure 4. At each
sampled cutter location, the in-process workpiece voxel model is updated by continuously
subdividing coarser voxels that intersect the tool instance and removing any cell falling
into the interior of the cutter. For each bottom-level intersecting voxel, the edges straddling
the cutter surface need to be identified in order to compute and update their intersection
points. Meanwhile, the states of all affected vertices need to be updated in time.

Machines 2025, 13, 69 9 of 21

Machines 2025, 13, x FOR PEER REVIEW 9 of 22

(a) (b)

(c) (d)

(e) (f)

Figure 4. Workpiece update based on the tri-level grid: (a) blank model and cutting tool at current
cutter location; (b) level-1 voxel update; (c) level-2 voxel update; (d) level-3 voxel update; (e) edge
intersection point update; (f) workpiece surface reconstruction.

5.1. Solid Voxelization of Blank

The proposed algorithm takes the triangle mesh representation of the blank as input
because it is relatively simple to create a water-tight solid voxel model, and the intersec-
tion between a voxel edge and a planar triangle is easy to compute. In addition, a triangle
mesh can be readily obtained from a CSG or B-rep model and easily rendered for visuali-
zation. Note that a collection of discrete triangles is utilized to approximate a solid surface
by the triangle mesh model; therefore, the approximation error is inevitable during trans-
formation. However, such an error can be mitigated by reducing the average triangle size.

As illustrated in Figure 5, the solid voxelization of the input shape is accomplished
by two major procedures: surface voxelization and 3D filling. For the first step, the level-
1 voxels intersecting a target triangular face are identified by traversing all voxel candi-
dates inside the axis-aligned bounding box of the triangle. Then, each intersecting voxel
is subdivided into a level-2 subgrid, where each intersecting voxel also needs to be acti-
vated and subdivided into a level-3 subgrid, with the finest intersecting voxels being ac-
tivated. For each bottom-level intersecting voxel, all intersection points between its edges
and one or more triangles need to be computed for the first time. Once the surface voxel
model of the blank is achieved, all internal voxels of the triangle mesh at three levels need

Figure 4. Workpiece update based on the tri-level grid: (a) blank model and cutting tool at current
cutter location; (b) level-1 voxel update; (c) level-2 voxel update; (d) level-3 voxel update; (e) edge
intersection point update; (f) workpiece surface reconstruction.

5.1. Solid Voxelization of Blank

The proposed algorithm takes the triangle mesh representation of the blank as input
because it is relatively simple to create a water-tight solid voxel model, and the intersection
between a voxel edge and a planar triangle is easy to compute. In addition, a triangle mesh
can be readily obtained from a CSG or B-rep model and easily rendered for visualization.
Note that a collection of discrete triangles is utilized to approximate a solid surface by the
triangle mesh model; therefore, the approximation error is inevitable during transformation.
However, such an error can be mitigated by reducing the average triangle size.

As illustrated in Figure 5, the solid voxelization of the input shape is accomplished
by two major procedures: surface voxelization and 3D filling. For the first step, the level-1
voxels intersecting a target triangular face are identified by traversing all voxel candidates
inside the axis-aligned bounding box of the triangle. Then, each intersecting voxel is
subdivided into a level-2 subgrid, where each intersecting voxel also needs to be activated
and subdivided into a level-3 subgrid, with the finest intersecting voxels being activated.
For each bottom-level intersecting voxel, all intersection points between its edges and one
or more triangles need to be computed for the first time. Once the surface voxel model
of the blank is achieved, all internal voxels of the triangle mesh at three levels need to
be activated by counting the intersections between the triangle mesh and the ray emitted

Machines 2025, 13, 69 10 of 21

from the interior of the voxel. An odd number of intersections indicates an internal voxel
that needs to be activated, and all its finer voxels, if they exist, need further detection;
meanwhile, an even number of intersection points indicates an external voxel.

Machines 2025, 13, x FOR PEER REVIEW 10 of 22

to be activated by counting the intersections between the triangle mesh and the ray emit-
ted from the interior of the voxel. An odd number of intersections indicates an internal
voxel that needs to be activated, and all its finer voxels, if they exist, need further detec-
tion; meanwhile, an even number of intersection points indicates an external voxel.

(a)

(b)

(c)

(d)

Figure 5. Solid voxelization of the blank: (a) triangle mesh model of the blank; (b) surface voxeliza-
tion; (c) surface reconstruction and 3D filling; (d) solid voxel model.

5.2. Workpiece Geometry Computation

In order to reconstruct the surface of the final machined part, the in-process work-
piece model needs to be updated accurately at each sampled cutter location. This multi-
level update is accomplished by three levels of voxel updates and one level of edge inter-
section point update. The level-1 voxel update aims to carry out the fast bulk material
removal from the workpiece, which needs to identify all coarse voxels that may possibly
intersect the tool instance. A simple method is to traverse every voxel inside the axis-
aligned bound box of the tool instance; however, this approach may introduce a large
number of unnecessary detection computations, as many voxels are clearly far away from
the cutter surface. Therefore, an oriented bounding cylinder is employed by this work,
whose internal space can provide the minimal voxel candidates that need to be checked
for updates. Note that the interior of the bounding cylinder can be extracted very effi-
ciently by implementing the direct voxel tracing algorithm [24].

Theoretically, the geometric relationship between an affected coarse voxel and the
cutter surface needs to be determined by checking all its vertices, which is practically in-
efficient since some voxels definitely inside or outside the cutter can be quickly ruled out
by a relaxed proximity check [27]. Assuming 𝑣 is the coarse-level voxel size and the dis-
tance between the voxel center and the cutter surface is 𝑑௩, then a voxel is deemed to be
a near-field voxel, or a possible intersecting voxel, for the tool instance if 𝑑௩ < √3𝑣 2⁄ ,
where √3𝑣 is the thickness of this near-field region of the cutter surface which lies in the
middle of this region, as shown in the dashed boundaries in Figure 6. Once a near-field

Figure 5. Solid voxelization of the blank: (a) triangle mesh model of the blank; (b) surface voxelization;
(c) surface reconstruction and 3D filling; (d) solid voxel model.

5.2. Workpiece Geometry Computation

In order to reconstruct the surface of the final machined part, the in-process workpiece
model needs to be updated accurately at each sampled cutter location. This multi-level
update is accomplished by three levels of voxel updates and one level of edge intersection
point update. The level-1 voxel update aims to carry out the fast bulk material removal
from the workpiece, which needs to identify all coarse voxels that may possibly intersect
the tool instance. A simple method is to traverse every voxel inside the axis-aligned
bound box of the tool instance; however, this approach may introduce a large number of
unnecessary detection computations, as many voxels are clearly far away from the cutter
surface. Therefore, an oriented bounding cylinder is employed by this work, whose internal
space can provide the minimal voxel candidates that need to be checked for updates. Note
that the interior of the bounding cylinder can be extracted very efficiently by implementing
the direct voxel tracing algorithm [24].

Theoretically, the geometric relationship between an affected coarse voxel and the
cutter surface needs to be determined by checking all its vertices, which is practically
inefficient since some voxels definitely inside or outside the cutter can be quickly ruled
out by a relaxed proximity check [27]. Assuming vc is the coarse-level voxel size and the
distance between the voxel center and the cutter surface is dvc, then a voxel is deemed to
be a near-field voxel, or a possible intersecting voxel, for the tool instance if dvc <

√
3vc/2,

where
√

3vc is the thickness of this near-field region of the cutter surface which lies in the
middle of this region, as shown in the dashed boundaries in Figure 6. Once a near-field
voxel is recognized, its contact conditions are detected accurately by putting all its vertices
into the implicit function of a generalized cutting tool.

Machines 2025, 13, 69 11 of 21

Machines 2025, 13, x FOR PEER REVIEW 11 of 22

voxel is recognized, its contact conditions are detected accurately by putting all its vertices
into the implicit function of a generalized cutting tool.

Figure 6. Near-field of a tool instance.

Each possible intersecting voxel at the top level is subdivided into a finer level-2 sub-
grid, where a voxel definitely inside the tool instance is deleted directly, and an intersect-
ing voxel is decomposed into the finest level-3 subgrid. Within each level-3 subgrid, an
internal voxel of the cutter is removed, while both voxel edge intersection points and ver-
tex states need to be updated immediately inside each intersecting voxel at the bottom
level. Specifically, for an edge with both ends inside the cutter, its two vertex states are set
to false, while for an edge with one end inside the cutter and the other outside the cutter,
its intersection with the tool instance needs to be updated appropriately. The pseudocode
of this multi-level update process is outlined below Algorithm 1:

Algorithm 1. Workpiece Geometry Computation
for each level-1 voxel v1 in oriented bounding cylinder of tool instance

if v1 inside cutter
 deactivate v1
 else if v1 intersects cutter
 subdivide v1 into level-2 subgrid
 for each level-2 voxel v2 in subgrid
 if v2 inside cutter
 deactivate v2
 else if v2 intersect cutter
 subdivide v2 into level-3 subgrid
 for each level-3 voxel v3 in subgrid
 if v3 inside cutter
 deactivate v3
 else if v3 intersects cutter
 for each voxel edge of v3
 if both vertices inside cutter
 deactivate two vertices
 else if one vertex inside cutter, the other one outside cutter
 if both vertices outside cutter before
 update edge intersection point
 compute cutting depth and immersion angle
 else if both vertex states stay the same as before

Figure 6. Near-field of a tool instance.

Each possible intersecting voxel at the top level is subdivided into a finer level-2
subgrid, where a voxel definitely inside the tool instance is deleted directly, and an inter-
secting voxel is decomposed into the finest level-3 subgrid. Within each level-3 subgrid,
an internal voxel of the cutter is removed, while both voxel edge intersection points and
vertex states need to be updated immediately inside each intersecting voxel at the bottom
level. Specifically, for an edge with both ends inside the cutter, its two vertex states are set
to false, while for an edge with one end inside the cutter and the other outside the cutter,
its intersection with the tool instance needs to be updated appropriately. The pseudocode
of this multi-level update process is outlined below Algorithm 1:

Algorithm 1. Workpiece Geometry Computation

for each level-1 voxel v1 in oriented bounding cylinder of tool instance
if v1 inside cutter

deactivate v1
else if v1 intersects cutter

subdivide v1 into level-2 subgrid
for each level-2 voxel v2 in subgrid

if v2 inside cutter
deactivate v2

else if v2 intersect cutter
subdivide v2 into level-3 subgrid
for each level-3 voxel v3 in subgrid

if v3 inside cutter
deactivate v3

else if v3 intersects cutter
for each voxel edge of v3

if both vertices inside cutter
deactivate two vertices

else if one vertex inside cutter, the other one outside cutter
if both vertices outside cutter before

update edge intersection point
compute cutting depth and immersion angle

else if both vertex states stay the same as before
if edge intersection point inside cutter

update edge intersection point
compute cutting depth and immersion angle

Machines 2025, 13, 69 12 of 21

5.3. CWE Extraction

During the update process of the workpiece at the subvoxel level, the intersection
points between the edges of the finest intersecting voxels and the tool instance need to be
computed and updated appropriately, which have managed to depict the instantaneous
contact surface. Therefore, an accurate and efficient way to compute this region is to fuse
these discrete intersection points directly, as shown in Figure 7. In order to obtain the CWE
diagram suitable for cutting force prediction, the cutter is uniformly discretized into a group
of cylindrical disks first, and their thickness is set equal to the finest voxel edge length for
balanced computational performance. Then, for each newly computed intersection point,
its cutting depth dc measured from the tool tip and immersion angle measured from the
y-axis of the tool coordinate system (TCS) are calculated, and the newly determined angle
is put into all elementary disks that fall into the range of

[
dc −

√
3v f /2, dc +

√
3v f /2

]
,

where v f is the finest voxel size. After all intersection points are determined, the discrete
immersion angles stored in each disk are fused by connecting any two neighboring angles
with an interval smaller than 2tan−1

(√
3v f /

(
2rd −

√
3v f

))
, where rd is the radius of the

cutting disk. Finally, each group of connected immersion angles in a disk forms a CWE
arc, whose first and last angles correspond to the entry and exit angles, respectively. This
fusion process achieves the desired resolution and precision of the computed result at a
subvoxel level while introducing a very limited number of extra computations.

Machines 2025, 13, x FOR PEER REVIEW 12 of 22

 if edge intersection point inside cutter
 update edge intersection point
 compute cutting depth and immersion angle

5.3. CWE Extraction

During the update process of the workpiece at the subvoxel level, the intersection
points between the edges of the finest intersecting voxels and the tool instance need to be
computed and updated appropriately, which have managed to depict the instantaneous
contact surface. Therefore, an accurate and efficient way to compute this region is to fuse
these discrete intersection points directly, as shown in Figure 7. In order to obtain the CWE
diagram suitable for cutting force prediction, the cutter is uniformly discretized into a
group of cylindrical disks first, and their thickness is set equal to the finest voxel edge
length for balanced computational performance. Then, for each newly computed intersec-
tion point, its cutting depth 𝑑 measured from the tool tip and immersion angle meas-
ured from the y-axis of the tool coordinate system (TCS) are calculated, and the newly
determined angle is put into all elementary disks that fall into the range of ൣ𝑑 − √3𝑣 2⁄ , 𝑑 + √3𝑣 2⁄ ൧, where 𝑣 is the finest voxel size. After all intersection points
are determined, the discrete immersion angles stored in each disk are fused by connecting
any two neighboring angles with an interval smaller than 2 tanିଵ൫√3𝑣 ൫2𝑟ௗ − √3𝑣൯ൗ ൯,
where 𝑟ௗ is the radius of the cutting disk. Finally, each group of connected immersion
angles in a disk forms a CWE arc, whose first and last angles correspond to the entry and
exit angles, respectively. This fusion process achieves the desired resolution and precision
of the computed result at a subvoxel level while introducing a very limited number of
extra computations.

Figure 7. Illustration of CWE determination.

5.4. CWE Trimming by Envelope Theory

In this work, the computed CWE arc may be slightly larger than its theoretical coun-
terpart because only internal voxels are deleted for workpiece update. Therefore, the so-
called feasible contact arc (FCA) is employed in this work to trim the computed result [3],
as shown in Figure 8. The grazing curve is a collection of points on the cutter surface that

Intersecting points Fusion process CWE map Immersion angles

Figure 7. Illustration of CWE determination.

5.4. CWE Trimming by Envelope Theory

In this work, the computed CWE arc may be slightly larger than its theoretical counter-
part because only internal voxels are deleted for workpiece update. Therefore, the so-called
feasible contact arc (FCA) is employed in this work to trim the computed result [3], as
shown in Figure 8. The grazing curve is a collection of points on the cutter surface that
remain on the enveloped surface during the milling process. The entire cutter surface is
then partitioned into two parts by this grazing curve. The part facing the cutter moving
direction is called the front-facing part, and it is responsible for removing the workpiece
material, either in part or in whole; the other part will never be involved. Then, each sliced
circle, which is obtained by slicing the cutter with a plane perpendicular to its axis, is

Machines 2025, 13, 69 13 of 21

divided into two arcs by its intersection points, namely grazing points, with the grazing
curve. The arc within the front-facing part is called the feasible contact arc, which defines
the largest arc that may engage with the workpiece.

Machines 2025, 13, x FOR PEER REVIEW 13 of 22

remain on the enveloped surface during the milling process. The entire cutter surface is
then partitioned into two parts by this grazing curve. The part facing the cutter moving
direction is called the front-facing part, and it is responsible for removing the workpiece
material, either in part or in whole; the other part will never be involved. Then, each sliced
circle, which is obtained by slicing the cutter with a plane perpendicular to its axis, is
divided into two arcs by its intersection points, namely grazing points, with the grazing
curve. The arc within the front-facing part is called the feasible contact arc, which defines
the largest arc that may engage with the workpiece.

Figure 8. Illustration of grazing point and feasible contact arc on a moving tool.

Assume the trajectory of the tool tip can be described by a general curve 𝑷(𝑡) in 3D
space, as illustrated by Figure 9; then, the tool coordinate system located at the tool tip can
be determined as follows:

⎩⎪⎨
⎪⎧𝒐௧ = 𝑷(𝑡) 𝒙௧ = 𝒚௧ ൈ 𝒛௧ 𝒚௧ = 𝒛௧ ൈ 𝑷′(𝑡)‖𝒛௧ ൈ 𝑷′(𝑡)‖𝒛௧ = 𝑨(𝑡) (8)

where 𝑨(𝑡) is the unit axis vector of the cutter and 𝑷′(𝑡) is the tool tip velocity, which
can be computed based on the CL data file: 𝑷′(𝑡) = 𝑪(𝑡ାଵ) − 𝑪(𝑡)∆𝑡 (9)

where 𝑪(𝑡) is the tool tip position, and ∆𝑡 is equal to one.

Figure 8. Illustration of grazing point and feasible contact arc on a moving tool.

Assume the trajectory of the tool tip can be described by a general curve P(t) in 3D
space, as illustrated by Figure 9; then, the tool coordinate system located at the tool tip can
be determined as follows:

ot = P(t)
xt = yt × zt

yt =
zt×P′(t)

∥zt×P′(t)∥
zt = A(t)

(8)

where A(t) is the unit axis vector of the cutter and P′(t) is the tool tip velocity, which can
be computed based on the CL data file:

P′(ti) =
C(ti+1)− C(ti)

∆t
(9)

where C(ti) is the tool tip position, and ∆t is equal to one.

Machines 2025, 13, x FOR PEER REVIEW 14 of 22

Figure 9. The enveloping characteristic of a moving tool.

According to research [3], a 3D point located on the cutting tool surface can be ex-
pressed as follows: 𝒑(𝑧, 𝜃, 𝑡) = 𝑷(𝑡) + 𝑧𝑨(𝑡) + 𝑟(𝑧) sin 𝜃 𝒙௧ + 𝑟(𝑧) cos 𝜃 𝒚௧ (10)

where 𝑧 is the axial height with respect to the tool tip, 𝑟(𝑧) represents the cutter radius
along the cutter axis, and 𝜃 is the oriented angle measured from the y-axis of TCS.

Furthermore, the intersection point 𝒒 between the normal vector crossing point 𝒑
and the cutter axis is expressed as follows: 𝒒(𝑧, 𝑡) = 𝑷(𝑡) + 𝑙(𝑧)𝑨(𝑡)

with 𝑙(𝑧) = 𝑟(𝑧)𝑟′(𝑧) + 𝑧

𝑟′(𝑧) = ⎩⎪⎨
⎪⎧ ቄ0 𝛼 = 0cot 𝛼 𝛼 ≠ 0 0 < 𝑧 ≤ ℎ𝑓 − 𝑧ඥ𝑟ଶ − (𝑓 − 𝑧)ଶ ℎ < 𝑧 ≤ ℎ + ℎ௧tan 𝛽 ℎ + ℎ௧ < 𝑧 < ℎ

(11)

Thus, the unit normal vector crossing point 𝒑 can be written as 𝒏(𝑧, 𝜃, 𝑡) = 𝒑(𝑧, 𝜃, 𝑡) − 𝒒(𝑧, 𝑡)‖𝒑(𝑧, 𝜃, 𝑡) − 𝒒(𝑧, 𝑡)‖ (12)

According to the envelope theory in [13], a grazing point should meet the require-
ment below: 𝒗(𝑧, 𝑡) ∙ 𝒏(𝑧, 𝜃, 𝑡) = 0 (13)

where 𝒗 is the velocity of point 𝒒 on the cutter axis, which can be computed by linearly
interpolating the velocities of two endpoints on the cutter axis: 𝒗(𝑧, 𝑡) = 𝒗ଵ(𝑡) ℎ − 𝑙(𝑧)ℎ + 𝒗ଶ(𝑡) 𝑙(𝑧)ℎ (14)

where ℎ is the overall cutting-edge length, and the velocities 𝒗𝟏 and 𝒗𝟐 can be easily
determined by connecting the endpoints at two adjacent cutter locations.

Finally, the equation below can be obtained by substituting Equations (12) and (14)
into Equation (13):

Figure 9. The enveloping characteristic of a moving tool.

Machines 2025, 13, 69 14 of 21

According to research [3], a 3D point located on the cutting tool surface can be ex-
pressed as follows:

p(z, θ, t) = P(t) + zA(t) + r(z)sin θxt + r(z)cos θyt (10)

where z is the axial height with respect to the tool tip, r(z) represents the cutter radius
along the cutter axis, and θ is the oriented angle measured from the y-axis of TCS.

Furthermore, the intersection point q between the normal vector crossing point p and
the cutter axis is expressed as follows:

q(z, t) = P(t) + l(z)A(t)
with l(z) = r(z)r′(z) + z

r′(z) =

{
0 α = 0
cot α α ̸= 0

0 < z ≤ hlc

f−z√
r2−(f−z)2

hlc < z ≤ hlc + ht

tan β hlc + ht < z < h

(11)

Thus, the unit normal vector crossing point p can be written as

n(z, θ, t) =
p(z, θ, t)− q(z, t)

∥p(z, θ, t)− q(z, t)∥ (12)

According to the envelope theory in [13], a grazing point should meet the require-
ment below:

vq(z, t)·n(z, θ, t) = 0 (13)

where vq is the velocity of point q on the cutter axis, which can be computed by linearly
interpolating the velocities of two endpoints on the cutter axis:

vq(z, t) = v1(t)
h − l(z)

h
+ v2(t)

l(z)
h

(14)

where h is the overall cutting-edge length, and the velocities v1 and v2 can be easily
determined by connecting the endpoints at two adjacent cutter locations.

Finally, the equation below can be obtained by substituting Equations (12) and (14)
into Equation (13):

A0cos θ + A1sin θ = A2

with

A0 = r(z)vq(z, t)·yt
A1 = r(z)vq(z, t)·xt

A2 = r(z)r′(z)vq(z, t)·A(t)

(15)

Based on this equation, the grazing points, and hence the feasible contact arc, on each
sliced circle can be represented by θ:θ1 = 2tan−1 A1+

√
A0

2+A1
2−A2

2

A0+A2

θ2 = 2tan−1 A1−
√

A0
2+A1

2−A2
2

A0+A2

(16)

It should be noted that the above equation can be built only if A2
2 ≤ A0

2 + A1
2.

Then, any point on the sliced circle can possibly be a grazing point under the condition

of A2 < −
√(

A0
2 + A1

2
)

, but cannot be a grazing point under the condition of A2 >√(
A0

2 + A1
2
)

.

Machines 2025, 13, 69 15 of 21

6. Case Studies
In this section, a series of practical machining cases with sufficient complexity have

been conducted in order to compare the computational performance of the proposed
method with that of the tri-dexel representation and the two-level grid in different aspects.
The tri-dexel model is used as a comparison benchmark because it has been recognized as
providing the best combination of computational accuracy, efficiency, and flexibility among
all modeling methods. Table 1 lists the geometric information needed to implement these
two five-axis milling cases.

Table 1. Case summary.

Cutter Type Ball-End Mill Bull-End Mill Taper Ball-End Mill

Cutter parameter (mm) d = 10, r = 5, e = 0
f = 5, α = β = 0◦, h = 50

d = 10, r = 2.5, e = 2.5
f = 2.5, α = β = 0◦, h = 50

d = 9.6569, r = 5, e = 0
f = 5, α = 0◦, β = 2◦, h = 50

No. of CL points 33,456 62,600 239,290
Finest voxel size (mm) 0.01 0.05 0.05

6.1. Accuracy Comparison

The computational performance of a voxel-based method highly depends on the voxel
size at the bottom level or the ratio of the cutter diameter to the finest voxel size once
the cutting tool is selected in the first place. To reveal the computational performance
of the proposed method under the condition of extreme-scale resolution, the diameter
of the ball-end mill in the first case is thus set to 1000 times the finest voxel size in the
initial process. More importantly, a large ratio can help demonstrate how the simulation
efficiency of a voxel-based method is influenced by its fine-level branching factor, which
can be adjusted in a wider range.

To demonstrate the accuracy of the proposed method, four groups of CWE maps with
IPW mesh models of the first case are shown in Figure 10, where the engagement regions
computed by the proposed method are drawn in blue while the results determined by the
tri-dexel method are drawn in red for comparison. The good similarity, as well as the high
complexity of the contact areas, solidly demonstrates the high precision and robustness of
the developed method.

Machines 2025, 13, x FOR PEER REVIEW 16 of 22

Figure 10. CWE comparison of Case 1: (a) CWE maps at CL#1220; (b) CWE maps at CL#2025; (c)
CWE maps at CL#3710; (d) CWE maps at CL#5148.

The second case is accomplished by a bull-end mill and a taper ball-end mill for its
roughing and finishing processes, respectively. Two groups of CWE maps from the
roughing process and another two groups from the finishing process are shown in Figure
11, where the 3D contact regions can be seen clearly in close-up images. The good agree-
ment further demonstrates the sufficient accuracy of the present method.

(a) (b)

(c) (d) (e) (f)

(a) (b) (c) (d)

Figure 10. CWE comparison of Case 1: (a) CWE maps at CL#1220; (b) CWE maps at CL#2025; (c) CWE
maps at CL#3710; (d) CWE maps at CL#5148.

Machines 2025, 13, 69 16 of 21

The second case is accomplished by a bull-end mill and a taper ball-end mill for
its roughing and finishing processes, respectively. Two groups of CWE maps from the
roughing process and another two groups from the finishing process are shown in Figure 11,
where the 3D contact regions can be seen clearly in close-up images. The good agreement
further demonstrates the sufficient accuracy of the present method.

Machines 2025, 13, x FOR PEER REVIEW 16 of 22

Figure 10. CWE comparison of Case 1: (a) CWE maps at CL#1220; (b) CWE maps at CL#2025; (c)
CWE maps at CL#3710; (d) CWE maps at CL#5148.

The second case is accomplished by a bull-end mill and a taper ball-end mill for its
roughing and finishing processes, respectively. Two groups of CWE maps from the
roughing process and another two groups from the finishing process are shown in Figure
11, where the 3D contact regions can be seen clearly in close-up images. The good agree-
ment further demonstrates the sufficient accuracy of the present method.

(a) (b)

(c) (d) (e) (f)

(a) (b) (c) (d)

Figure 11. CWE comparison of Case 2: (a) blank mesh model; (b) machined part; (c) CWE maps at
CL#6000; (d) CWE maps at CL#30,440; (e) CWE maps at CL#70,600; (f) CWE maps at CL#97,040.

During the cutting process, the sampled tool instances along a tool path are used
by this research to approximate the exact cutter-swept volume for workpiece update. As
a result, some sampling scallops are left between adjacent tool instances, which can be
observed in Figure 10. These scallops, however, are not evident since the distance between
the original cutter location points has already been small enough.

Generally, the triangle meshes of the in-process workpiece and the machined part
created by the proposed method are all of good quality and thus useful for real-time
rendering and visual verification in virtual machining. More importantly, the obtained
meshes will become useful when performing a quantitative comparison against their
desired models for identifying potential machining errors such as gouging and undercuts.
Such good quality, in this work, is due to the small bottom-level voxel size, which is directly
associated with the available grid resolution and hence the memory usage. The required
memory is mainly used for the storage of the bottom-level voxels with edge intersection
points, the containers, and the obtained mesh model. Therefore, the largest grid resolution
or workpiece dimensions allowed will be limited by the available memory space of the
hardware platform in use.

Machines 2025, 13, 69 17 of 21

6.2. Efficiency Comparison

The average processing time, obtained by dividing the overall simulation time by
the total number of sampled cutter locations, is listed above each column in Figure 12 for
both cases. To compare the modeling methods quantitatively, the execution time of the
voxel-based method is divided by that of the tri-dexel method, and the computed result is
listed in each column as the efficiency ratio. A smaller ratio indicates a larger improvement
in efficiency. In the literature, even though vector modeling is able to accomplish workpiece
updates efficiently by implementing clipping operations, it still lacks the ability to minimize
these calculations since the workpiece vectors are always evenly spaced. This issue becomes
more severe for a tri-dexel model because dexels along all three orthogonal directions need
to be considered for possible calculations, which will greatly increase the processing time.
Comparatively, because of the two levels of adaptive refinement in spatial decomposition,
the proposed method is able to conduct the update process via the collective volume
removal by batch processing at the coarse level before performing the finest computations,
which effectively accelerates the bulk material removal simulation. With the fast removal
of the workpiece material and the identification of near-field voxels, the coarse voxels in
the vicinity of the machined part surface can be reached very quickly for finer updates.
Then, the time-consuming voxel update at the finest level and the edge intersection point
update at the subvoxel level are accomplished only inside the affected coarse-level surface
voxels, which reduces the computation time significantly.

Machines 2025, 13, x FOR PEER REVIEW 18 of 22

(a)

(b)

Figure 12. Efficiency comparison: (a) efficiency comparison of Case 1; (b) efficiency comparison of
Case 2.

Figure 12 also illustrates how the computational efficiency of the two-level grid is
affected by its level-2 branching factor. Note that the bottom-level voxel size remains un-
changed after being set initially. Thus, different level-2 branching factors correspond to
different level-1 voxel sizes. It can be observed that the computation speed of the two-
level grid reaches its highest level when the level-2 branching factor is around 8, but it
becomes unacceptable once the factor exceeds 32. In contrast, the fluctuations in the com-
putation time of the tri-level grid are rather small, which solidly demonstrates its strong
ability to provide high and stable computation speed without being affected by the level-
2 branching factor. Essentially, a large level-2 branching factor indicates a large number
of top-level voxels will be accessed multiple times for update since a tool path is sampled
very closely, which will lead to a sharp increase in traversal operations at the bottom level.
As illustrated in Figure 13, where edge intersection computation is neglected, to remove
all cutter internal voxels inside level-1 cell 𝐴 at the current location based on the two-

Figure 12. Efficiency comparison: (a) efficiency comparison of Case 1; (b) efficiency comparison of
Case 2.

Machines 2025, 13, 69 18 of 21

Figure 12 also illustrates how the computational efficiency of the two-level grid is
affected by its level-2 branching factor. Note that the bottom-level voxel size remains
unchanged after being set initially. Thus, different level-2 branching factors correspond to
different level-1 voxel sizes. It can be observed that the computation speed of the two-level
grid reaches its highest level when the level-2 branching factor is around 8, but it becomes
unacceptable once the factor exceeds 32. In contrast, the fluctuations in the computation
time of the tri-level grid are rather small, which solidly demonstrates its strong ability to
provide high and stable computation speed without being affected by the level-2 branching
factor. Essentially, a large level-2 branching factor indicates a large number of top-level
voxels will be accessed multiple times for update since a tool path is sampled very closely,
which will lead to a sharp increase in traversal operations at the bottom level. As illustrated
in Figure 13, where edge intersection computation is neglected, to remove all cutter internal
voxels inside level-1 cell A at the current location based on the two-level grid (step 1), all
its finer voxels need to be accessed for deactivation, and each access indicates a proximity
check and possible accurate detection. By contrast, all level-3 voxels inside cell B are
excluded from deactivation since this mid-level voxel has already been deleted during the
level-2 update process of the tri-level grid. Once the cutter moves to the next location (step
2), all finer voxels in cell A, whose vertices are still inside the tool instance partially, need to
be accessed again for the two-level grid, while the finer voxels in cell B and cell C, which
just falls into the cutter’s interior are skipped when it comes to the tri-level grid. As can be
seen, the computational efficiency of the traditional two-level grid is adversely affected by
a large level-2 branching factor due to its repeated traversal operations, which, however,
can be significantly reduced by adding another level of adaptive refinement.

Machines 2025, 13, x FOR PEER REVIEW 19 of 22

level grid (step 1), all its finer voxels need to be accessed for deactivation, and each access
indicates a proximity check and possible accurate detection. By contrast, all level-3 voxels
inside cell 𝐵 are excluded from deactivation since this mid-level voxel has already been
deleted during the level-2 update process of the tri-level grid. Once the cutter moves to
the next location (step 2), all finer voxels in cell 𝐴, whose vertices are still inside the tool
instance partially, need to be accessed again for the two-level grid, while the finer voxels
in cell 𝐵 and cell 𝐶, which just falls into the cutter’s interior are skipped when it comes
to the tri-level grid. As can be seen, the computational efficiency of the traditional two-
level grid is adversely affected by a large level-2 branching factor due to its repeated tra-
versal operations, which, however, can be significantly reduced by adding another level
of adaptive refinement.

Figure 13. Comparison of the update processes based on different voxel grids.

Figure 14 shows the influence of the level-3 branching factor on the computational
efficiency of the tri-level grid quantitatively with three different types of cutters. Since the
level-3 voxel size remains unchanged in each case, the level-3 branching factor is reflected
by the level-2 voxel size. It can be seen that the computation time of the tri-level grid
reaches its lowest point when the level-3 branching factor becomes four or eight, and it
rises quickly as the factor keeps increasing, also because of the rapidly increasing bottom-

Figure 13. Comparison of the update processes based on different voxel grids.

Machines 2025, 13, 69 19 of 21

Figure 14 shows the influence of the level-3 branching factor on the computational
efficiency of the tri-level grid quantitatively with three different types of cutters. Since the
level-3 voxel size remains unchanged in each case, the level-3 branching factor is reflected
by the level-2 voxel size. It can be seen that the computation time of the tri-level grid
reaches its lowest point when the level-3 branching factor becomes four or eight, and it rises
quickly as the factor keeps increasing, also because of the rapidly increasing bottom-level
traversal operations. Therefore, in order to obtain the maximum benefit from the tri-level
grid, the level-3 branching factor should be set to four or eight in practice.

Machines 2025, 13, x FOR PEER REVIEW 20 of 22

level traversal operations. Therefore, in order to obtain the maximum benefit from the tri-
level grid, the level-3 branching factor should be set to four or eight in practice.

(a) (b) (c)

Figure 14. Efficiency characteristic of the tri-level grid: (a) average processing time by ball-end mill;
(b) average processing time by bull-end mill; (c) average processing time by taper ball-end mill.

7. Conclusions and Future Work
This work presents an effective NC simulation method that can accurately compute

machined part geometry and instantaneous CWE regions with higher and more stable
computational efficiency under extreme-scale resolutions compared with the traditional
two-level grid. The proposed method exploits its potential in high-precision machining
by (1) eliminating the adverse impact of a large fine-level branching factor on the compu-
tational efficiency by adding another level of adaptive refinement in space decomposition
and (2) calculating the immersion angles by fusing the edge intersection points, and trim-
ming the computed results with feasible contact arcs determined by the envelope theory.
Furthermore, in order to take full advantage of the tri-level grid, the mid-level subdivision
factor should be selected appropriately according to its efficiency characteristic figures.

As discussed in case studies, minor sampling scallops are present on the workpiece
surface due to the use of sampled tool instances. In order to obtain the mesh model with
sufficient smoothness, the sampling interval needs to remain small, but this will hurt the
overall simulation efficiency. Further study is thus needed to optimize the tool path sam-
pling interval according to the fine voxel grid spacing or even eliminate the need to sample
tool paths by directly calculating the intersection points between voxel edges and approx-
imate linear cutter-swept volumes. Such a study will help researchers seek a balance be-
tween surface quality and computational efficiency in NC simulation.

Author Contributions: Conceptualization, methodology, software, validation, formal analysis, in-
vestigation, resources, data curation, writing—original draft preparation, visualization, Z.N.; writ-
ing—review and editing, supervision, project administration, funding acquisition, Y.Z. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Key Research and Development Program for
Robotics Serialized Harmonic Reducer Fatigue Performance Analysis and Prediction and Life En-
hancement Technology Research, grant number 2017YFB1300603.

Data Availability Statement: Data are contained within the article.

Acknowledgments: The authors thank the reviewers for their comments and the editors for all their
work.

Figure 14. Efficiency characteristic of the tri-level grid: (a) average processing time by ball-end mill;
(b) average processing time by bull-end mill; (c) average processing time by taper ball-end mill.

7. Conclusions and Future Work
This work presents an effective NC simulation method that can accurately compute

machined part geometry and instantaneous CWE regions with higher and more stable
computational efficiency under extreme-scale resolutions compared with the traditional
two-level grid. The proposed method exploits its potential in high-precision machining by
(1) eliminating the adverse impact of a large fine-level branching factor on the computa-
tional efficiency by adding another level of adaptive refinement in space decomposition
and (2) calculating the immersion angles by fusing the edge intersection points, and trim-
ming the computed results with feasible contact arcs determined by the envelope theory.
Furthermore, in order to take full advantage of the tri-level grid, the mid-level subdivision
factor should be selected appropriately according to its efficiency characteristic figures.

As discussed in case studies, minor sampling scallops are present on the workpiece
surface due to the use of sampled tool instances. In order to obtain the mesh model with
sufficient smoothness, the sampling interval needs to remain small, but this will hurt
the overall simulation efficiency. Further study is thus needed to optimize the tool path
sampling interval according to the fine voxel grid spacing or even eliminate the need to
sample tool paths by directly calculating the intersection points between voxel edges and
approximate linear cutter-swept volumes. Such a study will help researchers seek a balance
between surface quality and computational efficiency in NC simulation.

Author Contributions: Conceptualization, methodology, software, validation, formal analysis, inves-
tigation, resources, data curation, writing—original draft preparation, visualization, Z.N.; writing—
review and editing, supervision, project administration, funding acquisition, Y.Z. All authors have
read and agreed to the published version of the manuscript.

Machines 2025, 13, 69 20 of 21

Funding: This research was funded by the National Key Research and Development Program
for Robotics Serialized Harmonic Reducer Fatigue Performance Analysis and Prediction and Life
Enhancement Technology Research, grant number 2017YFB1300603.

Data Availability Statement: Data are contained within the article.

Acknowledgments: The authors thank the reviewers for their comments and the editors for all
their work.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Lasemi, A.; Xue, D.; Gu, P. Recent development in CNC machining of freeform surfaces: A state-of-the-art review. Comput. Aided

Des. 2010, 42, 641–654. [CrossRef]
2. Mali, R.A.; Gupta, T.V.K.; Ramkumar, J. A comprehensive review of free-form surface milling—Advances over a decade. J. Manuf.

Process. 2021, 62, 132–167. [CrossRef]
3. Li, Z.-L.; Wang, X.-Z.; Zhu, L.-M. Arc-surface intersection method to calculate cutter-workpiece engagements for generic cutter in

five-axis milling. Comput. Aided Des. 2016, 73, 1–10. [CrossRef]
4. Ma, H.; Liu, W.; Zhou, X.; Niu, Q.; Kong, C. High efficiency calculation of cutter-workpiece engagement in five-axis milling using

distance fields and envelope theory. J. Manuf. Process. 2021, 68, 1430–1447. [CrossRef]
5. Yan, B.; Xu, G.; Lu, H.; Qin, S.; Zhu, C. Identification of milling information and cutter-workpiece engagement in five-axis

finishing of turbine blades based on NURBS and NC codes. J. Manuf. Process. 2023, 107, 43–56. [CrossRef]
6. Dambly, V.; Rivière-Lorphèvre, É.; Ducobu, F.; Verlinden, O. Tri-dexel-based cutter-workpiece engagement: Computation and

validation for virtual machining operations. Int. J. Adv. Manuf. Technol. 2024, 131, 623–635. [CrossRef]
7. Gao, S.; Duan, X.; Zhu, K.; Zhang, Y. Investigation of the tool flank wear influence on cutter-workpiece engagement and cutting

force in micro milling processes. Mech. Syst. Signal Process. 2024, 209, 111104. [CrossRef]
8. Lin, M.; Wang, C.; Yue, T.; Guo, G.; Guan, W.; Shen, B. Deformation prediction in flank milling of thin-walled parts based on

cutter-workpiece engagement. J. Manuf. Process. 2024, 115, 375–386. [CrossRef]
9. Li, X.; Lee, C.-H.; Hu, P.; Zhang, Y.; Yang, F. Cutter partition-based tool orientation optimization for gouge avoidance in five-axis

machining. Int. J. Adv. Manuf. Technol. 2018, 95, 2041–2057. [CrossRef]
10. Ezair, B.; Elber, G. Automatic generation of globally assured collision free orientations for 5-axis ball-end tool-paths. Comput.

Aided Des. 2018, 102, 171–181. [CrossRef]
11. Du, J.; Liu, P.; Zhi, H.; Ding, P. Global interference detection technology for five-axis machining of complex surfaces. Int. J. Adv.

Manuf. Technol. 2019, 102, 4273–4287. [CrossRef]
12. Chiou, C.-J.; Lee, Y.-S. Swept surface determination for five-axis numerical control machining. Int. J. Mach. Tools Manuf. 2002, 42,

1497–1507. [CrossRef]
13. Gong, H.; Wang, N. Analytical calculation of the envelope surface for generic milling tools directly from CL-data based on the

moving frame method. Comput. Aided Des. 2009, 41, 848–855. [CrossRef]
14. Yang, Y.; Zhang, W.; Wan, M.; Ma, Y. A solid trimming method to extract cutter-workpiece engagement maps for multi-axis

milling. Int. J. Adv. Manuf. Technol. 2013, 68, 2801–2813. [CrossRef]
15. Boz, Y.; Erdim, H.; Lazoglu, I. A comparison of solid model and three-orthogonal dexelfield methods for cutter-workpiece

engagement calculations in three- and five-axis virtual milling. Int. J. Adv. Manuf. Technol. 2015, 81, 811–823. [CrossRef]
16. Artetxe, E.; Olvera, D.; López de Lacalle, L.N.; Campa, F.J.; Olvera, D.; Lamikiz, A. Solid subtraction model for the surface

topography prediction in flank milling of thin-walled integral blade rotors (IBRs). Int. J. Adv. Manuf. Technol. 2017, 90, 741–752.
[CrossRef]

17. Chung, Y.C.; Park, J.W.; Shin, H.; Choi, B.K. Modeling the surface swept by a generalized cutter for NC verification. Comput.
Aided Des. 1998, 30, 587–594. [CrossRef]

18. Tunç, L.T.; Ozkirimli, O.M.; Budak, E. Machining strategy development and parameter selection in 5-axis milling based on
process simulations. Int. J. Adv. Manuf. Technol. 2016, 85, 1483–1500. [CrossRef]

19. Li, S.; Dong, Y.; Li, Y.; Li, P.; Yang, Z.; Landers, R.G. Geometrical simulation and analysis of ball-end milling surface topography.
Int. J. Adv. Manuf. Technol. 2019, 102, 1885–1900.

20. Xiao, Y.; Ge, G.; Zeng, Z.; Feng, X.; Du, Z. An improved Z-MAP method based on the SQP algorithm for fast surface topography
simulation of ball-end milling. Int. J. Adv. Manuf. Technol. 2023, 128, 1863–1878. [CrossRef]

21. Zhang, X.; Yu, T.; Wang, W. Modeling, simulation, and optimization of five-axis milling processes. Int. J. Adv. Manuf. Technol.
2014, 74, 1611–1624. [CrossRef]

https://doi.org/10.1016/j.cad.2010.04.002
https://doi.org/10.1016/j.jmapro.2020.12.014
https://doi.org/10.1016/j.cad.2015.10.005
https://doi.org/10.1016/j.jmapro.2021.06.055
https://doi.org/10.1016/j.jmapro.2023.10.029
https://doi.org/10.1007/s00170-023-10950-z
https://doi.org/10.1016/j.ymssp.2024.111104
https://doi.org/10.1016/j.jmapro.2024.02.013
https://doi.org/10.1007/s00170-017-1263-4
https://doi.org/10.1016/j.cad.2018.04.011
https://doi.org/10.1007/s00170-019-03369-y
https://doi.org/10.1016/S0890-6955(02)00110-4
https://doi.org/10.1016/j.cad.2009.05.004
https://doi.org/10.1007/s00170-013-4876-2
https://doi.org/10.1007/s00170-015-7251-7
https://doi.org/10.1007/s00170-016-9435-1
https://doi.org/10.1016/S0010-4485(97)00033-X
https://doi.org/10.1007/s00170-015-8001-6
https://doi.org/10.1007/s00170-023-11992-z
https://doi.org/10.1007/s00170-014-6075-1

Machines 2025, 13, 69 21 of 21

22. Yousefian, O.; Balabokhin, A.; Tarbutton, J. Point-by-point prediction of cutting force in 3-axis CNC milling machines through
voxel framework in digital manufacturing. J. Intell. Manuf. 2020, 31, 215–226. [CrossRef]

23. Nie, Z.; Feng, H.-Y. Integrated and efficient cutter-workpiece engagement determination in three-axis milling via voxel modeling.
Int. J. Adv. Manuf. Technol. 2023, 128, 391–403. [CrossRef]

24. Nie, Z.; Feng, H.-Y. Efficient voxel-based workpiece update and cutter-workpiece engagement determination in multi-axis milling.
J. Manuf. Sci. Eng. 2024, 146, 061003. [CrossRef]

25. Yau, H.-T.; Tsou, L.-S. Efficient NC simulation for multi-axis solid machining with a universal APT cutter. J. Comput. Inf. Sci. Eng.
2009, 9, 021001. [CrossRef]

26. Joy, J.; Feng, H.-Y. Frame-sliced voxel representation An accurate and memory-efficient modeling method for workpiece geometry
in machining simulation. Comput. Aided Des. 2017, 88, 1–13. [CrossRef]

27. Joy, J.; Feng, H.-Y. Efficient milling part geometry computation via three-step update of frame-sliced voxel representation
workpiece model. Int. J. Adv. Manuf. Technol. 2017, 92, 2365–2378. [CrossRef]

28. Lorensen, W.E.; Cline, H.E. Marching cubes: A high resolution 3D surface construction algorithm. ACM SIGGRAPH Comput.
Graph. 1987, 21, 163–169. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s10845-018-1442-7
https://doi.org/10.1007/s00170-023-11904-1
https://doi.org/10.1115/1.4065180
https://doi.org/10.1115/1.3130231
https://doi.org/10.1016/j.cad.2017.03.006
https://doi.org/10.1007/s00170-017-0168-6
https://doi.org/10.1145/37402.37422

	Introduction
	Existing Methods
	Representation of Workpiece
	Basic Concepts
	Tri-Level Grid
	Surface Reconstruction

	Representation of Generalized Cutter
	Multi-Axis Milling Simulation
	Solid Voxelization of Blank
	Workpiece Geometry Computation
	CWE Extraction
	CWE Trimming by Envelope Theory

	Case Studies
	Accuracy Comparison
	Efficiency Comparison

	Conclusions and Future Work
	References

