Discernible Orientation for Tortuosity During Oxidative Precipitation of Fe(II) in Porous Media: Laboratory Experiment and Micro-CT Imaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Co-Injection Experiment
2.2. CT Imaging Processing
2.3. Macroscopic Capillary Number
3. Experimental and Imaging Results
3.1. Visual Observation of Fe Precipitation
3.2. Determination of an Appropriate REV
3.3. Conceptual Model of Tortuosity Orientation
3.4. Distribution of Fe Precipitates at REV Scale
3.5. Impact of Ca Number on Flow Regime
4. Discussion and Implications
4.1. Dynamic Properties of Fe Hydroxides
4.2. Evolution of Interparticle Interactions
4.3. Tortuosity Orientation and Flow Path Shifts
4.4. Implications for Coastal Aquifer Systems
4.5. Limitations and Uncertainty of Applied Methods
5. Conclusions
- (1)
- Early stage (0–10 days): Fe precipitates uniformly coat solid particles, with hydrous Fe exhibiting a low density and weak attachment to particle surfaces. This mobility allows temporarily clogged pathways to reopen despite ongoing precipitation, maintaining the flow paths within the pore matrix.
- (2)
- Intermediate stage (10–20 days): Accumulated Fe precipitates reduce the sizes of pore throats (i.e., bottleneck effect) and form interparticle bonds, redirecting the flow paths to bypass clogged regions. This stage significantly reduces the permeability and increases the hydraulic gradients, facilitating the flushing of the Fe precipitates near the syringe wall at the inlet.
- (3)
- Final stage (20–25 days): The precipitation near the inlet stabilizes to a quasi-steady state, with the permeability changes becoming negligible (<1% over 5 days). A diverse array of ramified flow channels develop, and the Ca values decrease from 3.0 to 0.05, indicating a transition from a viscous-dominated regime to one influenced by capillary forces. This transition promotes the formation of more tortuous flow paths within the porous media.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cornell, R.; Schwertmann, U. The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2003; ISBN 978-3-527-30274-1. [Google Scholar]
- Larrahondo, J.M.; Burns, S.E. Laboratory-Prepared Iron Oxide Coatings on Sands: Surface Characterization and Strength Parameters. J. Geotechnol. Geoenviron. Eng. 2014, 140, 04013052. [Google Scholar] [CrossRef]
- Yin, K.; Lin, Z.; Ke, Z. Temporal and Spatial Distribution of Dissolved Oxygen in the Pearl River Estuary and Adjacent Coastal Waters. Cont. Shelf Res. 2004, 24, 1935–1948. [Google Scholar] [CrossRef]
- Osorio-Leon, I.; Bouchez, C.; Chatton, E.; Lavenant, N.; Longuevergne, L.; Le Borgne, T. Hydrological and Geological Controls for the Depth Distribution of Dissolved Oxygen and Iron in Silicate Catchments. Water Resour. Res. 2023, 59, e2023WR034986. [Google Scholar] [CrossRef]
- McAllister, S.M.; Barnett, J.M.; Heiss, J.W.; Findlay, A.J.; MacDonald, D.J.; Dow, C.L.; Luther, G.W.; Michael, H.A.; Chan, C.S. Dynamic Hydrologic and Biogeochemical Processes Drive Microbially Enhanced Iron and Sulfur Cycling within the Intertidal Mixing Zone of a Beach Aquifer: Fe and S Cycling in a Beach Aquifer. Limnol. Oceanogr. 2015, 60, 329–345. [Google Scholar] [CrossRef]
- Charette, M.A.; Allen, M.C. Precision Ground Water Sampling in Coastal Aquifers Using a Direct-Push, Shielded-Screen Well-Point System. Groundw. Monit. Remediat. 2006, 26, 87–93. [Google Scholar] [CrossRef]
- Abal, E.; Watkinson, A. Investigation of Causes and Management of Lyngbya Blooms in SEQ. In Proceedings of the PASSCON 2000: Pumicestone Passage and Deception Bay Catchment Conference, Brisbane, QLD, Australia, 22 November 2000. [Google Scholar]
- Charette, M.A.; Sholkovitz, E.R. Oxidative Precipitation of Groundwater-Derived Ferrous Iron in the Subterranean Estuary of a Coastal Bay. Geophys. Res. Lett. 2002, 29, 85-1–85-4. [Google Scholar] [CrossRef]
- Spiteri, C.; Regnier, P.; Slomp, C.P.; Charette, M.A. pH-Dependent Iron Oxide Precipitation in a Subterranean Estuary. J. Geochem. Explor. 2006, 88, 399–403. [Google Scholar] [CrossRef]
- Lalonde, K.; Mucci, A.; Ouellet, A.; Gélinas, Y. Preservation of Organic Matter in Sediments Promoted by Iron. Nature 2012, 483, 198–200. [Google Scholar] [CrossRef] [PubMed]
- Linkhorst, A.; Dittmar, T.; Waska, H. Molecular Fractionation of Dissolved Organic Matter in a Shallow Subterranean Estuary: The Role of the Iron Curtain. Environ. Sci. Technol. 2017, 51, 1312–1320. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Guo, H.; Xiu, W.; Ni, P.; Zheng, H.; Wei, C. In-Situ Mobilization and Transformation of Iron Oxides-Adsorbed Arsenate in Natural Groundwater. J. Hazard. Mater. 2017, 321, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Reckhardt, A.; Beck, M.; Seidel, M.; Riedel, T.; Wehrmann, A.; Bartholomä, A.; Schnetger, B.; Dittmar, T.; Brumsack, H.-J. Carbon, Nutrient and Trace Metal Cycling in Sandy Sediments: A Comparison of High-Energy Beaches and Backbarrier Tidal Flats. Estuar. Coast. Shelf Sci. 2015, 159, 1–14. [Google Scholar] [CrossRef]
- Brovelli, A.; Malaguerra, F.; Barry, D.A. Bioclogging in Porous Media: Model Development and Sensitivity to Initial Conditions. Environ. Model. Softw. 2009, 24, 611–626. [Google Scholar] [CrossRef]
- Iranfar, S.; Karbala, M.M.; Shakiba, M.; Shahsavari, M.H. Effects of Type and Distribution of Clay Minerals on the Physico-Chemical and Geomechanical Properties of Engineered Porous Rocks. Sci. Rep. 2023, 13, 5837. [Google Scholar] [CrossRef] [PubMed]
- Gaol, C.L.; Ganzer, L.; Mukherjee, S.; Alkan, H. Investigation of Clogging in Porous Media Induced by Microorganisms Using a Microfluidic Application. Environ. Sci. Water Res. Technol. 2021, 7, 441–454. [Google Scholar] [CrossRef]
- Kurz, D.L.; Secchi, E.; Carrillo, F.J.; Bourg, I.C.; Stocker, R.; Jimenez-Martinez, J. Competition between Growth and Shear Stress Drives Intermittency in Preferential Flow Paths in Porous Medium Biofilms. Proc. Natl. Acad. Sci. USA 2022, 119, e2122202119. [Google Scholar] [CrossRef] [PubMed]
- Burté, L.; Cravotta, C.A.; Bethencourt, L.; Farasin, J.; Pédrot, M.; Dufresne, A.; Gérard, M.-F.; Baranger, C.; Le Borgne, T.; Aquilina, L. Kinetic Study on Clogging of a Geothermal Pumping Well Triggered by Mixing-Induced Biogeochemical Reactions. Environ. Sci. Technol. 2019, 53, 5848–5857. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.; Yan, G.; Hofmann, H.; Scheuermann, A. A State-of-the-Art Perspective on Fe Precipitation in Porous Media: Hydrogeochemical Processes and Evolving Parameters. J. Mar. Sci. Eng. 2024, 12, 690. [Google Scholar] [CrossRef]
- Cao, W.; Hu, N.; Hofmann, H.; Scheuermann, A. Flow Path Tortuosity in Saturated Porous Media Comprising Idealised Spherical Particles. Géotechnique Lett. 2025, 15, 1–25. [Google Scholar] [CrossRef]
- Cao, W.; Hu, N.; Yan, G.; Hofmann, H.; Scheuermann, A. Permeability–Porosity Model Considering Oxidative Precipitation of Fe(II) in Granular Porous Media. J. Hydrol. 2024, 636, 131346. [Google Scholar] [CrossRef]
- Cao, W.; Yan, G.; Hofmann, H.; Scheuermann, A. A Novel Permeability–Tortuosity–Porosity Model for Evolving Pore Space and Mineral-Induced Clogging in Porous Medium. Geotechnics 2025, 5, 2. [Google Scholar] [CrossRef]
- Noiriel, C. Resolving Time-Dependent Evolution of Pore-Scale Structure, Permeability and Reactivity Using X-Ray Microtomography. Rev. Mineral. Geochem. 2015, 80, 247–285. [Google Scholar] [CrossRef]
- Seigneur, N.; Mayer, K.U.; Steefel, C.I. Reactive Transport in Evolving Porous Media. Rev. Mineral. Geochem. 2019, 85, 197–238. [Google Scholar] [CrossRef]
- Xie, M.; Mayer, K.U.; Claret, F.; Alt-Epping, P.; Jacques, D.; Steefel, C.; Chiaberge, C.; Simunek, J. Implementation and Evaluation of Permeability-Porosity and Tortuosity-Porosity Relationships Linked to Mineral Dissolution-Precipitation. Comput. Geosci. 2015, 19, 655–671. [Google Scholar] [CrossRef]
- Jin, L.; Mathur, R.; Rother, G.; Cole, D.; Bazilevskaya, E.; Williams, J.; Carone, A.; Brantley, S. Evolution of Porosity and Geochemistry in Marcellus Formation Black Shale during Weathering. Chem. Geol. 2013, 356, 50–63. [Google Scholar] [CrossRef]
- Krevor, S.; Blunt, M.J.; Benson, S.M.; Pentland, C.H.; Reynolds, C.; Al-Menhali, A.; Niu, B. Capillary Trapping for Geologic Carbon Dioxide Storage—From Pore Scale Physics to Field Scale Implications. Int. J. Greenh. Gas Control 2015, 40, 221–237. [Google Scholar] [CrossRef]
- Pentland, C.H.; El-Maghraby, R.; Iglauer, S.; Blunt, M.J. Measurements of the Capillary Trapping of Super-Critical Carbon Dioxide in Berea Sandstone: Measurement of Carbon Dioxide Entrapment. Geophys. Res. Lett. 2011, 38, L06401. [Google Scholar] [CrossRef]
- Wang, S.; Spurin, C.; Bultreys, T. Pore-Scale Imaging of Multiphase Flow Fluctuations in Continuum-Scale Samples. Water Resour. Res. 2023, 59, e2023WR034720. [Google Scholar] [CrossRef]
- Chen, Y.-F.; Guo, N.; Wu, D.-S.; Hu, R. Numerical Investigation on Immiscible Displacement in 3D Rough Fracture: Comparison with Experiments and the Role of Viscous and Capillary Forces. Adv. Water Resour. 2018, 118, 39–48. [Google Scholar] [CrossRef]
- Panda, A.; Pati, A.R.; Saha, B.; Kumar, A.; Mohapatra, S.S. The Role of Viscous and Capillary Forces in the Prediction of Critical Conditions Defining Super-Hydrophobic and Hydrophilic Characteristics. Chem. Eng. Sci. 2019, 207, 527–541. [Google Scholar] [CrossRef]
- Spurin, C.; Bultreys, T.; Bijeljic, B.; Blunt, M.J.; Krevor, S. Mechanisms Controlling Fluid Breakup and Reconnection during Two-Phase Flow in Porous Media. Phys. Rev. E 2019, 100, 043115. [Google Scholar] [CrossRef]
- Guo, H.; Song, K.; Hilfer, R. A Brief Review of Capillary Number and Its Use in Capillary Desaturation Curves. Transp. Porous Media 2022, 144, 3–31. [Google Scholar] [CrossRef]
- Hilfer, R. Capillary Number Correlations for Two-Phase Flow in Porous Media. Phys. Rev. E 2020, 102, 053103. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Bijeljic, B.; Pini, R.; Blunt, M.J.; Krevor, S. Imaging and Measurement of Pore-Scale Interfacial Curvature to Determine Capillary Pressure Simultaneously With Relative Permeability. Water Resour. Res. 2018, 54, 7046–7060. [Google Scholar] [CrossRef]
- Zahasky, C.; Jackson, S.J.; Lin, Q.; Krevor, S. Pore Network Model Predictions of Darcy-Scale Multiphase Flow Heterogeneity Validated by Experiments. Water Resour. Res. 2020, 56, e2019WR026708. [Google Scholar] [CrossRef]
- Gao, Y.; Qaseminejad Raeini, A.; Blunt, M.J.; Bijeljic, B. Pore Occupancy, Relative Permeability and Flow Intermittency Measurements Using X-Ray Micro-Tomography in a Complex Carbonate. Adv. Water Resour. 2019, 129, 56–69. [Google Scholar] [CrossRef]
- Reynolds, C.A.; Menke, H.; Andrew, M.; Blunt, M.J.; Krevor, S. Dynamic Fluid Connectivity during Steady-State Multiphase Flow in a Sandstone. Proc. Natl. Acad. Sci. USA 2017, 114, 8187–8192. [Google Scholar] [CrossRef] [PubMed]
- Spurin, C.; Bultreys, T.; Bijeljic, B.; Blunt, M.J.; Krevor, S. Intermittent Fluid Connectivity during Two-Phase Flow in a Heterogeneous Carbonate Rock. Phys. Rev. E 2019, 100, 043103. [Google Scholar] [CrossRef]
- Rücker, M.; Georgiadis, A.; Armstrong, R.T.; Ott, H.; Brussee, N.; Van Der Linde, H.; Simon, L.; Enzmann, F.; Kersten, M.; Berg, S. The Origin of Non-Thermal Fluctuations in Multiphase Flow in Porous Media. Front. Water 2021, 3, 671399. [Google Scholar] [CrossRef]
- Cnudde, V.; Boone, M.N. High-Resolution X-Ray Computed Tomography in Geosciences: A Review of the Current Technology and Applications. Earth-Sci. Rev. 2013, 123, 1–17. [Google Scholar] [CrossRef]
- Jackson, S.J.; Lin, Q.; Krevor, S. Representative Elementary Volumes, Hysteresis, and Heterogeneity in Multiphase Flow From the Pore to Continuum Scale. Water Resour. Res. 2020, 56, e2019WR026396. [Google Scholar] [CrossRef]
- Wang, Y.; Miller, J.D. Current Developments and Applications of Micro-CT for the 3D Analysis of Multiphase Mineral Systems in Geometallurgy. Earth-Sci. Rev. 2020, 211, 103406. [Google Scholar] [CrossRef]
- Alhammadi, A.M.; Gao, Y.; Akai, T.; Blunt, M.J.; Bijeljic, B. Pore-Scale X-Ray Imaging with Measurement of Relative Permeability, Capillary Pressure and Oil Recovery in a Mixed-Wet Micro-Porous Carbonate Reservoir Rock. Fuel 2020, 268, 117018. [Google Scholar] [CrossRef]
- Reedy, C.L.; Reedy, C.L. High-Resolution Micro-CT with 3D Image Analysis for Porosity Characterization of Historic Bricks. Herit. Sci. 2022, 10, 83. [Google Scholar] [CrossRef]
- Roslin, A.; Pokrajac, D.; Zhou, Y. Cleat Structure Analysis and Permeability Simulation of Coal Samples Based on Micro-Computed Tomography (Micro-CT) and Scan Electron Microscopy (SEM) Technology. Fuel 2019, 254, 115579. [Google Scholar] [CrossRef]
- Chagneau, A.; Claret, F.; Enzmann, F.; Kersten, M.; Heck, S.; Madé, B.; Schäfer, T. Mineral Precipitation-Induced Porosity Reduction and Its Effect on Transport Parameters in Diffusion-Controlled Porous Media. Geochem. Trans. 2015, 16, 13. [Google Scholar] [CrossRef]
- Fu, J.; Thomas, H.R.; Li, C. Tortuosity of Porous Media: Image Analysis and Physical Simulation. Earth-Sci. Rev. 2021, 212, 103439. [Google Scholar] [CrossRef]
- Ko, L.T.; Ruppel, S.C.; Loucks, R.G.; Hackley, P.C.; Zhang, T.; Shao, D. Pore-Types and Pore-Network Evolution in Upper Devonian-Lower Mississippian Woodford and Mississippian Barnett Mudstones: Insights from Laboratory Thermal Maturation and Organic Petrology. Int. J. Coal Geol. 2018, 190, 3–28. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, C.; Cao, W.; Hofmann, H.; Wang, T.; Li, L. Oxidative Precipitation of Fe(II) in Porous Media: Laboratory Experiment and Numerical Simulation. ACS EST Water 2023, 3, 963–973. [Google Scholar] [CrossRef]
- Hilfer, R.; Oren, E.E. Dimensional Analysis of Pore Scale and Field Scale Immiscible Displacement. Transp. Porous Media 1996, 22, 53–72. [Google Scholar] [CrossRef]
- Herbert, A.W.; Jackson, C.P.; Lever, D.A. Coupled Groundwater Flow and Solute Transport with Fluid Density Strongly Dependent upon Concentration. Water Resour. Res. 1988, 24, 1781–1795. [Google Scholar] [CrossRef]
- Hu, Y.; Lee, B.; Bell, C.; Jun, Y.-S. Environmentally Abundant Anions Influence the Nucleation, Growth, Ostwald Ripening, and Aggregation of Hydrous Fe(III) Oxides. Langmuir 2012, 28, 7737–7746. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Axe, L. Synthesis and Characterization of Iron Oxide-Coated Silica and Its Effect on Metal Adsorption. J. Colloid Interface Sci. 2005, 282, 11–19. [Google Scholar] [CrossRef]
- Harrison, A.L.; Dipple, G.M.; Power, I.M.; Mayer, K.U. The Impact of Evolving Mineral–Water–Gas Interfacial Areas on Mineral–Fluid Reaction Rates in Unsaturated Porous Media. Chem. Geol. 2016, 421, 65–80. [Google Scholar] [CrossRef]
- Hommel, J.; Coltman, E.; Class, H. Porosity–Permeability Relations for Evolving Pore Space: A Review with a Focus on (Bio-) Geochemically Altered Porous Media. Transp. Porous Media 2018, 124, 589–629. [Google Scholar] [CrossRef]
- Bear, J. Dynamics of Fluids in Porous Media; American Elsevier Publishing Company: New York, NY, USA, 1972. [Google Scholar]
- Singh, A.; Regenauer-Lieb, K.; Walsh, S.D.C.; Armstrong, R.T.; Van Griethuysen, J.J.M.; Mostaghimi, P. On Representative Elementary Volumes of Grayscale Micro-CT Images of Porous Media. Geophys. Res. Lett. 2020, 47, e2020GL088594. [Google Scholar] [CrossRef]
- Koestel, J.; Larsbo, M.; Jarvis, N. Scale and REV Analyses for Porosity and Pore Connectivity Measures in Undisturbed Soil. Geoderma 2020, 366, 114206. [Google Scholar] [CrossRef]
- Blunt, M.J.; Bijeljic, B.; Dong, H.; Gharbi, O.; Iglauer, S.; Mostaghimi, P.; Paluszny, A.; Pentland, C. Pore-Scale Imaging and Modelling. Adv. Water Resour. 2013, 51, 197–216. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, R.; Chen, S.; Soll, W.E. Pore Scale Study of Flow in Porous Media: Scale Dependency, REV, and Statistical REV. Geophys. Res. Lett. 2000, 27, 1195–1198. [Google Scholar] [CrossRef]
- Halisch, D.M. The Rev Challenge—Estimating Representative Elementary Volumes and Porous Rock Inhomogeneity from High Resolution Micro-Ct Data Sets. In Proceedings of the Annual Symposium of the Society of Core Analysts, Napa Valley, CA, USA, 16 September 2013; pp. 1–7. [Google Scholar]
- Lin, Q.; Bijeljic, B.; Foroughi, S.; Berg, S.; Blunt, M.J. Pore-Scale Imaging of Displacement Patterns in an Altered-Wettability Carbonate. Chem. Eng. Sci. 2021, 235, 116464. [Google Scholar] [CrossRef]
- Virnovsky, G.A.; Friis, H.A.; Lohne, A. A Steady-State Upscaling Approach for Immiscible Two-Phase Flow. Transp. Porous Media 2004, 54, 167–192. [Google Scholar] [CrossRef]
- Cudennec, Y.; Lecerf, A. The Transformation of Ferrihydrite into Goethite or Hematite, Revisited. J. Solid State Chem. 2006, 179, 716–722. [Google Scholar] [CrossRef]
- Hiemstra, T.; Mendez, J.C.; Li, J. Evolution of the Reactive Surface Area of Ferrihydrite: Time, pH, and Temperature Dependency of Growth by Ostwald Ripening. Environ. Sci. Nano 2019, 6, 820–833. [Google Scholar] [CrossRef]
- Cao, W.; Hofmann, H.; Yan, G.; Scheuermann, A. Porewater Exchange and Iron Transformation in a Coastal Groundwater System: A Field Investigation, Driving Mechanisms Analysis, and Conceptual Model. Front. Mar. Sci. Sec. Coast. Ocean Process. 2024, 11, 1385517. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, S.; Ji, N. Distribution Character of Localized Iron Microniche in Lake Sediment Microzone Revealed by Chemical Image. Environ. Sci. Pollut. Res. 2019, 26, 35704–35716. [Google Scholar] [CrossRef] [PubMed]
- Delouche, N.; Dersoir, B.; Schofield, A.B.; Tabuteau, H. Flow Decline during Pore Clogging by Colloidal Particles. Phys. Rev. Fluids 2022, 7, 034304. [Google Scholar] [CrossRef]
- Baker, I.R.; Matzen, S.L.; Schuler, C.J.; Toner, B.M.; Girguis, P.R. Aerobic Iron-Oxidizing Bacteria Secrete Metabolites That Markedly Impede Abiotic Iron Oxidation. PNAS Nexus 2023, 2, pgad421. [Google Scholar] [CrossRef] [PubMed]
- Kügler, S.; Cooper, R.E.; Wegner, C.-E.; Mohr, J.F.; Wichard, T.; Küsel, K. Iron-Organic Matter Complexes Accelerate Microbial Iron Cycling in an Iron-Rich Fen. Sci. Total Environ. 2019, 646, 972–988. [Google Scholar] [CrossRef] [PubMed]
- Alotaibi, M.D.; Patterson, B.M.; McKinley, A.J.; Reeder, A.Y.; Furness, A.J.; Donn, M.J. Fate of Benzotriazole and 5-Methylbenzotriazole in Recycled Water Recharged into an Anaerobic Aquifer: Column Studies. Water Res. 2015, 70, 184–195. [Google Scholar] [CrossRef]
- Luef, B.; Fakra, S.C.; Csencsits, R.; Wrighton, K.C.; Williams, K.H.; Wilkins, M.J.; Downing, K.H.; Long, P.E.; Comolli, L.R.; Banfield, J.F. Iron-Reducing Bacteria Accumulate Ferric Oxyhydroxide Nanoparticle Aggregates That May Support Planktonic Growth. ISME J. 2013, 7, 338–350. [Google Scholar] [CrossRef]
- Tamura, H.; Goto, K.; Nagayama, M. The Effect of Ferric Hydroxide on the Oxygenation of Ferrous Ions in Neutral Solutions. Corros. Sci. 1976, 16, 197–207. [Google Scholar] [CrossRef]
- Sung, W.; Morgan, J.J. Kinetics and Product of Ferrous Iron Oxygenation in Aqueous Systems. Environ. Sci. Technol. 1980, 14, 561–568. [Google Scholar] [CrossRef]
- Steefel, C.I.; Appelo, C.A.J.; Arora, B.; Jacques, D.; Kalbacher, T.; Kolditz, O.; Lagneau, V.; Lichtner, P.C.; Mayer, K.U.; Meeussen, J.C.L.; et al. Reactive Transport Codes for Subsurface Environmental Simulation. Comput. Geosci. 2015, 19, 445–478. [Google Scholar] [CrossRef]
- Singurindy, O.; Berkowitz, B. Evolution of Hydraulic Conductivity by Precipitation and Dissolution in Carbonate Rock. Water Resour. Res. 2003, 39, 2001WR001055. [Google Scholar] [CrossRef]
- Tartakovsky, A.M.; Redden, G.; Lichtner, P.C.; Scheibe, T.D.; Meakin, P. Mixing-induced Precipitation: Experimental Study and Multiscale Numerical Analysis. Water Resour. Res. 2008, 44, 2006WR005725. [Google Scholar] [CrossRef]
- Molins, S.; Soulaine, C.; Prasianakis, N.I.; Abbasi, A.; Poncet, P.; Ladd, A.J.C.; Starchenko, V.; Roman, S.; Trebotich, D.; Tchelepi, H.A.; et al. Simulation of Mineral Dissolution at the Pore Scale with Evolving Fluid-Solid Interfaces: Review of Approaches and Benchmark Problem Set. Comput. Geosci. 2021, 25, 1285–1318. [Google Scholar] [CrossRef]
- Yuan, Z.; Lin, J.; Pan, Y.; Hu, Y.; Zhang, J.; Shakouri, M.; Chen, N.; Chernikov, R.; Wiens, E.; Jia, Y. Effects of Nitrate Concentrations on As(III) Immobilization via New Ferric Arsenite Hydroxynitrate Precipitates. Geoderma 2023, 432, 116423. [Google Scholar] [CrossRef]
- Ladd, A.J.C.; Szymczak, P. Reactive Flows in Porous Media: Challenges in Theoretical and Numerical Methods. Annu. Rev. Chem. Biomol. Eng. 2021, 12, 543–571. [Google Scholar] [CrossRef] [PubMed]
Category | Description | Value |
---|---|---|
Porous media properties (glass beads) | Dry density, ρd (kg/m3) | 1450 [a] |
Initial porosity, n0 (-) | 0.37 [a] | |
Initial permeability, k0 (m2) | 2.0 × 10−10 [a] | |
Median particle size, d50 (mm) | 2.0 [a] | |
Freshwater properties (containing Fe(II)) | Fe(II) concentration, CFe(II), fw (mol/L) | 0.2 |
Density, ρfw (kg/m3) | 1020 | |
pH | 3.0 [a] | |
Dynamic viscosity, µfw (Pa·s) | 0.001 [b] | |
Saltwater properties | DO concentration, CDO, sw (mol/L) | 2.25 × 10–4 [c] |
Density, ρsw (kg/m3) | 1025 | |
pH | 8.0 [a] | |
Injection scheme and transport properties | Inflow rate, Q (mL/min) | 6.0 |
Vfw/Vsw (-) | 1.0 | |
Duration, t (d) | 25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, W.; Strounina, E.; Hofmann, H.; Scheuermann, A. Discernible Orientation for Tortuosity During Oxidative Precipitation of Fe(II) in Porous Media: Laboratory Experiment and Micro-CT Imaging. Minerals 2025, 15, 91. https://doi.org/10.3390/min15010091
Cao W, Strounina E, Hofmann H, Scheuermann A. Discernible Orientation for Tortuosity During Oxidative Precipitation of Fe(II) in Porous Media: Laboratory Experiment and Micro-CT Imaging. Minerals. 2025; 15(1):91. https://doi.org/10.3390/min15010091
Chicago/Turabian StyleCao, Wenran, Ekaterina Strounina, Harald Hofmann, and Alexander Scheuermann. 2025. "Discernible Orientation for Tortuosity During Oxidative Precipitation of Fe(II) in Porous Media: Laboratory Experiment and Micro-CT Imaging" Minerals 15, no. 1: 91. https://doi.org/10.3390/min15010091
APA StyleCao, W., Strounina, E., Hofmann, H., & Scheuermann, A. (2025). Discernible Orientation for Tortuosity During Oxidative Precipitation of Fe(II) in Porous Media: Laboratory Experiment and Micro-CT Imaging. Minerals, 15(1), 91. https://doi.org/10.3390/min15010091