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Abstract: Memristives provide a high degree of non-linearity to the model. This prop-
erty has led to many studies focusing on developing memristive models to provide more
non-linearity. This article studies a novel fractional discrete memristive system with in-
commensurate orders using ϑi-th Caputo-like operator. Bifurcation, phase portraits and
the computation of the maximum Lyapunov Exponent (LEmax) are used to demonstrate
their impact on the system’s dynamics. Furthermore, we employ the sample entropy
approach (SampEn), C0 complexity and the 0-1 test to quantify complexity and validate
chaos in the incommensurate system. Studies indicate that the discrete memristive system
with incommensurate fractional orders manifests diverse dynamical behaviors, including
hidden chaos, symmetry, and asymmetry attractors, which are influenced by the incom-
mensurate derivative values. Moreover, a 2D non-linear controller is presented to stabilize
and synchronize the novel system. The work results are provided by numerical simulation
obtained using MATLAB R2024a codes.

Keywords: incommensurate order; sigmoidal function; chaos; complexity; control

1. Introduction
Memristive-based discrete mathematical models have been studied because they are

quick, flexible, easy to implement and computationally efficient [1]. The concept behind these
integer-order discrete models is memristors, which stand for non-linear circuit components
associated with the linkage of magnetic flux and electric charge [2]. The appearance of chaos
in discrete memristor models has also been studied. There are a certain chaotic map-based
memristive models in [3–5]. The observation of various chaotic behaviors thus suggests that
the memristive parameters have an impact on the system’s complexity.

Discrete fractional models have shown to be more accurate at explaining complex
non-linear phenomena than conventional continuous fractional systems [6,7]. Fractional
calculus has proven to be more accurate than traditional integer-order calculus at describ-
ing complex non-linear phenomena, exhibiting their special qualities such as flexibility,
viscosity and long-term memory [8]. This accuracy and adaptability highlight the growing
interest in using fractional calculus to analyze contemporary, complex systems. However,
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fractional calculus offers improved tools to comprehend system dynamics over time and
offers deeper insights into chaotic behavior and stability in dynamical systems. In partic-
ular, discrete fractional calculus has garnered superb attention in light of its potential to
handle fractional derivatives, compared with classical fractional calculus, which focuses on
integer-order difference operators. Many domains have seen its application, such as data
encryption, physics, chemistry and biology [9]. More specifically, in the literature appears
to be a noticeable lack on the study of dynamic systems under incommensurate-order
derivatives. Owing to this, the study and research in this field grant the special qualities
and advantages of incommensurate fractional systems [10]. It has been discovered in re-
cent years that models with incommensurate orders are more flexible. The incommensurate
fractional derivative is actually a particular instance of fractional-order systems wherein the
orders have distinct values. This distinction from homogeneous fractional orders gives the
dynamics of the system an additional level of complexity and adaptability, enabling more
in-depth investigation of its characteristics [11,12]. Namely, in reference [11], Hamadneh et
al. discussed the dynamics of a novel sine-based memristor map with commensurate and
incommensurate fractional orders, while in [12] the authors control chaotic behavior in a
new map under incommensurate fractional order.

In recent years, a crucial discipline for research is the exploration of chaotic dynamics
in discrete fractional non-linear models expressed by discrete difference equations. De-
spite their simple structures, chaotic systems can display complex behavior, which lends
chaos theory a broad and multidisciplinary application [13]. For accurate modeling and
prediction of the behavior of complex systems, it is essential to identify and comprehend
hidden chaos because it emphasizes the significance of taking into account potential tipping
points that could cause a transition from stable to chaotic. Hidden attractors are crucial
for understanding complex system behaviors because they can arise in stable systems
as well and cause unanticipated dynamics like sudden chaos. An attractor that is not
connected to any equilibrium points in a dynamical system is known as a hidden attractor,
and it is difficult to find using conventional methods. Its detection necessitates partic-
ular techniques and well-chosen initial conditions. Hidden chaos denotes a condition
of underlying disorder or unpredictability that is not always evident but may become
apparent in specific circumstances and is important in many disciplines [14]. In contrast to
normal chaos, which is obvious in systems that behave erratically and unpredictably, it can
appear when a system encounters particular disturbances. For instance, in [15], the authors
studied the chaotic attractors of a different fractional memristor-based discrete system,
while Wu et al. analyzed the behaviors of a hidden chaotic fractional systems in [16]. As
a result, several control techniques and synchronization have been suggested to stabilize
various discrete fractional chaotic systems [17]. The chaotic behavior of the system can
be managed using a variety of control strategies, according to earlier research. To ensure
that the chaotic dynamics stay within the intended bounds, the oscillation magnitudes are
specifically controlled by amplitude control. Furthermore, the system’s baseline is modified
using displacement boosting, which shifts the balance to meet the particular operational
requirements. Furthermore, it is possible for the system to evolve with little intervention
under free control and under complete control, which governs the entire system’s transition
between chaotic and normal phases. A thorough framework for efficiently controlling the
dynamics of the system is offered by these control strategies [18]. Overall, a great deal of
research has been conducted on the stabilization of chaotic systems in the literature. It
describes how a chaotic system can be adaptively controlled to drive its states to zero over
time. Our research has been motivated by the fact that, as far as we are aware, there are
no such studies for fractional-order chaotic maps. Synchronization, a process that uses
adaptive control parameters to make a slave system follow the same trajectory as a master,
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is another significant feature of chaotic systems [19–21]. For example, in [19], control and
synchronization of a 4D fractional chaotic map with constant and variable order were
studied. Moreover, stabilization and synchronization of fractional chaotic discrete-time
models was explored in [20], whereas in [21] synchronization of fractional hidden chaotic
discrete-time models was developed.

In the study of chaos theory, symmetry and asymmetry are important concepts that
affect the behavior and evolution of chaotic systems, and a system’s stability under specific
transformations is referred to as symmetry. Moreover, symmetric structures can result in
stable behaviors and predictable patterns in chaotic systems. But even small perturbations
that cause this symmetry to break can bring about big changes, resulting in behavior that is
chaotic and unpredictable [22,23]. On the other hand, asymmetry indicates the absence of
this stability, which is frequently a sign of chaotic systems. Small disturbances have the
potential to amplify and cause unpredictable behavior in asymmetric systems. The way
that symmetry and asymmetry interact in chaos is crucial to comprehending how orderly
states give way to chaotic ones. It is possible to predict and even control chaotic behavior by
understanding how symmetry breaking can result in chaos. Recently, there have been many
manuscripts published on the symmetric. For example, Ref. [24] proposes a new method
of digital communication built on a coherent chaotic data transmission strategy, while [25]
analyzes symmetry chaotic fractional maps and their rich dynamics. In contrast, some
attention has been dedicated of to the asymmetric. In [26], the asymmetric memristive
jerk circuit’s coexisting bifurcation and multistability were examined. Reference [27]
investigated encryption and chaotic asymmetric memristor-coupled neural networks. This
asymmetry makes it more difficult to find hidden attractors because they frequently need
highly specific initial conditions for detection and may not exhibit predictable patterns. In
unexpected and intricate behaviors, like multi-stability, multiple distinct attractors coexist
and produce distinct dynamical outcomes based on the initial conditions and bifurcation
parameters. The novel 3D chaotic map with commensurate and incommensurate fractional
orders displaying symmetry and asymmetry was examined in [28].

Sigmoidal function provides a new therapeutic approach applicable to many do-
mains [29]. Moreover, robust and highly [30] advanced models can be created by introducing
a sigmoidal term and utilizing its intrinsic characteristics; these models have revealed various
implementations in encryption and secure communications. Their capacity to seamlessly
move from two asymptotic values makes them useful in a variety of fields. For this reason,
sigmoidal function systems have drawn the attention of researchers, such as machine learning
research [31] and the creation of artificial neural networks [32]. In general, the sigmoidal
function generates chaotic models by functioning as a non-linear term. Even their symmetric
nature and fixed points are altered with their addition [33]. The intention of this work is to
examine and assess the chaotic behavior of a recently suggested incommensurate fractional
system. The primary findings and discoveries of this study are outlined as follows:

1. Description of the novel incommensurate fractional discrete memristive system and a
basic idea of discrete fractional calculus.

2. The complex non-linear chaotic behavior of a fractional discrete memristive system
with incommensurate fractional orders is examined numerically using techniques like
the bifurcation, maximum Lyapunov exponent and phase attractors.

3. We use chaos testing including 0-1 test, C0 complexity and (SampEn) to confirm the
complexity in the incommensurate discrete memristive system.

4. Control scheme and chaos synchronization of the presented system are realized ac-
cording to the stability theorem of discrete non-linear systems.
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This paper is detailed as follows: preliminaries of the discrete fractional calculus
field and the fractional incommensurate structure of the discrete memristive system are
described in Section 2. The existence of hidden chaotic attractors is analyzed numerically,
as seen in Section 3. In Section 4, the test of complexity, including the 0-1 test, C0 complexity
and the (SampEn), is employed to verify and quantify chaos in the novel system. The
adaptive non-linear controller is a suggested goal that forces the system to converge
asymptotically to zero equilibrium and synchronization among the master (drive) and the
salve (response) systems analyzed in Section 5. Finally, in Section 6, we discuss the most
important results and our plans for future research.

2. Model Description and Preliminaries
This work focuses specifically on the Caputo-like operator to construct a novel incom-

mensurate discrete memristive system.

2.1. Preliminaries

The ϑ-th Caputo-like difference operator C∆ϑ
t is characterized as [34]

C∆ϑ
t Υ(κ) = ∆−(v−ϑ)

t ∆vΥ(κ). (1)

κ ∈ (N)t−ϑ+v and v = ⌈ϑ⌉+ 1, v − 1 < ϑ ≤ v. The fractional sum ∆−ϑ
t is defined as [35]

∆−ϑ
t Υ(κ) =

1
Γ(ϑ)

κ−ϑ

∑
a=ϑ

(κ − a − 1)(ϑ−1)Υ(a), κ ∈ (N)v+ϑ, ϑ > 0. (2)

where Euler’s Gamma function is denoted as

Γ(ϑ) =
∫ ∞

0
tϑ−1e−t dt. (3)

Next, we introduce the following theorem to derive the fractional discrete system’s
numerical formula:

Theorem 1 ([36]). The solution of the following system:C∆ϑ
t Υ(κ) = h(κ − 1 + ϑ, Υ(κ + ϑ − 1))

∆ȷΥ(κ) = Υj, v = ⌈ϑ⌉+ 1,
(4)

is given by

Υ(κ) = Υ0(t) +
1

Γ(ϑ)

κ−ϑ

∑
a=v−ϑ

(κ − a)(ϑ−1)g(a + ϑ − 1, Υ(a + ϑ − 1)), κ ∈ Nt+v, (5)

where

Υ0(t) =
v−1

∑
ȷ=0

(k − t)ȷ

Γ(n + 1)
∆ȷΥ(t). (6)

Take t = 0, ȷ = ϑ − 1 + a, for ϑ ∈ (0, 1] and v = 1, (κ − a − 1)(ϑ−1) = Γ(κ−ℓ)
Γ(κ−ℓ−ϑ+1) , the

numerical Formula (5) is written as

Υ(κ) = Υ(0) +
1

Γ(ϑ)

κ−1

∑
ȷ=0

Γ(κ − n + ϑ − 1)
Γ(κ − n)

h(ȷ, Υ(ȷ)). (7)
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Now, the theorem below is practiced to value the stability under incommensurate
orders of discrete fractional non-linear models.

Theorem 2 ([37]). Consider the system

C∆ϑ1
t y1(κ) = Υ1(y(κ − 1 + ϑ1)),

C∆ϑ2
t y2(κ) = Υ2(y(κ − 1 + ϑ2)), κ = 0, 1, · · · ,

...
C∆ϑn

t yn(κ) = Υn(y(κ − 1 + ϑn)).

(8)

Let y(κ) = (y1(κ), ..., yn(κ))T ∈ Rn, Υ = (Υ1, ..., Υn) : Rn → Rn, Let ϑi ∈ (0, 1],
ı = ¯1..n), and M is the (LCM) of the denominators ν̄ı of ϑı added to ϑı = ῡı

ν̄ı
, (ῡi, ν̄ı) = 1,

ῡi, ν̄ı ∈ Z+, ∀ı = 1, n.

det(diag(λMϑ1 , · · · , λMϑm)− (1 − λM)B) = 0, (9)

if each root of (9) involved in C/Kϱ as B represents the Jacobian matrix of (8) and ϱ = 1
M

Kϱ =

{
η ∈ C : |η| ≤

(
2 cos

|argη|
ϱ

)ϱ

and |argη| ≤ ϱπ

2

}
. (10)

It follows that (8) has an asymptotically stable zero solution.

2.2. Description of the Incommensurate System

In [38], Bao et al. found that the suggested memristive map displayed multistable
behavior. On the other hand, the sigmoidal functions are renowned for their unique
non-linear characteristics and ability to change data. Very recently, innovative dynamical
systems with particular characteristics could be produced by incorporating this function
and the memristive map into the design of discrete chaotic systems. In this work, based
on [39,40], we produce the novel incommensurate discrete memristive system using the
difference operator C∆ϑi

t , which can be represented as follows:

C∆ϑ1
t y1(κ) =

α1

1 + e−βy1(κ+ϑ1−1)
+ α2y1(κ + ϑ1 − 1)((y2(κ + ϑ1 − 1))2 − 1)− y1(κ + ϑ1 − 1),

C∆ϑ2
t y2(κ) = y1(κ + ϑ2 − 1),

(11)

where α1, β and α2 are the influence of the system.

2.3. Equilibrium Points Analysis

Through solving the following equation system, the (y∗1 , y∗2) equilibrium points of the
incommensurate discrete memristive system (11) can be found:

α1

1 + e−βy∗1
+ α2y∗1((y

∗
2)

2 − 1)− y∗1 = 0,

y∗1 = 0.
(12)

From Equation (2) of (12), y∗1 = 0, replacing y∗1 in Equation (1), for α1 ̸= 0 it becomes
apparent that the system (12) has no solution. Therefore, the incommensurate discrete
memristive system (11) can create hidden chaotic attractors and exhibits asymmetry if
α1 ̸= 0 as shown in Figure 1. For more details, hidden attractors may manifest in a sym-
metric dynamic manner that preserves the symmetry of the system; their trajectories may
mirror or repeat within symmetrical boundaries of the phase space of the incommensurate
discrete memristive system. This may result in periodic or symmetric chaotic behavior,
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whereas hidden attractors may show skewed or irregular dynamics in asymmetric dynamic,
disrupting the system’s apparent regularity. Our results indicate that the hidden attractor
does not originate from the local dynamics around the equilibrium points. This confirms
that the attractor is hidden, as it can only be detected under specific initial conditions away
from the vicinity of equilibrium.

(a) α1 = 0 (b) α1 ̸= 0

Figure 1. (a) Symmetry for α1 = 0, β = 0.5 and α2 = 1.75, (b) asymmetry for α1 = 0.16, β = 0.5
and α2 = 1.75.

3. Existence of Hidden Chaotic Attractors
The main subject of this section is studying the dynamics of the novel incommensurate

discrete memristive system. The following describes the numerical formula of (11) based
on Theorem 1:

y1(κ) = y1(0) + 1
Γ(ϑ1)

κ
∑

ȷ=0

Γ(κ−1−ȷ+ϑ1)
Γ(κ−ȷ)

(
α1

1+e−βy1(ȷ) + α2y1(ȷ)((y2(ȷ))2 − 1)− y1(ȷ)
)

,

y2(κ) = y2(0) + 1
Γ(ϑ2)

n
∑

ȷ=0

Γ(κ−1−ȷ+ϑ2)
Γ(κ−ȷ)

(y1(ȷ)). κ = 1, 2, · · · .
(13)

In order to understand a chaos theory in the fractional system, we use the Jacobian
matrix technique [41] to find the maximum Lyapunov exponents (LEmax), where Ja is
characterized by

Ja =

(
F1(a) F2(a)
W1(a) W2(a)

)
, (14)

where 

F1(a) = F1(0) + 1
Γ(ϑ1)

a−1
∑

ȷ=0

Γ(ϑ1+a−ȷ−1)
Γ(ȷ−j) (

βα1e−βy1(ȷ)

(1+e−βy1(ȷ))2 + α2(y2(ȷ)2 − 1)− 1)F1(ȷ)+

(2y2(ȷ)α2y1(ȷ))W1(ȷ)),

F2(a) = F2(0) + 1
Γ(ϑ1)

a−1
∑

ȷ=0

Γ(ϑ1+a−ȷ−1)
Γ(a−j) (

βα1e−βy1(ȷ)

(1+e−βy1(ȷ))2 + α2(y2(ȷ)2 − 1)− 1)F2(ȷ)+

(2y2(ȷ)α2y1(ȷ))W2(ȷ)),

W1(a) = W1(0) + 1
Γ(ϑ2)

a−1
∑

ȷ=0

Γ(ϑ2+a−ȷ−1)
Γ(a−ȷ)

F1(ȷ),

W2(a) = W2(0) + 1
Γ(ϑ2)

a−1
∑

ȷ=0

Γ(ϑ2+a−ȷ−1)
Γ(a−ȷ)

F2(ȷ).

(15)

where (
F1(0) F2(0)
W1(0) W2(0)

)
=

(
1 0
0 1

)
. (16)
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Then, the LEt of the fractional system can be given by

LEt = lim
a→∞

1
a

ln |λ(a)
t |, for t = 1, 2, (17)

where λ
(a)
t are the eigenvalues of Ja.

Set the parameters α1 = 0.16, α2 = 1.75, β = 0.5 and the initial condition (IN):
(y1(0), y2(0)) = (−0.3, 0.3). First, Figure 2 portrays the evolution states of the incommen-
surate discrete memristive system (11) for (ϑ1ϑ2) = (1, 0.97), while the resulting hidden
asymmetry chaotic attractor for different incommensurate orders (ϑ1, ϑ2) as shown in
Figure 3. Therefore, these findings show that the form of the hidden attractors of (11) is
affected by the selection of the incommensurate orders.

(a) Evolution of y1 (b) Evolution of y2

Figure 2. Time evolution of (11) for (ϑ1, ϑ2) = (1, 0.97) with IN.

(a) (ϑ1ϑ2) = (0.98, 0.1) (b) (ϑ1ϑ2) = (0.89, 0.2) (c) (ϑ1ϑ2) = (0.97, 1)

(d) (ϑ1ϑ2) = (0.85, 0.7) (e) (ϑ1ϑ2) = (0.95, 0.85) (f) (ϑ1ϑ2) = (1, 1)

Figure 3. Hidden attractors of (11) for various incommensurate order (ϑ1ϑ2) and IN.

Case 1: In this case, to gain a deeper comprehension of the influence of incommensurate
orders on the evolution of (11), we change ϑ1 and ϑ2, the incommensurate orders,
so that the stability region shrinks and the chaotic area expands. From Figure 4,
we provide bifurcation charts along with the related plots LEmax when versus
ϑ1 ∈ [0.75, 1] and we choose ϑ2 = 1, we can see that the states become totally
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chaotic where the LEmax values are positive. As seen in Figure 5, versus ϑ2 ∈ (0, 1]
and we fixed the incommensurate order as ϑ1 = 1 so that the trajectories of the
proposed incommensurate discrete memristive system (11) move adaptability
between a stable motion and a hidden chaotic. When ϑ2 ∈ [0, 0.19], it is observed
that the discrete system exhibits stable trajectories with the periodic motion 2, 6 and
12-period orbits, while it is periodic in [0.45, 0.55]. When ϑ2 ∈ [0.2, 0.44]∪ [0.56, 0.6]
the LEmax gradually increase which indicates the existence of chaos. In addition,
when ϑ2 increases until it approaches 1 where the LEmax until their highest values,
the incommensurate discrete memristive system (11) becomes totally chaotic.
Consequently, numerous values of the incommensurate derivative affect the rich
dynamics of (11).

(a) (b)

Figure 4. (a) Bifurcation of (11) for ϑ1 ∈ [0.7, 1], ϑ2 = 1. (b) The associated LEmax.

(a) (b)

Figure 5. (a) Bifurcation of (11) for ϑ2 ∈ (0, 1], ϑ1 = 1. (b) The associated LEmax.

Case 2: Figure 6 displays two bifurcation diagrams and their associated graph of LEmax
for α1 versus in [0, 0.3] correspond to the incommensurate values (ϑ1, ϑ2) =

(0.9, 0.1) and (ϑ1, ϑ2) = (1, 0.97). We can see that, when (ϑ1, ϑ2) = (0.9, 0.1),
the trajectories of the a novel incommensurate discrete memristive system (11) are
totally chaotic in the interval [0, 0.3]. When (ϑ1, ϑ2) = (1, 0.97), the dynamics of
the system shift from periodic to chaotic. If α1 < 0.003, there is periodic behavior
where LEmax values are negative; otherwise, if α1 increases the LEmax takes their
higher values, indicating that the chaotic region expanded.
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Now, in Figure 7 versus α2 in [1.5, 1.9] and when choosing α1 = 0.16, the trajec-
tories exhibit the system ranging from periodic to chaotic. Specifically, Figure 7a
shows that the behaviors of the incommensurate discrete memristive system
(11) transition between regular and period-doubling bifurcation. When α2 at
[1.5, 1.625], the trajectories are periodic with negative values of LEmax, while when
1.625 < α2 < 1.88, the system becomes period-doubling bifurcation where the
LEmax values are positive, as shown in Figure 7b. Furthermore, when α2 increases,
the system exhibits a divergence towards infinity. In addition, in Figure 7c, we can
see that the chaotic motions appear when α2 ∈ [1.68, 1.718] ∪ [1.722, 1.88], while
α2 ∈ [1.5, 1.679] show periodic windows with 2-period orbits, at [1.719, 1.721] also
indicating the periodic orbit of the system where the LEmax alternates between
positive values and negative values, as seen in Figure 7d. When α2 increases
and becomes close to 1.9, the map the chaotic region expanded. It is apparent
that the behaviors of (11) are influenced by the incommensurate derivative or-
der (ϑ1ϑ2) = (1, 1). It is simple to see that the two suggested incommensurate
derivatives have distinct shapes.

(a) (b)

(c) (d)

Figure 6. Bifurcation and the associated LEmax of (11) versus α1 for (a,b) (ϑ1, ϑ2) = (0.9, 0.1);
(c,d) (γ1, γ2) = (1,0.97).
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(a) (b)

(c) (d)

Figure 7. Bifurcation and the associated LEmax of (11) versus α2 for (a,b) (ϑ1, ϑ2) = (0.9, 0.1);
(c,d) (ϑ1, ϑ2) = (1,0.97).

4. Chaotic Test and Entropy
In this section, we focus on examining the incommensurate discrete memristive sys-

tem’s chaotic motion and complexity. We use the C0 Complexity algorithm, the sample
entropy approach (SampEn) and the 0-1 test to verify and assess the degree of chaos in the
system. Using these techniques, we discover that the chaotic region of the discrete system
is amplified in proportion to the complexity measures. This relationship emphasizes the
connection between chaos and complexity, showing how the discrete memristive system’s
behavior is greatly enhanced by introducing incommensurate orders, leading to more
complex and prominent chaotic phenomena.

4.1. 0-1 Test

The 0-1 test [42] is particularly advantageous for the affirmation of areas of chaos and
uniform behavior of the novel incommensurate discrete system (11). Initially, we present
the translation component as follows:

p♭(s) =
s

∑
ζ=1

x(ζ) cos(ζ♭), q♭(s) =
s

∑
ζ=1

x(ζ) sin(ζ♭), (18)

where the translation variables are represented by x(ζ), ζ = 1, N, and the constant ♭ ∈
in(0, π) is chosen at random. Next, the meaning of mean square displacement is as follows:

M♭(s) = lim
N→∞

1
N

N

∑
ζ=1

[(
p♭(ζ + s)− p♭(ζ)

)2
+
(
q♭(ζ + s)− q♭(ζ)

)2
]
, ζ ≤ N

10
. (19)
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Additionally, K♭, the rate of asymptotic growth, is represented by

K♭ = lim
s→∞

log M♭(s)
log ζ

. (20)

Plotting p♭, q♭ is employed to determine whether or not chaos exists. So, if K = median(K♭)

is close to 1, the dynamics of (11) will be chaotic; otherwise, it will become regular as K
approaches 0 and p♭-q♭ exhibits bounded-like behavior.

Therefore, the p − q plots of the incommensurate discrete memristive system (11) for
different incommensurate values can be seen in Figure 8. Particularly, when (ϑ1, ϑ2) = (1, 0.01)
in Figure 8a and (ϑ1, ϑ2) = (1, 0.48) in Figure 8b they display bounded-like states, indicating
a periodic nature of the system. When (ϑ1, ϑ2) = (0.9, 0.1), they show Brownian-like states.
Figure 8c and (ϑ1, ϑ2) = (1, 0.97), as well as Figure 8d affirm that the incommensurate
system is chaotic. Then, these findings are consistent with the bifurcation and (LEmax).

(a) (ϑ1, ϑ2) = (0.9, 0.1) (b) (ϑ1, ϑ2) = (1, 0.01)

(c) (ϑ1, ϑ2) = (1, 0.48) (d) (ϑ1, ϑ2) = (1, 0.97)

Figure 8. The 0-1 test of the incommensurate discrete memritive system (11).

4.2. The Sample Entropy

The complexity of the incommensurate discrete memristive system (11) is measured
using the sample entropy (SampEn) [43,44] in this part when large values of SampEn signify
a greater level of complexity. The SampEn algorithm is considered as follows:

SampEn = − log
Θj+1(µ)

Θj(µ)
, (21)
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where Θj(µ) is given by

Θj(µ) =
1

l̄ − j + 1

l̄−j+1

∑
j=1

log Cι
j(µ), (22)

with µ = 0.2std(x).
Figure 9 displays the approximate sample entropy of the incommensurate discrete

memristive system (11), with β = 0.5, IN. However, the larger sample entropy values of the
incommensurate system (11) demonstrate the higher complexity of the system, as indicated
by the results of (SampEn), which is in agreement with the LEmax analysis.

(a) (b)

Figure 9. SampEn of (11) versus α1 and α2 for (a) (ϑ1, ϑ2) = (1, 0.97), (b) (ϑ1, ϑ2) = (0.9, 0.1).

4.3. C0 Complexity

In this part, employing the C0 complexity method [45], which is derived from the
inverse Fourier transform, we measured the complexity of the incommensurate discrete
memristive system (11).

The methodology for {Ω(σ), σ = 1, .., Q − 1} is explained from the following:

• The Fourier transform of Ω(σ) is ascertained by

χQ(σ) =
1
Q

Q−1

∑
σ=0

Ω(σ) exp−2πi( kj
Q ), σ = 0, 1, .., Q − 1. (23)

• Explaining the mean square of χQ(σ) as GQ = 1
Q ∑Q−1

σ=0 |χQ(σ)|2, set

χ̄Q(σ) =

χQ(σ) if ∥χQ(σ)∥2 > rGQ,

0 if ∥χQ(σ)∥2 ≤ rGQ.
(24)

• To find the inverse Fourier transform, use the following expression:

ρ(ȷ) =
1
Q

Q−1

∑
σ=0

χ̄Q(σ) exp2πi( ȷσ
Q ), ȷ = 0, 1, .., Q − 1. (25)

• The C0 complexity is determined by using the ensuing formula:

C0 =
∑Q−1

ȷ=0 ∥ρ(ȷ)− Ω(ȷ)∥

∑Q−1
ȷ=0 ∥Ω(ȷ)∥2

. (26)
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Figure 10 shows the C0 complexity of the incommensurate discrete memristive sys-
tem (11). Specifically, Figure 10a versus ϑ1 ∈ [0.75, 1] for ϑ2 = 1 while Figure 10b versus
ϑ2 ∈ (0, 1] for ϑ1 = 1 where α1 ∈ [0, 0.3] are versus parameter for α2 = 1.75. Meanwhile,
Figure 10c α2 ∈ [1.5, 1.9] are versus parameter for α1 = 0.16 where ϑ1 ∈ [0.75, 1] versus for
ϑ2 = 1 and Figure 10d versus ϑ2 ∈ (0, 1] for ϑ1 = 1. The systems’ higher complexity is
confirmed by the C0 complexity results. These outcomes are consistent with the previously
mentioned findings.

(a) ϑ1 ∈ [0.75, 1] (b) ϑ2 ∈ (0, 1]

(c) ϑ1 ∈ [0.75, 1] (d) ϑ2 ∈ (0, 1]
Figure 10. The C0 complexity of (11) versus ϑ1, ϑ2 and (a,b) α1 ∈ [0, 0.3], (c,d) α2 ∈ [1.5, 1.9].

5. Chaos Control Approaches
The stability analysis and synchronization schema of the incommensurate discrete

memristive system (11) are covered in this section. Presenting the following propositions,
which serve as the foundation for examining the stabilization and synchronization of
incommensurate discrete systems, is our first goal. The efficacy of the suggested control
strategy is then shown through numerical simulations.

5.1. Stabilization

In this part, we stabilize the suggested incommensurate discrete memristive sys-
tem (11) by guaranteeing the stability conditions that each state of the system converges
to zero.

The following describes the controlled system of the incommensurate discrete system:
C∆ϑ1

t y1(κ) =
α1

1 + e−βy1(κ+ϑ1−1)
+ α2y1(κ + ϑ1 − 1)((y2(κ + ϑ1 − 1))2 − 1)−

y1(κ + ϑ1 − 1) + L1(κ + ϑ1 − 1),
C∆ϑ2

t y2(κ) = y1(κ + ϑ2 − 1) + L2(κ + ϑ2 − 1),

(27)

where L = (L1, L2)
T is the adaptive controller. Next, the stabilization of the system is

governed by the following control:
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Proposition 1. The incommensurate system (11) is stable employing the 2D control
L1(κ + ϑ1 − 1) = − α1

1 + e−βy1(κ+ϑ1−1)
− α2y1(κ + ϑ1 − 1)(y2(κ + ϑ1 − 1))2+

α2y1(κ + ϑ1 − 1),

L2(κ + ϑ2 − 1) = −1
2

y2(κ + ϑ2 − 1).

(28)

Proof Substituting (28) by (27), we obtain the subsequent system outcomes:
C∆ϑ1

t y1(κ) = −y1(κ + ϑ1 − 1),

C∆ϑ2
t y2(κ) = y1(κ + ϑ2 − 1)− 1

2
y2(κ + ϑ2 − 1).

(29)

So
det(diag(λMϑ1 , λMϑ2 − (1 − λM)B) = 0,

where M = 100,

B =

(
−1 0
1 − 1

2

)
. (30)

For (ϑ1, ϑ2) = (1, 0.97)

det

((
λ100 0

1 λ97

)
−
(

1 − λ100
)

K

)
= 0,

⇔
λ197 − 0.5λ110 − λ107 + 0.5λ100 + λ97 + 0.5λ20 − λ10 + 0.5 = 0. (31)

Based on Theorem 2, and since a consequence of λj ∈ C/K
1

100 , (j = 1, 197), in the
direction of (0, 0), the (27) is asymptotically stable. Figure 11 highlights the stabilization of
the controlled incommensurate discrete memristive system (27) for (ϑ1, ϑ2) = (1, 0.97) by
showing how the system asymptotically becomes (0, 0).

(a) Stabilization of y1 (b) Stabilization of y2

Figure 11. Cont.
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(c) Attractor
Figure 11. The stabilized states and attractors of the controlled (27) for (ϑ1, ϑ2) = (1, 0.97).

5.2. Synchronization

In order to synchronize the states of the drive and the response chaotic models, control
parameters are added to the response system. This forces the response system states
towards those of the drive chaotic discrete system. Therefore, the incommensurate discrete
memristive system (11) is regarded as the "Drive" system and defines the "Response" in the
following manner:

C∆ϑ1
t y1m(κ) =

α1

1 + e−βy1m(κ+ϑ1−1)
+ α2y1m(κ + ϑ1 − 1)((y2m(κ + ϑ1 − 1))2 − 1)−

y1m(κ + ϑ1 − 1) + N1(κ + ϑ1 − 1),
C∆ϑ2

t y2m(κ) = y1m(κ + ϑ2 − 1) + N2(κ + ϑ2 − 1).

(32)

N1, N2 signify the synchronization controllers. The following yields the fractional
error map:



C∆ϑ1
t e1(κ) = α1

( 1
1 + e−βy1m(κ+ϑ1−1)

− 1
1 + e−βy1(κ+ϑ1−1)

)
− α2e1(κ + ϑ1 − 1)

(
(y2(κ + ϑ1 − 1))2

− y2m(κ + ϑ1 − 1))2
)
+ α2e1(κ + ϑ1 − 1) + e1(κ + ϑ1 − 1) + N1(κ + ϑ1 − 1),

C∆ϑ2
t e2(κ) = e1(κ + ϑ2 − 1) + N2(κ + ϑ2 − 1).

(33)

where the synchronization error is characterized as{
e1(κ) = y1m(κ)− y1(κ),

e2(κ) = y2m(κ)− y2(κ),
(34)

limκ→∞ ∥ eȷ(κ) ∥= 0, ∀ȷ = 1, 2.

Proposition 2. Subject to


N1(κ + ϑ − 1) = −α2e1(κ + ϑ1 − 1)− α1

( 1
1 + e−βy1m(κ+ϑ1−1)

− 1
1 + e−βy1(κ+ϑ−1)

)
+

α2e1(κ + ϑ1 − 1)
(
(y2(κ + ϑ1 − 1))2 − y2m(κ + ϑ1 − 1))2

)
,

N2(κ + ϑ2 − 1) = −1
2

e2(κ + ϑ2 − 1).

(35)

Then, there is a synchronization between the response system (32) and the drive (11).
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Proof. Substituting (35) into the error system (36), we obtain
C∆ϑ1

t e1(κ) = −e1(κ + ϑ1 − 1),

C∆ϑ2
t e2(κ) = e1(κ + ϑ2 − 1)− 1

2
e2(κ + ϑ2 − 1),

(36)

⇐⇒
C∆ϑi

t (e1(κ), e2(κ))
T = B(e1(κ + ϑi − 1), e2(κ + ϑi − 1))T , i = 1, 2. (37)

where

B =

(
−1 0
1 − 1

2

)
. (38)

Thus, the eigenvalues of B are λ1 = −1, λ2 = − 1
2 , which satisfy the condition of

Theorem 2. Then, the control law (35) realizes the synchronization of the drive (11) and the
response (32) incommensurate discrete memristive system. Using numerical simulations,
this outcome is shown, wherein we chose (e1(0), e2(0) = (−0.1,−0.1), and Figure 12
displays the states and attractor of the error (36). Evidently, the errors are getting closer to
zero, which confirms the synchronization outcomes.

(a) Evolution of e1 (b) Evolution of e2

(c) Attractor e1-e2

Figure 12. Synchronization of the error system (36).

6. Conclusions and Perspectives
This paper introduces a novel fractional discrete memristive system with incommen-

surate orders. It thoroughly studies the influence of incommensurate fractional orders on
the system’s dynamics and behavior.

First, asymmetric analysis of the system without a fixed point that also varied the
parameters or derivative fractional values showed that the system can exhibit a variety
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of intricate hidden dynamical behaviors. Second, the quantitative evaluation of system
complexity was confirmed by the 0-1 test, the (SampEn) method and C0 Complexity. Third,
efficient control laws that can ensure the stabilization and synchronization of the incom-
mensurate discrete memristive system states while forcing them to approach asymptotic
zero were developed. Lastly, the outcomes were shown through numerical simulations
conducted using MATLAB R2024a.

Future work should take into account memristive maps based on certain phenomena,
as they are valuable in understanding the implications of fractional chaotic memristive
map and furthering the study of chaotic dynamics systems.
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