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Abstract: Aiming to address the difficulty in extracting the early weak fault features of
bearings under complex operating conditions, a fault diagnosis method is proposed based
on the adaptive fusion of time-varying filtering empirical mode decomposition (TVF-
EMD) modal components and singular value decomposition (SVD) noise reduction. First,
the snake optimization (SO) technique is used to optimize the TVF-EMD algorithm in
order to determine the optimal parameters that match the input signal. Then, the bearing
signal is divided into a number of intrinsic mode functions (IMFs) using TVF-EMD in
order to reduce the nonlinearity and non-stationary characteristics of the fault signal. An
index for the envelope fault information energy ratio (EFIER) is created to overcome the
drawback of there being too many IMF components after TVF-EMD decomposition. The
IMF components are ranked in descending order according to the EFIER, and they are fused
according to the maximum principle of the energy ratio of envelope fault information until
the optimal fusion component is determined. Finally, the fault feature is extracted when
the optimal fusion component is denoised using SVD. Two measured bearing fault signals
and simulation signals are used to validate the performance of the proposed method. The
experimental findings demonstrate that the approach has good sensitive feature screening,
fusion, and noise reduction capabilities. The proposed method can more precisely extract
the early fault features of bearings and accurately identify fault types.

Keywords: time-varying filtering empirical mode decomposition; snake optimization; fault
diagnosis; rolling bearings

1. Introduction
Rolling bearings are the most crucial components of rotating machinery equipment

and are extensively used in mechanical engineering because of their compact structure,
ease of maintenance, high mechanical efficiency, long service life, and stable and reliable
quality [1,2]. According to statistics, nearly one-third of the faults in rotating machinery
using rolling bearings are caused by bearing faults [3,4]. Therefore, it is of great significance
to avoid major life and property accidents by timely identifying the running state of
mechanical equipment, whether there is a fault in the bearing, and whether the time and
location of the fault can be accurately judged [5]. At present, deep learning and transfer
learning methods have also been widely used in the diagnosis of bearing faults [6,7].

Owing to its effectiveness in decomposing nonlinear and unstable signals, empirical
mode decomposition (EMD) has often been used in the detection of rolling bearing faults [8].
However, there are some inherent problems in traditional empirical mode decomposition,
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such as noise sensitivity and mode mixing, which limit the further improvement of its
decomposition performance [9]. Recently, numerous EMD optimization and improvement
solutions have been put forth and used, such as EEMD [10], CEEMD [11], CEEMDAN [12],
VMD [13], etc.

In 2017, Li et al. [14] proposed the time-varying filtering empirical mode decompo-
sition (TVF-EMD) algorithm as a solution to the modal aliasing issue of EMD. TVF-EMD
utilizes instantaneous amplitude and frequency data to adaptively determine the local
cut-off frequency [15,16]. The filtering process is completed using a nonuniform B-spline to
construct an approximate time-varying filter. This technique is capable of fully adaptively
analyzing nonlinear and non-stationary signals and can successfully increase decomposi-
tion performance at low sample rates. It has a better anti-modal aliasing ability and can
more effectively separate different vibration characteristic signals than the EMD, EEMD,
CEEMD, and VMD algorithms. Zhang et al. [17] presented a parameter-adaptive TVF-EMD
technique based on the gray wolf optimization (GWO) algorithm. The goal function of
the approach is the weighted kurtosis index, which is used to calculate the TVF-EMD
bandwidth threshold and B-spline order. Ye et al. [15] created a novel composite measure
called the sparse influence measure index (SIMI) as a parameter selection criterion and used
the Bottle Sea Sheath Swarm Algorithm (SSA) to optimize the parameter combinations in
the traditional TVF-EMD. Vashishtha et al. [12] suggested a deep learning-based strategy
for identifying granular wheel flaws. First, amended gray wolf optimization (AGWO) is
used to optimize the vibration signal based on the TVF-EMD filtering parameters, with the
Kernel Estimation of Mutual Information (KEMI) serving as the objective function. The
well-known IMF is used to prepare the dataset and build a scalogram. Convolutional neural
network (CNN) training is used to categorize and identify the IMFs. Xu et al. [18] proposed
a bearing failure detection technique based on TVF-EMD and a high-order energy operator.
In this method, a single IMF component is selected using kurtosis for a fault analysis.
Nonetheless, the selection of a single component can result in the loss of fault information
due to the substantial number of components following TVF-EMD decomposition. Addi-
tionally, because the kurtosis index is susceptible to noise, the selection of IMF components
can also easily be disrupted by noise. By integrating TVF-EMD and multipoint optimal
minimal entropy deconvolution adjusted (MOMEDA), Xu et al. [19] proposed a bearing
defect feature identification method. This method selects the optimal IMF component
from the TVF-EMD decomposition findings using kurtosis, then improves the MOMEDA
fault feature of the optimal IMF component, and finally analyzes its envelope spectrum
characteristics. However, this method also has shortcomings; for example, the kurtosis
index is sensitive to noise, and a single IMF component easily loses fault information.

Therefore, an appropriate intelligent optimization technique must be used to optimize
the TVF-EMD algorithm’s parameters in order to extract fault features effectively. The
ideal solution is directly impacted by the objective function choice, so it is imperative to
design an effective measurement index for identifying weak fault features amidst noise
interference. Based on this, devising a suitable modal component fusion method to inte-
grate the components of TVF-EMD is also essential. This approach aims to overcome the
shortcomings of the overly dispersed and insufficiently focused fault feature information
following TVF-EMD decomposition, thereby optimizing the TVF-EMD fault detection
method. Therefore, this study designs a new sensitive component selection index—the
envelope fault information energy ratio (EFIER)—to screen IMF components. After TVF-
EMD decomposition, the IMF components are fused using the EFIFR maximum principle
for obtaining the optimal OC component. To additionally mitigate the impact of noise,
singular value decomposition (SVD) is employed to denoise the optimal OC component,
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and, finally, fault feature extraction is performed on the noise-reduced signals. The main
contributions of the proposed method are as follows:

(1) Aiming at the difficulty of choosing the parameter combination of TVF-EMD
algorithm, the snake optimizer (SO) algorithm [20] was used to optimize the bandwidth
threshold ξ and B-spline order n of TVF-END to obtain the best decomposition performance.

(2) To solve the problem of the loss of effective fault characteristic information due to
excessive modes after the decomposition of TVF-EMD, a new index of the envelope fault
information energy ratio (EFIER) is proposed.

(3) The IMF components were arranged in descending order by the EFIER, and the
IMF components were fused successively according to the increasing principle of the EFIER
to construct the optimal fusion component.

(4) In order to further reduce the noise interference in the optimal fusion component,
an improved SVD is used to reduce the noise of the optimal fusion component, which
effectively enhances the extraction ability of early fault features.

The remainder of this paper is structured as follows: Section 2 provides a succinct
overview of SO, TVF-EMD, and SVD theories. Detailed introductions to the methods
proposed in this paper are presented in Section 3. Section 4 confirms the method’s efficacy
by utilizing simulation signals, and Section 5 confirms its superiority through comparative
experiments and verification using two bearing signals. Section 6 draws the conclusions.

2. Theoretical Basis
2.1. SO

The snake optimizer (SO) [20] is a novel meta-heuristic algorithm that mimics the
unique mating behavior of snakes, which was proposed in 2022. The SO algorithm and
mathematical model are presented below.

(1) Initialization
Initially, a uniformly distributed random population is produced via the SO method

and initialized with the following mathematical description:

Xi = Xmin + r ∗ (Xmax − Xmin) (1)

where Xi represents the ith snake’s position; r denotes a random number in the interval
[0, 1]; and Xmax and Xmin represent the problem’s upper and lower bounds, respectively.

(2) Dividing the population into female and male groups
The population is split into two groups, one for each gender, with a ratio of 1:1. Xi

can now be split into two halves, Xm
i and X f

i , where m and f represent male and female,
respectively. The temperature Temp and the quantity of food Q, which are determined
using the following equations, respectively, have a major impact on the exploration and
exploitation phases of the SO:

Temp = exp(−t/T) (2)

Q = c1 ∗ exp((t − T)/T) (3)

where t represents the current iteration number; T represents the maximum iteration
number; and c1 = 0.5.

(3) Search phase (no food)—global search
When Q < 0.25, the SO enters the exploration phase, where it chooses a random

place and updates its position in the search for food. The random exploration formula is
as follows:

Xm
i = Xm

rand(t)± c2 ∗ Am ∗ ((Xmax − Xmin) ∗ rand + Xmin) (4)
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where Xm
i is the location of the male snake; Xm

rand is the location of the randomly selected
male snake; rand ∈ [0, 1]; c2 = 0.05; and Am is the ability of the male to find food, which is
calculated as follows:

Am = exp(− f m
rand/ f m

i ) (5)

where f m
rand is the fitness value of Xm

rand and f m
i is the fitness value of Xm

i (4) Development
phase (with food)

In contrast to the exploration mode, the development phase of the SO is separated
into three modes: proximity to prey (food), fighting, and mating. Each of these modes is
influenced by temperature T, as well as the quantity of food Q.

The SO looks for food when Q > 0.25&Temp > 0.6, and the formula for updating its
position is as follows:

Xi,j(t + 1) = X f ood ± c3 ∗ Temp ∗ rand ∗ (X f ood − Xi,j(t)) (6)

where Xi,j is the entire population (males and females); X f ood is the global optimal position;
and c3 = 2. When Q > 0.25&Temp > 0.6, the snake is in fighting mode or mating
mode [20].

2.2. TVF-EMD
2.2.1. Basic Theory of TVF-EMD

In the TVF-EMD method, the low-pass filter constructs the cutoff frequency with time
to complete the iterative mean removal operation existing in other modal decomposition
methods, and the local narrowband signal replaces the IMF as the iterative stop condition.
TVFEMD is mainly completed through the following three steps [14].

(1) Calculate the local cutoff frequency
Firstly, the instantaneous amplitude A(t) and the instantaneous frequency φ′(t) of the

signal x(t) are obtained by the Hilbert transform, and then the difference between their
local maximum and local minimum values is obtained to obtain η1(t) and η2(t). At the
same time, the instantaneous mean a1(t) and the instantaneous envelope a2(t) are obtained
by filtering the input signal with a time-varying filter. Then, the local cutoff frequency
φ′

bia(t) is calculated.

φ′
bia =

η2(t)− η1(t)
4a1(t)a2(t)

(7)

(2) The signal is reconstructed as h(t) according to the adjusted intercept frequency. Let

h(t) = cos[
∫

φ′
bia(t)dt] (8)

(3) Determine whether the stop criteria is met. Calculate the stop criterion.

θ(t) =
BLoughlin

φavg(t)
(9)

φavg(t) =
a2

1(t)φ′
1(t) + a2

2(t)φ′
2(t)

a2
1(t) + a2

2(t)
(10)

φ′
1(t) =

η1(t)
2a2

1(t)− 2a1(t)a2(t)
+

η2(t)
2a2

1(t) + 2a1(t)a2(t)
(11)

φ′
2(t) =

η1(t)
2a2

2(t)− 2a1(t)a2(t)
+

η2(t)
2a2

2(t) + 2a1(t)a2(t)
(12)
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BLoughlin(t) =

√√√√α′21(t) + α′22(t)
α2

1(t) + α2
2(t)

+
α2

1(t)α
2
2(t)(φ′1(t)− φ′2(t))2

(α2
1(t) + α2

2(t))
2 (13)

Based on Equations (9)–(13), θ(t) is calculated. The remaining signal x(t) can be cate-
gorized as a narrow-band signal if θ(t) is greater than or equal to the specified bandwidth
threshold ξ; otherwise, steps 1 to 8 are repeated while setting x(t) = x(t)− s(t).

2.2.2. Mode Separation Ability of TVF-EMD

We designed a multi-component amplitude modulation frequency modulation signal
to simulate the fault signal, and its expression is as follows:

x(t) = x1(t) + x2(t) + x3(t)
x1(t) = (0.3 + 0.3 sin(20πt))× cos(600πt + 1.5 sin(20πt)))

x2(t) = (1 + sin(20πt))× cos(300πt + 0.5 sin(10πt))
x3(t) = (0.5 + 0.5 sin(10πt))× cos(100πt + 0.8 sin(10πt))

(14)

The dominant frequencies of each component are 50 Hz, 150 Hz, and 300 Hz, respec-
tively, and the sampling frequency is 1000 Hz. The time domain waveform and frequency
domain waveform of the synthesized simulation signal are shown in Figure 1.
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(a) 

(b) 

Figure 1. Simulated signal: (a) time domain waveform; (b) frequency spectrum.

TVF-EMD was used to decompose the signal. The bandwidth threshold ξ of TVFEMD
was set to 0.1, and the B-spline order n was set to 16. The decomposition results were
shown in Figure 2. It can be seen that TVFEMD effectively separates the three frequency
components of the simulation signal. The results show that TVFEMD can decompose the
multi-component FM analog fault signal into several modes effectively, reduce the mode
chaos phenomenon, and reduce the non-stationarity of the signal.
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2.3. Improved SVD Noise Reduction

Singular value decomposition is a matrix decomposition approach for time series
signals. Suppose the noise-contaminated signal is

y(i) = x(i) + n(i), i = 1, 2, . . . , N (15)

where x(i) represents the initial signal and n(i) denotes noise. Then, the noise contaminated
signal’s Hankel matrix is as follows [21]:

H =


y(1) y(2) · · · y(K)
y(2) y(3) · · · y(K + 1)

...
... · · ·

...
y(L) y(L + 1) · · · y(N)

 (16)

where K = N − L + 1 and L = ⌊N/3⌋. According to SVD theory, the decomposition result
of matrix H is as follows:

H = UDVT =
r

∑
i=1

σiuivT
i (17)

U and V denote orthogonal matrix of L × L, and r = min(K, L). The singular value
satisfies λ1 > λ2 > · · · > λr > 0, and ui and vi represent K-dimension and L-dimension
column vectors.

According to SVD theory, the first p larger singular values reflect the effective signal,
while the last r − p smaller singular values reflect the noise component. Based on this, the
r − p smaller singular values can be set to 0, and only the first p singular values can be
retained. After SVD reconstruction, the denoised bearing vibration signal can be obtained.

The effectiveness of SVD denoising depends on the selection of the effective rank
order of the singular values. In the research process of this manuscript, efforts were made
to preserve fault information as much as possible while removing noise. We used the
curvature spectrum method to select the effective rank order of the singular values. Finding
the turning point of the singular value curve is the key to distinguishing between noise
and vibration information. In order to automatically select suitable turning points on the
singular value curve, we use the curvature spectrum to describe the changes in singular
values, thereby finding the range of singular values accurately when reconstructing fault
signal components.

The formula for calculating the curvature spectrum C of the singular value curve is
as follows:

Ci =
|y′′ (i)|

(1 + y(i)2)
3/2 (18)

y′′ (i) = λi+1 − 2λi + λi−1 (19)

where i = 2, 3, · · · , p − 1; y′(i) denotes first derivative; and y′′ (i) denotes the second deriva-
tive. Let C1 = 0, and sequence

{
C1, C2, · · · , Cp−1

}
is chosen as the curvature spectrum of

the singular values.
This reflects the turning point of the singular value curve. The larger the value of

Ci, the greater the degree of transition of the singular value sequence at that point. The
position k of the maximum peak Ck of the singular value curvature spectrum can serve
as the boundary point between the singular values of the fault signal and noise. If a = b,
the formula for reconstructing the denoised fault signal using the first r singular values is
as follows:

H = UL×rDr×rVK×r
T (20)
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3. Bearing Fault Diagnosis Method Based on Adaptive TVF-EMD and SVD
3.1. Envelope Fault Information Energy Ratio

To guarantee that the components containing more fault information can be effectively
selected from the IMF components decomposed using TVF-EMD, this study proposes a new
sensitive component selection index—the envelope fault information energy ratio (EFIER).
The EFIER evaluates how much the envelope fault information energy contributes to the
total envelope energy. When the impact component contained in the original component
information is more abundant, the EFIER value is larger, and vice versa. The EFIER index
can be calculated using the following formula:

EFIER =
E(x)

En(x)
(21)

En(x) =
∫ ∞

−∞
|x(t)|2dt (22)

E(x) =
fs/ f

∑
j=1

En(x(j ∗ f ∗ N
fs
)) =

fs/ f

∑
j=1

(x(j ∗ f ∗ N
fs
))

2
(23)

where En(x) represents the overall energy of the envelope signal; E(x) denotes the envelope
fault information energy; N represents the number of sampling points; f de notes the fault
characteristic frequency; and fs denotes the sampling frequency. The EFIER measures the
fault shock portion of the IMF component signal using the fault eigenfrequency. In the
EFIER, the envelope energy of the impact component corresponding to a frequency that
represents a fault characteristic is first determined, and the effective IMF component is then
selected based on the proportion of the fault envelope energy to the total envelope energy.
As the theoretical values of the fault eigenfrequency differ from the actual values, the
energy of the peak close to the fault eigenfrequency is selected to serve as the envelope fault
information energy. Calculating the index values of all conceivable fault types is essential
if this index is to be utilized to monitor operating conditions or diagnose unidentified
faults. It is possible to determine the characteristic frequencies of various fault types using
Equations (21)–(23). The EFIER for different faults is calculated in turn when the fault
characteristic frequency is calculated.

As an effective sensitive component selection index, the EFIER is robust to different
noise intensities and burst pulses, in addition to being sensitive to fault feature information.
The performance of the EFIER is compared with that of the kurtosis index, approximate en-
tropy (ApEn) [22], and fuzzy entropy (FEn) [23] by simulated fault signals. The simulation
signal of the outer ring fault is{

x(t) = x0e−2πε fntsin
(

2π fn
√

1 − ε2t
)

y(t) = x(t) + n(t)
(24)

where the sampling frequency fs = 12 kHz, shift constant x0 = 1, damping coefficient ε = 0.1,
bearing natural frequency fn = 2 kHz, samples number N = 4096, characteristic frequency
of the outer ring fault is fo = 100 Hz, and n(t) is Gaussian white noise.

Gaussian white noise with SNR = −1 dB, −3 dB, −5 dB is added into the outer ring
fault signal, respectively. The signals with different noise intensity are shown in Figure 3a–c.
The EFIER, Kurt, ApEn, and FEn are calculated under different noise intensities, and the
results are shown in Table 1. The EFIER values are 0.1396, 0.1394, and 0.1311, which remain
relatively stable under different noise intensities. This indicates that the EFIER index has
good robustness to weak noise. The Kurt values are 3.7199, 3.1888, and 2.9712, the ApEn
values are 1.9532, 1.7350, and 1.5017, and the FEn values are 1.6868, 1.7999, and 1.9212,
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respectively. The large fluctuations in Kurt, ApEn, and FEn indicate that their indexes are
more susceptible to noise interference.
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Table 1. Comparison of evaluation indicators under different noise interferences.

Index Kurt ApEn FEN EFIER

−1 dB 3.7199 1.9532 1.6868 0.1396
−3 dB 3.1888 1.7350 1.7999 0.1394
−5 dB 2.9712 1.5017 1.9212 0.1311

−5 dB + pulse 5.2940 1.9472 1.6750 0.1387

Figure 3d shows the time-domain waveform generated by adding a pulse of amplitude
15m/s2 based on Figure 3c. It can be seen from Table 1 that, after adding the pulse, the
EFIER value is 0.1387 and the ApEn, Fen, and Kurt values are 1.9472, 1.6750 and 5.2940,
respectively. It can be seen that the EFIER, ApEn, and FEn values under the influence
of random pulses remain relatively stable, indicating that the EFIER, ApEn, and FEn
indexes have sufficient robustness to random pulses. However, the fluctuation of the
Kurt value is too large, indicating that the Kurt indicator is very sensitive to random
pulses. When the vibration signal contains only random pulses without faults, it is often
misjudged as containing rich fault information. From the above experimental results, it
can be seen that the Kurt index is easily affected by random pulses and noise. Although
the ApEn and FEn indexes have good robustness to random pulses, they are susceptible
to noise interference. Moreover, the EFIER index has sufficient robustness to changes in
environmental interference and has obvious superiority in determining whether vibration
signals contain fault information.

3.2. Adaptive TVF-EMD Algorithm

The adaptive TVF-EMD algorithm’s main concept is the iterative, repeated search
of parameter combinations using an optimization algorithm to minimize the objective
function and achieve parameter combination optimization. The objective function is

f itness = min
γ=(ξ,n)

{EFIERi}

s.t.ξ ∈ (0, 1)
n ∈ [5, 30], n ∈ Z

(25)
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The individual steps of the adaptive TVF-EMD algorithm are as follows:
Step 1: Input the vibration signal x(t) and initialize the TVF-EMD and SO algorithm

parameters (population size N = 30 and iteration number L = 10).
Step 2: Apply the updated parameter combination to TVF-EMD decomposition.
Step 3: Up until the maximum number of iterations L is achieved, compute and save

the optimal fitness values and matching parameter combinations acquired in each iteration.
Step 4: Utilizing the globally optimal parameter combinations, perform TVF-EMD

decomposition on the vibration signal.

3.3. IMF Component Fusion Based on EFIER

The TVF-EMD approach has too many IMF components after decomposition; hence,
this study proposes a component fusion method based on the EFIER value to prevent the
loss of effective fault feature information. The precise steps are as follows:

Step 1: All IMF components’ EFIER values should be calculated, the highest value of
the EFIER should be noted as MAX, and the matching IMF component should be designated
as the OC component. Then, the IMF components should be arranged in descending order
of the EFIER value.

Step 2: The OC component is merged with the first IMF component on the right to
create the MF component, and the EFIER value of the MF component is determined in
accordance with the IMF component’s decreasing order arrangement.

Step 3: If the EFIER value of the MF component is less than the MAX, then the fusion
is invalid and the fusion is stopped. If the EFIER value of the MF component is greater
than the MAX, then the fusion is effective, the MAX and OC components are updated, and
the IMF component continues to be fused to the right.

Step 4: By analogy, when the EFIER value of the fused MF component becomes
lower than the MAX, the fusion is stopped and the optimal fusion component is the OC
component that corresponds to the MAX.

A flowchart of TVF-EMD modal component fusion based on the EFIER maximum
principle is shown in Figure 4.
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Figure 4. TVF-EMD modal component fusion based on EFIER maximum principle.

3.4. Bearing Fault Diagnosis Based on Adaptive TVF-EMD and SVD Denoising

After the TVF-EMD component is fused using the maximum principle of the envelope
fault information energy ratio (EFIER), although the obtained optimal fusion component
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contains a lot of fault information, the fusion signal still contains more noise at this time.
In this study, the fusion signal is denoised using SVD, and the bearing fault features are
subsequently extracted from the denoised signal using an envelope spectrum analysis.
A flowchart of this method for bearing weak defect diagnosis is shown in Figure 5. The
precise steps are as follows:
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Figure 5. The calculation process of improved TVF-EMD and SVD methods.

Step 1: Set the TVF-EMD and SO algorithms’ initial parameters.
Step 2: To determine the ideal parameter combination, optimize the TVF-EMD method

using the SO algorithm.
Step 3: To break down the early defect vibration signal and obtain a number of

component IMFs, substitute the ideal parameter combination (ξ, n) into TVF-EMD.
Step 4: Determine each IMF component’s EFIER value, and then arrange the compo-

nents in descending order of this value.
Step 5: The IMF component is fused in accordance with the EFIER maximal principle

to produce the ideal fusion component OC.
Step 6: Perform SVD denoising on the OC component.
Step 7: Analyze the noise-reduced components with envelope spectra.

4. Simulated Bearing Fault Experiment
We analyzed the effectiveness of the proposed SO-TVFEMD-EFIER-SVD method

according to simulating bearing fault signals, and simulated bearing fault signals are
generated by Equation (24).

4.1. Performance Analysis of SO-TVFEMD

A bearing outer ring fault simulating signal is generated by formula (24), where
the sampling frequency fs = 12 kHz, shift constant x0 = 1, damping coefficient ε = 0.1,
bearing natural frequency fn = 2 kHz, samples number N = 4096, characteristic frequency
of the outer ring fault is fo = 199.32; and n(t) is Gaussian white noise with SNR = −1 dB.
Comparing the SO-TVFEMD with the Whale Optimization algorithm [24], TVFEMD (WOA-
TVFEMD), and the sparrow search algorithm [25], TVFEMD (SSA-TVFEMD), is achieved
through the simulated bearing outer ring fault signal.
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The time-domain waveform and envelope spectrum of the simulated signal are shown
in Figure 6. It can be seen that when the periodic impact features in the time-domain
waveform are completely submerged, it is unable to extract the impact features. The fault
characteristic frequency components cannot be found in the envelope spectrum of the
original signal and effective diagnosis cannot be carried out, so further analysis of the
fault signal is needed. Using the maximized EFIER as the objective function, the SO, BWO,
and SSA algorithms are employed to optimize the TVFEMD parameters, and the optimal
parameter combination [ξ, n] of TVFEMD is obtained. The population size of all algorithms
is set to 30, and the maximum number of iterations is set to 500.
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Figure 6. Outer ring fault simulation signal: (a) waveform; (b) envelope spectrum.

To eliminate the interference of randomness, we compared the mean convergence
curves of 50 experiments using three methods. In order to further analyze the effect of
the SO method on Gaussian white noise of different intensities, Gaussian white noise of
−3 dB and −5 dB was added into the fault signal, respectively. For the Gaussian white
noise of −1 dB,−3 dB, and −5 dB, the optimal fitness values obtained from 50 runs of three
optimization algorithms are recorded, respectively. The average, optimal, worst, variance,
and standard deviation of the running results of each algorithm are calculated, as shown in
Table 2.

Table 2. Statistical index values of three algorithms (EFIER value).

Algorithm Max (%) Min (%) Range (%) Mean (%) Var Std

SO (−1 dB) 2.9874 2.9750 0.0125 2.9807 1.1560 × 10−5 0.0034
BWO (−1 dB) 2.9462 2.9304 0.0158 2.9389 2.2090 × 10−5 0.0047
SSA (−1 dB) 2.925 2.9078 0.0187 2.9168 3.4810 × 10−5 0.0059
SO (−3 dB) 2.9761 2.9626 0.0135 2.9691 1.4440 × 10−5 0.0038

BWO (−3 dB) 2.9300 2.9121 0.0179 2.9205 2.8090 × 10−5 0.0053
SSA (−3 dB) 2.9096 2.8898 0.0198 2.9001 3.8440 × 10−5 0.0062
SO (−5 dB) 2.9746 2.9611 0.0136 2.9679 1.5210 × 10−5 0.0039

BWO (−5 dB) 2.9283 2.9112 0.0171 2.9203 2.6010 × 10−5 0.0051
SSA (−5 dB) 2.9082 2.8885 0.0196 2.8978 4.2250 × 10−5 0.0065

From the mean value of the EFIER in Table 2, it can be seen that the SO method has a
higher convergence mean of the EFIER compared with the BWO and SSA methods. This
indicates that for different intensities of Gaussian white noise (−1 dB, −3 dB, −5 dB), the
solution accuracy of the SO method is more ideal and has strong search optimization ability.
The standard deviation of the optimization results obtained by the SO algorithm is also the
smallest, indicating that the SO algorithm has less fluctuation in the optimization results
and better stationarity. So, the performance of the SO algorithm is significantly better than
that of the WOA algorithm and SSA algorithm.

Based on the experimental data, the average single iteration time, average convergence
times, and average convergence time for each algorithm are calculated. The results are
shown in Table 3.
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Table 3. The iteration time of the three algorithms.

Algorithm Single Iteration Time/s Average Iterations Average Convergence Time/s

SO (−1 dB) 2.4467 11 26.9137
BWO (−1 dB) 2.7594 14 38.6316
SSA (−1 dB) 2.9496 15 47.1936
SO (−3 dB) 2.8107 13 36.5391

BWO (−3 dB) 3.1249 15 46.8735
SSA (−3 dB) 3.3247 17 56.5199
SO (−5 dB) 3.2418 17 55.1106

BWO (−5 dB) 3.6766 18 66.1788
SSA (−5 dB) 3.8194 20 76.3880

Compared with the WOA algorithm and SSA algorithm, it can be seen from the single
iteration time that the SO algorithm has a smaller computational cost and a shorter average
time per iteration. As the intensity of white noise increases, the single iteration time of the
three optimization algorithms also increases accordingly, but the average single iteration
time of the SO algorithm is still the smallest. Comparing the average convergence sum
time, the SO algorithm has a faster convergence speed, so, compared with the WOA and
SSA algorithms, its average convergence sum time is also the lowest. From the results of
Tables 2 and 3, it can be seen that the SO method used in this paper has a smaller time cost
and better convergence effect.

4.2. Performance Analysis of SO-TVFEMD-EFIER

To further validate the effectiveness of the proposed EFIER, we compared it with the
commonly used fuzzy entropy (FEN) and kurtosis (Kurt) index. The simulated outer ring
fault signal of Section 4.1 had Gaussian noise with SNR = −5 dB added. The methods of
SO-TVFEMD-EREFI, SO-TVFEMD-FEn, and SO-TVFEMD-Kurt were used for their decom-
position, and according to the EFIER, FEN and Kurt select the optimal IMF component and
calculate the envelope spectrum of the optimal IMF component. The results of the three
indexes are shown in Figure 7a–c.

Figure 7a shows the optimal IMF component and its envelope spectrum selected
from the SO-TVFEMD-EFIER decomposition results. From the envelope spectrum of the
selected optimal IMF component, it can be observed that the fault characteristic frequencies
fo ∼ 3 fo are very prominent, indicating that the EFIER is effective as a selection criterion

and that the fault information separation effect is relatively excellent. Figure 7b shows
the optimal component and its envelope spectrum selected from the SO-TVFEMD-FEN
decomposition results. The fault characteristic frequency fo, 2 fo, 6 fo can be observed from
the envelope spectrum of the optimal IMF component. However, a large amount of noise
makes the fault characteristic frequency not clear enough. Figure 7c shows the optimal IMF
component and its envelope spectrum after decomposition selected Kurt as the standard.
The fault characteristic frequency fo, 2 fo can be identified from the envelope spectrum. In
the same way, due to the interference of a large amount of noise, the fault characteristic
frequency is severely submerged and the fault characteristic frequency of the outer ring is
not clear enough.

In summary, when using the EFIER indicator as a selection criterion, more IMF com-
ponents that contain the most fault information can be selected accurately. Therefore, com-
pared to the approximate entropy and kurtosis, the EFIER proposed in this paper has better
performance as a TVFEMD decomposition and optimal IMF component selection index.
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4.3. Performance Analysis of SO-TVFEMD-EFIER-SVD

In order to analyze the feature extraction effect of the proposed SO-TVFEMD-ENEFI-
SVD for bearing faults, a simulated fault signal of the inner ring is generated according to
Equation (24). The fault signal of the inner ring is added with −1 dB Gaussian white noise,
and the signal after adding noise and its envelope spectrum are shown in Figure 8.
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Figure 6 shows the impact component, and the fault feature is completely engulfed by
noise. The bearing fault type cannot be determined by the envelope spectrum in Figure 8.
The simulation fault signal is analyzed by the proposed method. Firstly, the SO method is
used to optimize the TVF-EMD’s bandwidth threshold and B-spline order. The optimal
EFIER (%) value of 2.9793 and the optimal parameters (0 .1507, 7) are found. Secondly,
applying the optimal parameters TVF-EMD to decomposing the fault signal leads to
25 IMF components being produced. Figure 9 displays the results of calculating the EFIER
values of each of the 25 IMF components. Then, the IMF components are fused according
to the principle of the maximum EFIER. It can be seen from Figure 9 that we should first
fuse IMF3 and IMF2, and then continue to fuse IMF10 until the optimal fusion component
OC with the largest EFIER value is obtained. Table 4 displays the fusion results.
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Table 4. IMF component integration of simulated bearing fault.

Components IMF3 IMF3 + IMF2 IMF3 + IMF2 + IMF10

EFIER (%) 2.9793 3.9959 3.8425

The following can be seen from Table 4:
(1) The EFIER value corresponding to IMF3 is the largest, denoted by MAX = 2.9793.
(2) The IMF3 and IMF2 are fused, and the EFIER value of the fused component is

3.9959, which is greater than MAX, and then MAX = 3.9959 is updated.
(3) Continue to fuse IMF10; if the fused component FEIER value is 3.8425, less than

MAX, stop fusion
Therefore, the optimal component OC = IMF3 + IMF2. Figure 10 shows the IMF3

component’s wave form and envelope spectrum. Figure 11 displays the waveform and en-
velope spectrum of the OC component (IMF3 + IMF2). In Figure 11, the fault characteristic
frequencies fi and 2 fi can be observed, which can preliminarily determine the existence of



Machines 2025, 13, 50 15 of 31

inner ring fault characteristics of the bearing. Figure 12 makes it easy to identify the fault
characteristic frequencies fi, 2 fi, 3 fi, 4 fi, and 6 fi. This suggests that the component fusion
method suggested in this paper is capable of successfully fusing the fault information and
preventing the loss of fault characteristic information.
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Finally, the OC component is denoised by SVD. Following noise reduction, Figure 12
displays the signal’s waveform and envelope spectrum. Figure 12 clearly illustrates the
markedly reduced noise in the OC component and the discernible fault characteristic
frequencies of fi, 2 fi, 3 fi, and 4 fi. The inner ring fault impact features become more
noticeable as the noise component is further weakened. The above simulation experiments
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fully demonstrate that the early fault feature information can be successfully obtained
using the suggested method.

5. Actual Bearing Fault Experiment
5.1. CWRU Dataset Expriment

The outer ring fault and inner ring fault signals of the bearing which are provided
by CWRU [22] in the USA are used for experimental verification to confirm the efficacy of
the proposed method. As illustrated in Figure 13, the experimental platform comprises a
1.5 KW motor, a torque sensor, a power tester, and an electronic controller. The specific pa-
rameters of the bearing are illustrated in https://engineering.case.edu/bearingdatacenter/
apparatus-and-procedures, accessed on 8 June 2022. The experimental data in this re-
search comprise the inner ring fault data from the drive end bearing fault data with a fault
diameter of 0.1778 mm ( fs = 48 KHz, fo = 81.12 Hz, and fi = 165.6 Hz) (Table 5).
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Table 5. Bearing parameters.

Parameters Value

Ball diameter 7.94 mm
Nodal circle diameter 39.04 mm

Number of balls 9
Contact angle 0◦

5.1.1. Outer Ring Fault Diagnosis of CWRU Dataset

Figure 14 displays the waveform and envelope spectrum of the original outer ring
fault vibration signal. From Figure 14, it can been see that the fault characteristics are fully
submerged, making it challenging to obtain information on them. The periodic impact
associated with the fault frequency cannot be observed, making it impossible to identify
the bearing fault type.

The original vibration signal is analyzed using the proposed diagnosis method. First,
the TVF-EMD optimization method’s best parameter combination is determined by apply-
ing the SO algorithm, which yields a result of (0.4819, 21). The seventh iteration yields the
optimal combination of parameters, and 6.1258 is the highest EFIER value.

Second, TVF-EMD decomposes the original vibration signal into 12 IMF components.
The EFIER values of the 12 IMF components are calculated, and Figure 14 shows the results.
Then, the maximal envelope fault information energy ratio (EFIER) principle is utilized
to fuse the IMF components. According to Figure 15, the EFIER value corresponding to
IMF5 is the largest, so MAX = 6.1258. Then, the IMF5 and IMF4 components are fused, and
the corresponding EFIER value is calculated. The EFIER value of the fusion component
is 6.2036, which is greater than the MAX, so this is updated to MAX = 6.2036. The fusion

https://engineering.case.edu/bearingdatacenter/apparatus-and-procedures
https://engineering.case.edu/bearingdatacenter/apparatus-and-procedures
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of the IMF1 component is continued; the EFIER value of the fusion component is 4.6459,
which is less than the MAX, so the fusion is stopped. Therefore, the optimal component
OC = IMF5 + IMF4. The relevant calculation process is shown in Table 6.
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Figure 15. EFIER values of all IMF components.

Table 6. IMF component integration of outer ring fault of CWRU dataset.

Components IMF5 IMF5 + IMF4 IMF5 + IMF4 + IMF1

EFIER (%) 6.1258 6.2036 4.6459

Figure 16 illustrates the IMF5 component’s waveform and envelope spectrum. The
waveform and envelope spectrum of the optimal component OC are displayed in Figure 17.
Figure 17 displays the fault characteristic frequencies fo, 2 fo, and 3 fo. In Figure 17, the fault
characteristic frequencies fo, 2 fo, 3 fo, 4 fo, and 5 fo are clearly visible. The OC component
fused using the principle of the maximum EFIER contains more fault feature information,
and the IMF5 component observes fewer fault characteristic frequencies.
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Figure 17. The OC component: (a) waveform; (b) envelope spectrum.

Finally, the OC component is denoised using SVD. Figure 18 demonstrates the OC
component’s waveform and envelope spectrum after SVD denoising. The fault characteris-
tic frequencies fo, 2 fo, 3 fo, 5 fo, 6 fo, 7 fo, 8 fo, and 9 fo are plainly visible in the noise reduction
signal’s envelope spectrum, and the fault characteristic information is very prominent.
Therefore, the case study effectively demonstrates the viability of the modal component
fusion method and the superiority of the improved TVF-EMD and SVD method in fault
feature extraction.
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Next, the traditional TVF-EMD, VMD, and CEEMDAN are used to experimentally
evaluate the same signals. The default settings (0.1, 26) are utilized for both parameters
in the traditional TVF-EMD method. With the IMF11 component, EFIER = 4.4926, which
is the largest EFIER value produced by the decomposition. The envelope spectrum and
waveform of IMF11 are displayed in Figure 19. Figure 19 shows the fault characteristic
frequency fo.

In the VMD method, default values are used for the two parameters (K = 3 and
α = 2000). The VMD decomposes the vibration signal into three modes, and the kurtosis
values are 3.0880, 3.0174, and 2.9985, respectively, with u1 being the optimal component.
Figure 20 shows the optimal modes obtained using the traditional VMD decomposition
and the corresponding envelope spectrum. Figure 20 only shows the fault characteristic
frequencies fo and 3 fo, and the extracted fault feature information is not rich.
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Figure 20. OC component by VMD decomposition: (a) waveform; (b) envelope spectrum.

The CEEMDAN method is used to decompose the signal. Figure 21 shows the wave-
form and envelope spectrum of the optimal component. In Figure 21, fo and 6 fo can
be observed, and the extraction effect is not obvious. When using the improved TVF-
EMD and SVD method, the extracted fault features are richer, and the fault diagnostic
outcomes are more convincing. In contrast, the fault feature frequency extracted using the
other methods is seriously affected by other irrelevant information, resulting in inaccurate
diagnosis results.
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Additionally, the EFIER values are used for a comparison in order to impartially assess
these approaches’ capacity to extract early fault features, and the findings are displayed in
Table 7. Compared with the alternative methods, the EFIER value of the optimal component
extracted using the method proposed in this paper is the largest, being 38.08%, 28.79%,
and 73.51% higher than that of the other three methods. This shows that the improved
TVF-EMD and SVD method can extract rich early fault feature information.

Table 7. Outer ring fault EFIER values of the four methods.

Methods Proposed Method Traditional TVF-EMD VMD CEEMDAN

EFIER (%) 6.2036 4.4926 4.8167 3.5754

5.1.2. Inner Ring Fault Diagnosis

The waveform and envelope spectrum of the selected inner ring fault signal of CWRU
are shown as Figure 22, and the inner fault frequency is fi = 165.6 Hz. As shown in
Figure 22, noise interference completely buries the fault impact information, making
it impossible to identify the type of bearing failure or even locate the inner ring fault
characteristic frequency in the envelope spectrum of the original vibration signal.
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Figure 22. Original vibration signal of inner ring fault of CWRU dataset: (a) waveform; (b) envelope
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The original vibration signal is analyzed using the proposed diagnosis method. Firstly,
during the ninth iteration, the optimal EFIER (%) value is 3.8966, and the optimal parameter
combination is determined to be (0.5444, 17). Secondly, TVF-EMD decomposes the original
vibration signal into 13 IMF components. The EFIER values of the 13 IMF components are
calculated, and Figure 23 shows the results.
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Figure 23. Every IMF component’s EFIER value.

Then, the IMF components are fused. In Figure 23, it can be seen that the EFIER value
corresponding to IMF4 is the largest, so MAX = 3.8966. Then, IMF4 and IMF3 are fused. The
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fused component’s EFIER value is 4.0580, which is greater than the MAX, so this is updated
to MAX = 4.0580. The fusion of IMF1 is continued; the fused component’s EFIER value
is 3.6013, less than the MAX, so the fusion is stopped. Therefore, the optimal component
OC = IMF4 + IMF3. The relevant calculation process is shown in Table 8.

Table 8. IMF component integration of inner ring fault of CWRU dataset.

Components IMF4 IMF4 + IMF3 IMF4 + IMF3 + IMF1

EFIER (%) 3.8966 4.0580 3.6013

Figure 24 illustrates the IMF5 component’s waveform and envelope spectrum. The
waveform and envelope spectrum of the optimal component OC are displayed in Figure 25.
Only the fault characteristic frequencies fi, 2 fi, and 4 fi can be roughly identified in Figure 24,
and the fault characteristics are not immediately apparent. In Figure 25, fi, 2 fi, 3 fi, 4 fi, 5 fi,
7 fi, and 8 fi can be observed. Compared with Figure 24, Figure 25 shows the extraction of
rich fault feature information, allowing for it to be determined that the bearing has an inner
ring fault.
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Finally, the OC component is denoised using SVD. Figure 26 demonstrates the OC
component’s waveform and envelope spectrum after SVD denoising. The fault characteris-
tic frequencies fi, 2 fi, 3 fi, 4 fi, 5 fi, 6 fi, and 7 fi are easily visible. Therefore, the case study
effectively demonstrates both the viability of the modal component fusion method and the
superiority of the improved TVF-EMD and SVD method in fault feature extraction.
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Figure 26. OC obtained using SO-TVFEMD and SVD denoising: (a) waveform; (b) envelope spectrum.

The parameters refer to case analysis A. In the traditional TVF-EMD method, with
the IMF9 component, EFIER = 3.7704, which is the largest EFIER value produced by the
decomposition. The envelope spectrum and waveform of IMF9 are displayed in Figure 27.
Figure 27 shows the fault characteristic frequencies fi and 2 fi.
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Figure 27. OC obtained by traditional TVF-EMD: (a) waveform; (b) envelope spectrum.

In VMD, the three decomposed modes have corresponding kurtosis values of 3.1032,
3.0767, and 2.9152, so u1 is the optimal component. The optimal modes and matching
envelope spectrum produced by VMD are displayed in Figure 28, and the obvious fault
characteristic frequencies fi and 2 fi can be observed.

Figure 29 shows the waveform and envelope spectrum of the optimal component.
Other fault characteristic information is not displayed in Figure 29, and only the fault
characteristic frequency fi is visible.

Therefore, we can conclude that the fault feature information extracted using the other
methods is relatively limited, and the improved TVF-EMD and SVD method can extract
more clear and richer fault feature information than the other methods. In addition, we
also use EFIER values to compare and quantitatively evaluate the ability of these methods
to extract early fault features, the EFIER values of the optimal components processed by the
four methods are calculated, respectively, and the results are shown in Table 9. Compared to
alternative methods, the EFIER value of the optimal component extracted by the proposed
method is the largest. Compared with alternative methods, the EFIER value of the optimal
component extracted using the method proposed in this paper is the largest, being 7.63%,
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15.85%, and 179.03% higher than that of the other three methods. This shows that the
improved TVF-EMD and SVD method can extract rich early fault feature information.
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Table 9. Inner ring fault EFIER values of the four methods.

Methods Proposed Method Traditional TVF-EMD VMD CEEMDAN

EFIER (%) 4.0580 3.7704 3.5028 1.4543

5.2. XJTU Dataset Experiment

In order to further verify the effectiveness of the method used in this paper, experi-
mental analysis was conducted using rolling bearing fault data from XJTU of Xi’an Jiaotong
University (https://cstr.cn/16666.11.nbsdc.bz283eWP, accessed on 16 March 2023). The
bearing model used in the test bench is the LDK UER204 rolling bearing, and its parameters
can be found in reference [26].

This dataset experiment has three operating conditions, each of which is divided
into five bearings with a sampling frequency of 48,828 Hz. Select the 453rd data of the
Bearing2_1 bearing under operating condition 2 has been selected as the experimental
signal for inner ring fault. At this time, the speed is 2250 r/min, the radial force is 11 KN,
and the frequency of inner ring fault is fi = 118.88 Hz. The 70th data of the Bearing1_1
bearing under operating condition 1 has been selected as the experimental signal for the
outer ring fault. At this time, the rotational speed is 2100 r/min, the radial force is 12 KN,
and the outer ring fault frequency is fo = 81.12 Hz.

https://cstr.cn/16666.11.nbsdc.bz283eWP
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5.2.1. Outer Ring Fault Experiment of XJTU Dataset

Figure 30 shows the time-domain waveform and envelope spectrum of the original
outer ring fault signal. From Figure 30, it can be seen that the fault characteristics are com-
pletely submerged, and no information related to the frequency of the fault characteristics
can be observed. Thus, the type of bearing fault is determined to be impossible.
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Figure 30. Waveform and envelope spectrum of outer ring fault of XJTU dataset.

Firstly, the SO algorithm is used to optimize TVF-EMD and obtain the optimal pa-
rameter combination (ξ, n) of (0.4819,21). In the seventh iteration, the optimal parameter
combination was obtained, and the maximum EFIER value corresponding to IMF5 is
6.1258%. Then, the original vibration signal was subjected to TVF-EMD decomposition
using the optimal parameter combination (0.4819,21), resulting in 12 IMF. The EFIER values
of 12 IMF components are separately calculated, as shown in Figure 31. Then, the IMF
components are fused according to Figure 31. The relevant fusion process is shown in
Table 10, and the obtained optimal fusion component is OC = IMF5 + IMF4.
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Figure 31. EFIER values of each IMF of outer ring fault of XJTU dataset.

Table 10. IMF component fusion process of IMF component.

Component IMF5 IMF5 + IMF4 IMF5 + IMF4 + IMF1

EFIER (%) 6.1258 6.2036 4.6459

Figure 32 shows the time-domain waveform and envelope spectrum of the optimal
fusion component OC (IMF5 + IMF4). In Figure 32, the outer ring fault characteristic
frequencies fo~5 fo can be observed. It indicates that the fused component OC according to
the EFIER maximum principle contains more fault characteristic information.
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Figure 32. Waveform and envelope spectrum of OC after SVD denoising.

Then, the OC component can be denoised using SVD. Figure 33 shows the time-
domain waveform and envelope spectrum of OC component after SVD denoise. It can
be clearly observed from Figure 33 that the denoised envelope spectrum contains fault
characteristic frequencies of the outer ring: fo~3 fo, 5 fo~9 fo.
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Figure 33. Denoised OC of XJTU outer ring fault by SVD: (a) waveform; (b) envelope spectrum.

The traditional TVF-EMD (ξ = 0.1, n = 26) method, VMD (α = 2000, K = 3) method,
and CEEMDAN method are used to extract early fault features of bearings, and the compo-
nent with the highest EFIER value is selected as the sensitive component.

Figures 34–36 show the time-domain waveforms and envelope spectra of the sensitive
components decomposed by the TVF-EMD, VMD, and CEEMDAN methods, respectively.
From Figures 33–35, it can be seen that the fault feature information extracted using
the method proposed in this paper (Figures 35 and 36) is more abundant with fewer
noise interference components, and early fault features of bearings can be extracted more
accurately by achieving the accurate identification of fault types. However, TVF-EMD,
VMD, and CEEMDAN methods cannot effectively detect the characteristic frequencies
of outer ring faults. The best performing VMD method can only observe fo and 5 fo

and is greatly affected by noise, while other frequency multiplication information cannot
be found.
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Figure 36. Waveform and envelope spectrum of optimal component by CEEMDAN.

5.2.2. Inner Ring Fault Experiment of XJTU Dataset

Figure 37 shows the time-domain waveform and envelope spectrum of the original
inner ring fault signal. It can be seen that the complete submergence of fault characteristics
makes it difficult to observe relevant fault information. The optimal parameter combination
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(ξ, n) is obtained as (0,9) using the SO algorithm to optimize TVF-EMD. Subsequently,
the original vibration signal was subjected to TVF-EMD decomposition using the optimal
parameter combination, resulting in 50 IMF components. The maximum EFIER value
corresponding to IMF43 is 2.8468. The EFIER values of the remaining IMF components are
shown in Figure 38. The optimal fusion component OC obtained by fusing IMF components
is IMF43 + IMF18, and the fusion process is shown in Table 11.
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Table 11. Fusion process of IMF components.

Component IMF43 IMF43 + IMF18 IMF43 + IMF18 + IMF39

EFIER (%) 2.8468 3.3613 2.5258

Figure 39 shows the time-domain waveform and envelope spectrum of the optimal
fusion OC component (IMF43 + IMF18). In Figure 39, it can be observed that the fault
features of the inner ring are fi ∼ 4 fi. Finally, SVD was used to denoise the OC component,
and its time domain waveform and envelope spectrum are shown in Figure 40. From
Figure 40, it can be seen that the noise component is significantly weakened, and it can
be clearly observed that envelope spectrum after denoising contains fault characteristic
frequencies of the inner ring fi ∼ 2 fi, 4 fi ∼ 6 fi, and 8 fi.

The traditional TVF-EMD (ξ = 0.1, n = 26), VMD (α = 2000, K = 3), and CCEMDAN
methods continue to be used to extract early fault features of bearings while selecting the
component with the maximum value of the EFIER as the sensitive component.

Figures 41–43 show the time-domain waveforms and envelope spectrum of the sensi-
tive components decomposed by the TVF-EMD, VMD, and CEEMDAN methods, respec-
tively. Comparing the results obtained by the proposed method with Figures 41–43, it can
be seen that the fault feature information extracted by the method in this paper is richer
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with fewer noise interference components and that the method in this paper can more
accurately extract early fault features of bearings. For fault signals of the inner ring, the
TVF-EMD method has the best effect among the TVF-EMD, VMD, and CEEMDAN meth-
ods. However, only the inner ring characteristic frequencies 2 fi and 3 fi can be observed in
the results extracted by the TVF-EMD method, and it is not possible to find other frequency
multiplications effectively due to noise interference.
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Figure 39. Waveform and envelope spectrum of OC component (IMF43 + IMF18).
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Figure 40. Denoised OC of XJTU inner ring fault; (a) waveform; (b) envelope spectrum.
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The above experimental results further verify the effectiveness of our method in
extracting early weak fault features of bearings. Compared with traditional TVF-EMD,
VMD, and CEEMDAN methods, the results show that this method effectively improves the
feature extraction ability of weak bearing faults. In the obtained envelope spectrum, the fre-
quency multiplication peaks of the fault features are clear, and there are fewer interference
frequencies near the peaks. This method has higher fault identification accuracy.

6. Conclusions
This study proposes a method for the early fault feature extraction of rolling bearings

based on the adaptive fusion of TVF-EMD modal components and SVD noise reduction.
The snake optimization (SO) technique is used to optimize the TVF-EMD algorithm in order
to determine the optimal parameters that match the input signal. The primary conclusions
of this study are as follows:

(1) The decomposition performance of the TVF-EMD algorithm and the settings of
the two parameters (the bandwidth threshold and B-spline order) are crucial. Correctly
deconstructing the original vibration signals is challenging if an irrational bandwidth
threshold and B-spline order are applied, and significant under-decomposition, over-
decomposition, or modal aliasing is highly likely to occur. Thus, the SO algorithm is used
to optimize the TVF-EMD method.



Machines 2025, 13, 50 30 of 31

(2) A new index, the envelope fault information energy ratio (EFIER), is proposed as
the objective function. By comparing it with another index, it is proven that the EFIER is
more robust to different noise intensities and burst pulses, in addition to having a greater
sensitivity to fault feature information.

(3) The IMF components are fused using the principle of maximizing the energy ratio
of the envelope fault information, and the optimal fusion components are obtained, thereby
resolving the issue that the fault feature information following TVF-EMD decomposition is
too dispersed and not concentrated enough.

(4) The optimal fusion components are noise-reduced using SVD in order to further
reduce the impact of noise on the diagnostic results. A comparison is made between
VMD, CEEMDAN, and the conventional TVF-EMD approaches. The methods can extract
abundant information on early fault features, and the improved TVF-EMD and SVD
methods outperform the other methods.

In the following work, we plan to further improve the proposed method from the
following aspects:

(1) In the proposed method, the fault is identified manually mainly by the characteristic
frequency of the fault signal after screening. In the next step, we hope to combine the work
in this manuscript with deep learning to automatically identify bearing faults according
to the characteristics of the filtered signals [27] and make a reasonable explanation of the
identification process, so as to further improve the generalization and practicability of the
work in this manuscript.

(2) At present, the proposed method has only carried out a lot of experimental analysis
for a single fault, and there is not enough experimental verification for a compound fault.
Therefore, in the next research, we will focus on applying the proposed method to the
diagnosis and detection of compound faults with varying working conditions and varying
loads and further verify the effectiveness of the proposed method on compound faults.

(3) When dealing with different types of fault signals, it is necessary to re-run the
SO method for the parameter optimization of TVFEMD, resulting in a time-consuming
optimization process. How to transplant the parameter optimization algorithm of TVFEMD
between different datasets with the idea of the transfer learning algorithm, so as to improve
the optimization efficiency, is also a problem that we will continue to study in depth.
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