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Abstract: Let u, v, and w be indeterminates over Fpm and let R = Fpm + uFpm + vFpm + wFpm ,

where p is a prime. Then, R is a ring of order p4m, and R ∼= Fpm [u,v,w]
I with maximal ideal

J = uFpm + vFpm + wFpm of order p3m and a residue field Fpm of order pm, where I is an appro-
priate ideal. In this article, the goal is to improve the understanding of linear codes over local
non-chain rings. In particular, we investigate the symmetrized weight enumerators and generator
matrices of linear codes of length N over R. In order to accomplish that, we first list all such rings up
to the isomorphism for different values of the index of nilpotency l of J, 2 ≤ l ≤ 4. Furthermore, we
fully describe the lattice of ideals of R and their orders. Next, for linear codes C over R, we compute
the generator matrices and symmetrized weight enumerators, as shown by numerical examples.

Keywords: symmetrized weight enumerator; coding over rings; Frobenius rings; generator matrix

MSC: 94B60; 94B05; 16P20; 16L30

1. Introduction

Every ring used in this work is a finite and commutative ring with an identity. This ar-
ticle highlights the importance of finite local rings, characterized by having the set of zero
divisors J to form an ideal, with the quotient ring being a field. Each local ring is associ-
ated with specific integer invariants p, n, m, t, and k, where p is a prime number. When
J is principal, it generates a distinguished class known as chain rings [1–4]. Chain rings
are, in fact, principal ideal rings (PIRs), and PIRs are a subclass of Frobenius rings. This
article investigates the properties of codes over Frobenius rings. One of the main reasons
that Frobenius rings are the appropriate class used to describe codes is that they satisfy
MacWilliams identities, which connect the symmetrized weight enumerators of a linear
code to that of its dual; see [5–9]. Furthermore, Frobenius local rings can be decomposed
into their component parts, and this enable us to find their generating characters. For more
on codes over finite rings, see [10–15] and related references.

Linear codes with length N over a ring R are subsets of RN that are R-submodules.
Linear codes over rings and those over fields are associated by Gray maps. While linear
codes over chain rings have been extensively studied, codes over local rings, which are
not chain rings, have not received as much attention. Therefore, the main objective of
this work is to produce significant coding results over local non-chain rings in order to
further this field of study. In particular, we focus on codes over rings having the form
Fpm + uFpm + vFpm + wFpm and of order p4m. Such a class of rings was developed in order
to build new sequences with optimal Hamming correlation qualities. These sequences
were then proven to be helpful in spreading spectrum communication systems that use
frequency-hopping multiple access (FHMA). Previous work on these rings was described
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in [16], where it was emphasized how applicable they are to coding theory and how closely
they relate to linear binary codes and Zpn . These methods were taken into consideration by
the authors of [9] for Frobenius local rings of small order 16. In [7], rings of order 32 were
used to characterize generator matrices and generating characters. In an attempt to expand
upon earlier discoveries, this paper offers access to more generic rings with higher orders.
With t = 4, let R = Fpm + uFpm + vFpm +wFpm , where J = uFpm + vFpm + wFpm is the max-
imum ideal of R, i.e., R is a local ring with invariants (parameters) p, n = 1, m, t = 4, k = 3
and of order p4m. In this paper, we investigate two important tools of coding theory: gen-
erator matrices and MacWilliams relations. Having a generator matrix that can generate
the code and provide the code size is a very helpful tool for linear codes. There is a well-
known canonical form that accomplishes this for codes over chain rings. Codes over local
non-chain rings, however, do not work like this. We provide the natural extension of this
canonical form to R = Fpm + uFpm + vFpm + wFpm . During the process, we show why
determining the code size is not always obtained directly from such a generator matrix.
Next, we present a formula for a generating character ν associated with R. This formula is
then used to generate a matrix, which we make use of it to obtain the MacWilliams relations
between symmetrized weight enumerators for a code C over R and that of its dual code.

Following the basic definitions and findings in Section 2, the list of rings of the type
R = Fpm + uFpm + vFpm + wFpm , and invariants p, m, 4, and 3 with order p4m are provided
in Section 3. A special focus is on supplying all the information required to define the
lattice of ideals of R and to describe them. The results for matrices generating linear codes
over such rings are given in Section 4. While Section 5 provides the general procedure
for character creation for R when it is Frobenius. Furthermore, a suitable matrix for
the symmetrized weight enumerator is obtained, which leads to the determination of
MacWilliams relations.

2. Preliminaries

This section provides necessary notations and basic information that will be utilized
later in our discussion. We will rely on the proven results stated below (see [1–4,17]).

In our discussion, we set R = Fpm + uFpm + vFpm +wFpm , which is a finite local ring of
order p4m, where u, v, and w are indeterminates (basis) over Fpm . Then, the size of J(R) = J
is |J| = p3m with R/J ∼= GF(pm) = Fpm . The index of nilpotency l of J is defined by Jl = 0
but Jl−1 ̸= 0. As J4 = 0, we thus have 2 ≤ l ≤ 4. Note that when l = 1, R will be a field of
order pm, i.e., R ∼= Fpm , and this contradicts the hypothesis on u, v, and w. If J is a principal,
then R is a chain with parameters p, m, 4, and 3, and in particular, we have

R = Fpm [u] ∼=
Fpm [x]
(g(x))

,

where u is a root of an Eisenstein polynomial g(x) ∈ Fpm [x]. Let

Γ(m) = (α) ∪ {0} = {0, 1, α, α2, . . . , αpm−2};

Γ∗(m) = (α) = {1, α, α2, . . . , αpm−2}.

Suppose γ ∈ R. So,

γ = α0 + uα1 + vα2 + wα3 ((u, v, w)-adic expression). (1)

where αi ∈ Γ(m) and 0 ≤ i ≤ 3. If we set H = 1 + J, then the unit group of R, U(R), is
factorized as

U(R) = (α)× H. (2)
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Because n = 1, we label p, m, 4, and 3 as parameters of R. It is worth mentioning that there
are three possible values for l, and thus, three chains (sequences) exist for J:

R = J0 ⊃ J ⊃ J2 = 0, if l = 2;

R = J0 ⊃ J ⊃ J2 ⊃ J3 = 0, if l = 3;

R = J0 ⊃ J ⊃ J2 ⊃ J3 ⊃ J4 = 0, if l = 4.

The structure of J plays an essential role, as we see later, in the classification of R. In
general, we have

J = uFpm + vFpm ++wFpm . (3)

Thus,

R ∼=
Fpm [u, v, w]

I
,

where I is an ideal with respect to the indeterminates u, v, and w. The total sum of all
minimal ideals in R is what we define as the socle of R, also known as soc(R). As R
is commutative, then soc(R) = ann(J). A finite ring is said to be a Frobenius ring if
R/J ∼= soc(R) [6]. Another equivalent definition for Frobenius rings is given using the
concept of the character. Let HomZ(R,C∗) denote the character group of (R,+); then,
elements of HomZ(R,C∗) are called characters χ of (R,+). If kerχ has no non-trivial ideals
of R, then χ is named a generating character. Now, R is called Frobenius if soc(R) is a
cyclic ideal, generated by one element (principal). As a direct result, every PIR is Frobenius,
and particularly every chain ring is Frobenius.

A code C of length N over R is a subset of RN ; it is called linear if it is an R-submodule.
Furthermore, by including the inner-product (·) in RN , the dual code C⊥ of C is defined
as follows:

C⊥ = {u : c · u = 0, c ∈ C}. (4)

3. On the Ring Fpm + uFpm + vFpm + wFpm

This section involves proofs of some results on local rings with residue field Fpm

and finite rings of order p4m, and with inderterminants (basis) u, v, and w. These findings
support our discussion that will follow. | R |= p4m and

R = Fpm + uFpm + vFpm + wFpm , (5)

Hence,
J = uFpm + vFpm ++wFpm . (6)

Suppose di = dimFpm (Ji/Ji+1), where i = 1, 2, 3. Then, we have

d1 + d2 + d3 = 3 = k.

If p ̸= 2, consider the usual partition on Γ∗(m) :

A = {β ∈ Γ∗(m) : β /∈ Γ∗(m)2};

B = {β ∈ Γ∗(m) : β ∈ Γ∗(m)2}.

As l = 2, 3, 4, we have three possible cases.
Case a. When l = 2. Then, we have J = (u, v, w) and J2 = 0.

Theorem 1. Suppose R = Fpm + uFpm + vFpm + wFpm has invariants p, m, 4, and 3 with l = 2.
Then, there is a unique (up to isomorphism) ring with such conditions of the form

R ∼=
Fpm [u, v, w]

(u, v, w)2 .
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Furthermore, R is not Frobenius, and

soc(R) = (u, v, w).

Proof. As l = 2, J2 = 0, and thus, d1 = dimFpm (J/J2) = 3. This means that J = (u, v, w)

with the condition that u2 = v2 = w2 = 0. It is clear that soc(R) = (u, v, w), and thus, R is
not Frobenius.

Remark 1. We observe that
R

(u, v, w)
∼= Fpm ̸∼= soc(R).

Example 1. There is only one ring of the form F2[u,v,w]
(u,v,w)2 of order 16 with Jacobson radical J = (u, v, w)

of order 8. This ring is not Frobenius.

Case b. If l = 3, then we have the sequence

R = J0 ⊃ J ⊃ J2 ⊃ J3 = 0. (7)

Theorem 2. Assume R is a local ring with invarinats p, m, 4, and 3 and l = 3. Then, R is
isomorphic to one and only one ring of the following:

(i)
Fpm [u, v]
(u3, v2, uv)

; (ii)
Fpm [u, v]

(u2 − βv2, uv)
;

(iii)
Fpm [u, v]

(u2 − v2, uv)
; (iv)

F2m [u, v]
(u2, v2)

,
(8)

where β ∈ A.

Proof. First note that if d1 = dimFpm (J/J2), then d2 = dimFpm (J2) ≤ d2
1. Thus, we have

only the case d1 = 2 and d2 = 1 because d1 + d2 = 3 and the number of indetermi-
nates (basis) over Fpm . Let u, v ∈ J \ J2. Then, we have three choices for w ̸= 0, which
are w = α1u2, w = α2v2, or w = uv, where α1, α2 ∈ Γ∗(m). As J3 = 0, then all mul-
tiplications uw, vw, w2, v2u, and u2v equal zero. Suppose that w = α1u2 ̸= 0. Then,
v2 ∈ J2 = (w, uv, v2). As d2 = 1, uv = 0 and J2 = (u2). This implies that v2 = 0 or
v2 = γu2, where γ ∈ Γ∗(m). Hence, if v2 = 0, the construction of R is obvious with u3 = 0.
On the other hand, v2 = γu2, which leads to v2 = γ′w2, where γ′ = γα−1

1 , and thus,
v2 − γu2 = 0. Therefore,

R ∼=
Fpm [u, v]
(u3, v2, uv)

, when v2 = 0,

R ∼=
Fpm [u, v]

(u2 − γv2, uv)
, when v2 = γu2.

Observe that
Fpm [u,v]

(v2−γu2,uv)
∼=

Fpm [u,v]
(u2−γ1v2,uv) , just by replacing u with v and vise versa.

If p ̸= 2, there are two non-isomorphic rings, namely R1 =
Fpm [u,v]

(u2−γ1v2,uv) , γ1 ∈ A, and

R2 =
Fpm [u,v]

(u2−γ2v2,uv) , where γ1 ∈ B. Note that
Fpm [u,v]

(u2−γ2v2,uv)
∼=

Fpm [u,v]
(u2−v2,uv) . To prove that R1 ̸∼= R2,

assume the converse. Suppose ϕ is the isomorphism, and J(R2) = (u′, v′). Then, for some
β′ ∈ Γ∗(m), ϕ(u) = β′u′. Consequently, we obtain
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(ϕ(u))2 = ϕ(u2)

(β′u′)2 = ϕ(γ1v2)

β′2u′2 = ϕ(γ1)ϕ(v2)

β′2u′2 = ϕ(γ1)ϕ(v)2

β′2u′2 = ϕ(γ1)(γ3v′)2

β′2u′2 = ϕ(γ1)γ
2
3v′2

β′2u′2 = ϕ(γ1)γ
2
3u′2

(β′γ−1
3 )2 = ϕ(γ1).

Because p ̸= 2, this contradicts the assumption that γ1 ∈ A, and thus, R1 ≇ R2. The
second case is when w = α2v2, and this is equivalent to the first case; we replace u with

v. Finally, if w = uv, then v2 = 0 = u2 = 0, and hence, R ∼=
Fpm [u,v]
(u2,v2)

. Now, if p ̸= 2, then
Fpm [u,v]
(u2,v2)

∼=
Fpm [u,v]

(u2−v2,uv) by replacing u and v with u + v and u − v, respectively. However,

when p = 2, then F2m [u,v]
(u2,v2)

̸∼= F2m [u,v]
(u2−v2,uv) .

Corollary 1. If l = 3, then the number of rings N(p, m, 4, 3) = 3 if p ̸= 2, and 4 otherwise.

Proposition 1. Suppose that R is with l = 3. Then,

soc(R) =


(u2, v), if R =

Fpm [u,v]
(u3,v2,uv) ,

(uv), if R = F2m [u,v]
(u2,v2)

,

(u2), if R =
Fpm [u,v]

(u2−v2,uv) and R =
Fpm [u,v]

(u2−βv2,uv) .

(9)

Proof. As J = (u, v), and since soc(R) = ann(J), then u2, v ∈ soc(
Fpm [u,v]
(u3,v2,uv) ). Thus, (u2, uv) ⊆

soc(
Fpm [u,v]
(u3,v2,uv) ). Now, assume that x is in the socle of R; then, xu = 0 and xv = 0, and hence,

x ∈ J2 + (v), which means that x ∈ (u2) + (v) = (u2, v). Hence, the result follows. By a
similar argument, we prove the other cases.

The following theorem is direct from Proposition 1.

Theorem 3. Assume that R = Fpm + uFpm + vFpm + wFpm has parameters p, m, 4,, and 3 and
l = 3. Then, there are two Frobenius rings when p ̸= 2, and three rings if p = 2.

Case c. When l = 4, l = m = 4.

Theorem 4. Let l = 4. Then, R is a chain of the form

Fpm [u]
(u4)

.

Moreover, R is Frobenius with soc(R) = (u3).

Proof. It is enough to show that R is a chain. Because l = 4, we have the full sequence
R = J0 ⊃ J ⊃ J2 ⊃ J3 = 0, which implies that u ∈ J, v ∈ J2, and w ∈ J3, without loss of
generality. Thus, we must obtain v = u2 and w = u3. So, J = (u) is principal, and therefore,
R is a chain with an Eisenstein polynomial g(x) = x4 over Fpm .

Table 1 presents all local rings of the form Fpm + uFpm + vFpm + wFpm .
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Table 1. Local rings of order p4m.

Frobenius Rings

Non-Chain Chain Non-Frobenius Rings

R1 =
Fpm [u,v]

(u2−βv2,uv) R4 =
Fpm [u]
(u4)

Fpm [u,v]
(u3,v2,uv)

R2 =
Fpm [u,v]

(u2−v2,uv)
Fpm [u,v,w]

(u,v,w)2

R3 = F2m [u,v]
(u2,v2)

4. Generator Matrices

This section finds matrices G that produce linear codes over R. If R is any chain ring
with index l = 4, then G is expressed by

G =


It0 H0,1 H0,2 H0,3 H0,4
0 uIt1 uH1,2 uH1,3 uH1,4
0 0 u2 It2 u2H2,2 u2H2,3
0 0 0 u3 It3 u3H3,2

.

For any code C with a generator matrix of this type, the numbers t0, t1, t2, t3, are
associated with such C. A code C with such a generator matrix has an immediate result:

| C |= (pm)∑3
i=0 (l−i)ti . (10)

It is harder to construct a matrix G for codes over non-chains than for codes over
chains. Although a simple set of generators can still be found, this type of generator matrix
may not provide clear information about the code size or that of codewords. Henceforth, R
will denote a Frobenius non-chain ring.

Definition 1. If the vectors with coefficients from J cannot be combined linearly in a nontrivial
way to equal the zero vector, we refer to the vectors v1, . . . , ve as modularly independent. When the
rows of G independently produce the code C, then G is a generator matrix over the ring R.

Figure 1 above depicts the lattices of ideals of R. In addition, we have | J |= p3m,
| (v) |=| (u) |=| (v + u) |= p2m and | soc(R) |= pm. The goal of this section is to produce a
collection of independent modular vectors that represent a code’s generator matrix’s rows.
A complete description of the construction of G is given by the following theorem.

Theorem 5. Let C be a linear code with length N over R. Thus,

G =



It0 T12 T13 T14 T15 T16 T17

0 uIt1 T23 T24 T25 T26 T27

0 vIt1

0 0 uIt2 0 0

0 0 0 (v)It3 0 T1 T2

0 0 0 0 (u + v)It4

0 0 0 0 0 λIt5 T57


where Tij are matrices of various sizes.
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(a) non-chain rings (b) chain rings with l = 4

Figure 1. Lattices of ideals.

Proof. Assume that G is a matrix such that C is an R-module produced by the rows ri of G.
Each unit-containing column is shifted to the left of G. Row reduction on those columns
yields a matrix of the form

G =

(
Ie0 A1
0 T

)
Moreover, not all elements in T are unit vectors. We shift all columns holding elements

of J = (v, u) to the left once more and perform the primary row operations to convert the
matrix into the next form.

G =


It0 B1 B2

0 u B3

0 v B4

0 0 T1


We proceed with this process, ensuring that elements are arranged in columns so they

make a pair (v, u), creating the matrix T1. This process is repeated until the matrix assumes
the desired shape: 

It0 C1 C2

0 uIt1 C3

0 vIt1

0 0 T2


where one (w), (u), and (v + u) are represented by the elements of matrix T2’s columns.
Next, we will deal with matrix T2. The (u), (v),, and (v+ u) are the three ideals. To generate
a single matrix expression, we select a specific ordering for every ideal. This chosen order
will be consistently used while building the matrix. Let us assume that α is a unit of
R. Our steps are as follows: columns containing elements of the form (v)α, columns
containing entries of the form uα, and lastly, columns containing elements of the form
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(u + v)α. In every stage, we reduce the matrix using the conventional reduction method.
Note that the socle ideal is contained in both (v) and (u + v). Since the remaining column
entries will originate from (λ), we repeat a similar procedure using soc(R) = (λ).

uIt2 0 0

0 vIt3 0 D1

0 0 (v + u)It4

0 0 0 T3


In conclusion, each element of T3 comes from the ideal that λ creates. After eliminating

any rows that are entirely made up of zeros and performing one final row reduction round,
we have a matrix that exactly matches the required form.

Example 2 shows a minimal set of generators may have not exist for C over a (non-
chain) Frobenius singleton local,which makes the code more complex. Stated differently, it
highlights the differences in coding over chain rings and that over non-chain rings.

Example 2. If G is a matrix of C over
Fpm [u,v]

(u2−βv2,uv) of the form


u v

v 0

0 u


Suppose t M1 represents the R-submodule produced by r1 and r2 of G, and M2 is the R-submodule
produced by r3 G. Thus,

M1 ∩ M2 ̸= ϕ.

This shows that C cannot be decomposed.

Example 3. To have C of order 16 over R = F2[u,v]
(u2−v2,uv) with 2, 1, 4, and 3 as invariants, set N = 1

with C = (v, u). Then, | C |= 16. Additionally, we want to construct C with size 32, assuming
that C = (w, d) with N = 2, w = (v, u), and d = (u, v). This follows that | C |= 32. Take
N = 4, w = (v, 0, u, v), and d = (u, v, 0, 0), which implies that | C |= 28. Hence,

C ∼= (w)⊕ (d).

Example 4. Suppose that G for C with length N = 2 over
Fpm [u,v]

(u2−v2,uv) has the form

u 0
v v
0 u

.

Note that t0 = 0, and t1 = t2 = 1. Consider the submodules ⟨(u, 0), (v, v)⟩, and ⟨0, u⟩,
which have a non-trivial intersection, and thus, the size of C might not be easily obtained from G.
However, if we add r1 to r3, we obtain u u

v v
0 u

.

In such G, ⟨(u, 0), (v, v)⟩ ∩ ⟨0, u⟩ = ϕ. Therefore,

| C |=| ⟨(u, 0), (v, v)⟩ | × | ⟨0, u⟩ |= p3m × p2m = p5m.
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Example 5. If we consider codes over
Fpm [u,v]

(u2−βv2,uv) associated with a generator matrix of the form,u v
v 0
0 u

.

Then matrix G in standard form might be u a
v b
0 u

,

where a, b ∈ J. Studying all possibilities of a and b from J, we conclude that if N1 = ⟨(u, a), (v, b)⟩,
and N2 = ⟨(u, 0)⟩ always have a non-trivial intersection, there is no way we can find the size of C
using G, which means that C cannot be factorized or decomposed as an R-submodule.

As the preceding application demonstrates, when working over local non-chain rings,
there is no standard generator available, unlike with codes over chain rings where a
standard form for a generator matrix exists and can be utilized to quickly compute the code
size. These rings’ inability to be major perfect rings is the root of the issue. This proves
that there is no way to find meaningful and general forms for generator matrices over local
non-chain rings using the usual methods, even though we improved schemes for rings of a
high order p4m.

5. Symmetrized Weight Enumerator and MacWilliams Relations

With p, m, 4, and 3 as invariants such that 2 ≤ l ≤ 4, let R be a Frobenius local ring of
order p4m. Theorem 6 provides a way to compute a generating character ν for R.

Theorem 6 ([7]). Let ν : R → C. Then, there exists q ∈ Z+, and for 1 ≤ i ≤ q,

ν(ω) = γa1
1 γa2

2 . . . γ
aq
q , (11)

is a generating character of R, where γi is a pi-root of unity.

In Table 2, we assume that δ is a p-root of unity, and then we have

ν(ai) = δ(a1i+a2i+···+a2m−1),

where ai ∈ Zp × · · · ×Zp︸ ︷︷ ︸
m-times

, which has a form of

ai = a1iω0 + a2iω1 + · · ·+ a2m−1ωm−1

where ω0, . . . , ωm−1 is a basis of Fpm over Zp, the field of integers modulo p.

Table 2. ν for the ring R.

Ring (R,+) ν

Fpm [u,v]
(u2−βv2,uv)

(Zp × · · · ×Zp︸ ︷︷ ︸
m-times

)4 ν(a1 + a2u + a3v + a4u2) = ∏4
i=1 ν(ai)

Fpm [u,v]
(u2−v2,uv)

(Zp × · · · ×Zp︸ ︷︷ ︸
m-times

)4 ν(a1 + a2u + a3v + a4u2) = ∏4
i=1 ν(ai)

F2m [u,v]
(u2,v2)

(Zp × · · · ×Zp︸ ︷︷ ︸
m-times

)4 ν(a1 + a2u + a3v + a4uv) = ∏4
i=1 ν(ai)

Fpm [u]
(u4)

(Zp × · · · ×Zp︸ ︷︷ ︸
m-times

)4 ν(a1 + a2u + a3u2 + a4u3) = ∏4
i=1 ν(ai)
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We now compute the symmetrized weight enumerators using MacWilliams identities
for different iterations of R. In fact, these relations can be extended to a more general class
of finite rings, namely the class of all Frobenius rings. These identities establish a vital
connection between the weight enumerators and the dual of a code, which is essential to
the study of coding theory. Let us assume the following: the elements are found in the
following order: R = {x1, x2, x3, . . ., xp4m}. Suppose that C is a linear code of length N over
R. Furthermore, assume that the number of instances of ai in c∈ C is ni(c). Suppose that ∼
is defined on R by x ∼ y when there is ω ∈ U(R) such that x = ωy. It is evident that this
relation is equivalent. Let ŝ1, . . . , ŝq be the equivalence classes and let n′

i(c) calculate the
number of elements of ŝi that occurred in the codeword c.

Definition 2. Let C be a code over R. Then, the symmetrized weight enumerator (SWE) of C is
defined as

SWEC(xŝ1 , . . . , xŝq) = ∑
c∈C

∏
i

xŝi
n′

i(c). (12)

We next state the MacWiliams equation for SWE as

SWEC(xŝ1 , . . . , xŝq) =
1

| C⊥ |
SWEC⊥(S · (xŝ1 , . . . , xŝq)), (13)

where S = (sij) and
sij = ∑

x∈ŝj

ν(xix).

Table 2 illustrates the ν formulas for R. As we can see, once ν is obtained, it is
not straightforward to find the matrix S in Equation (13). Nonetheless, computing S
necessitates the determination of the classes ŝi. While it takes more work, this procedure is
essential to building that matrix. The classes ŝi essentially depend on the structure of R and
the unit group U(R). Note that any element z of U(R) is of the form

z = α1 + uα2 + vα3,

where α1 ∈ Γ∗(m), and α2, α3 ∈ Γ(m). Also, observe that J in this ring, of order p3m,
with 2 ≤ l ≤ 4, as its index of nilpotency, and soc(R), is the cyclic of order pm. The
following lemma provides a comprehensive scheme for determining sij in a broader case.

Lemma 1. If soc(R) = (λ), where 0 ̸= λ ∈ R, then the classes ŝi for R are obtained by

sij =


| ŝj |, if xi ŝj = {0};
0, if λ /∈ xi ŝj;
(−1) 1

pm−1 | ŝj |, if λ ∈ xi ŝj.

Proof. Assuming xi ŝj = {0}, we obtani sij = ∑b∈ŝj
ν(xib) = ∑b∈ŝj

0 =| ŝj |. Suppose that
xi ŝj ̸= {0} for the remaining cases. Let λ ∈ xi ŝj. Given that soc(R) = (λ), αy = λ, where
y ∈ ŝj and α ∈ Γ∗(m) is representative of ŝj. Assume, moreover, that x ∈ xi ŝj so that
for each y′ in ŝj, x = xiy′. Given that γ ∈ Γ∗(m), it follows that x = γλ. This implies
that the set xi ŝj is essentially a copy of soc(R), as all elements of xi ŝj are of the type αλ.
Consequently,

sij = N0 ∑
α∈Γ∗(1)

e
(2πi)α

p .
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However, we have the following formula for complex numbers:

1 +
p−1

∑
j=1

e
(2πi)j

p = 0. (14)

The number N0 in the equation represents the number of copies of soc(R), which is
precisely N0 = 1

pm−1 | ŝj |. Thus,

sij = (−1)
1

pm − 1
| ŝj | .

The last case of the proof can be performed similarly by noting that every element of
xi ŝj can be expressed as x + αλ, where α ∈ Γ(m). In this case,

sij = ∑
x

ν(x) ∑
α∈Γ(m)

ν(αλ).

Hence, by Equation (14), we conclude the results.

If R is a chain, then one can obtain the sets of ŝi as follows:

b̂1 = {0},
b̂2 = U(R),
b̂3 = J \ J2,
b̂4 = J2 \ J3,
b̂5 = soc(R) \ {0}.

if l = 4.

Theorem 7. Suppose that R is a chain ring with invariants p, m, 4, and 3 and of size p4m. Then,

S(4) =


1 (pm − 1)p3m (pm − 1)p2m (pm − 1)pm pm − 1
1 0 0 0 −1
1 0 0 −pm pm − 1
1 0 −p2m (pm − 1)p pm − 1
1 −p3m (pm − 1)p2m (pm − 1)pm pm − 1

.

Proof. For, s1j and sj1, the values are directly from Lemma 1. As l = 4, note that λ ∈ xi ŝj,
where (i, j) = (3, 4), (4, 3), (5, 2), and (2, 5) Thus,

sij =
−1

pm − 1
| ŝj | .

Moreover, 0 ∈ xi ŝj when (i, j) = (1, 2), (1, 3), (1, 4), (1, 5), (3, 5), (5, 3), (5, 4), and
(5, 5). Thus, again by Lemma 1, sij =| ŝj | . Also, since λ = u3, then u3 /∈ xi ŝj, if
(i, j) = (2, 2), (3, 2), (4, 2), (2, 3), (3, 3), and (2, 4). This implies that sij = 0. The first column
is always equal to 1 because x1 = 0, and so x1 ŝj = {0}.

For R being non-chain, J = (u, v), we have ŝi, given as follows:

ŝ1 = {0}, ŝ2 = U(R), ŝ3 = (u) \ soc(R),
| ŝ1 |= 1 | ŝ2 |= (pm − 1)p3m | ŝ3 |= (pm − 1)pm

ŝ4 = (v) \ soc(R), ŝ5 = (u + v) \ soc(R), ŝ6 = soc(R) \ {0}
| ŝ4 |= (pm − 1)pm | ŝ5 |= (pm − 1)pm | ŝ6 |= pm − 1.
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We denote S1 and S2, for simplicity, by

S1 =



1 (pm − 1)p3m (pm − 1)pm (pm − 1)pm (pm − 1)pm pm − 1
1 0 0 0 0 −1
1 0 s33 −pm −pm pm − 1
1 0 −pm (pm − 1)p −pm pm − 1
1 0 −pm −pm s55(β) pm − 1
1 −p3m (pm − 1)p (pm − 1)pm (pm − 1)pm pm − 1

,

where

s33 =

{
−pm, if p = 2,
pm(pm − 1), if p ̸= 2

, s55(β) =

{
−pm, if β ̸= −1,
pm(pm − 1), if β = −1.

S2 =



1 (pm − 1)p3m (pm − 1)pm (pm − 1)pm (pm − 1)pm pm − 1
1 0 0 0 0 −1
1 0 −pm (pm − 1)pm −pm pm − 1
1 0 (pm − 1)pm −pm −pm pm − 1
1 0 −pm −pm s55(β) pm − 1
1 −p3m (pm − 1)pm (pm − 1)pm (pm − 1)pm pm − 1

.

Theorem 8. Suppose R is a Frobenius non-chain with invariants p, m, 4, and 3 and of order p4m.
Then, S takes the form of S1 or S2.

Proof. We consider the ordering of ŝi and their sizes | ŝi | as above. Suppose also that
soc(R) = (λ), x1 = 0, x2 = 1, x3 = u, x4 = v, x5 = u + v, and x6 = λ. Observe that

0 ∈ x1 ŝi, if 1 ≤ i ≤ 6,
0 ∈ x6 ŝi, if 3 ≤ i ≤ 6,
0 ∈ xi ŝ6, if 2 ≤ i ≤ 5.

Thus,
s1i =| ŝi | .

Also, {0} = xj ŝ1. Then, si1 = 1. While λ /∈ x2 ŝi and λ /∈ xi ŝ2, 2 ≤ i ≤ 5, s2i = 0 = si2,
with regard to xi ŝj, where 3 ≤ i, j ≤ 5. Note that λ is in x5 ŝ3, x5 ŝ4, x3 ŝ5, and x4 ŝ5, and
hence, the corresponding sij is equal to −pm by Lemma 1. The value of s55 depends on

β in
Fpm [u,v]

(u2−βv2,uv) when the quotient ideal I of R includes β. This means that we obtain

s55 = s55(β), where s55(β) is defined above. We notice that s33 = s44 because (u2) = (v2).
For F2m [u,v]

(u2,v2)
, we have s33 = (2m − 1)2m = s44. Furthermore, s34 = s43 for all rings since

x3 ŝ4 = x4 ŝ3. To conclude, we have tow different submatrices, of sizes 3 × 3 of the form s33 −pm −pm

−pm pm(pm − 1) −pm

−pm −pm s55(β)

,

 −pm pm(pm − 1) −pm

pm(pm − 1) −pm −pm

−pm −pm s55(β)

.

Therefore, we obtain S1 and S2 for each R non-chain Frobenius ring of order p4m

as desired.

For clarification, we introduce Table 3 to present all matrices S, and ŝi corresponds to
rings R.
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Table 3. S and ŝi for Frobenius local rings of order p4.

Ring soc(R) S ŝi

Fpm [u,v]
(u2−βv2,uv) (u2) S2 (0), U(R), (u) \ soc(R), (v) \ soc(R), (u + v) \ soc(R), soc(R) \ {0}
Fpm [u,v]

(u2−v2,uv) (u2) S2 (0), U(R), (u) \ soc(R), (v) \ soc(R), (u + v) \ soc(R), soc(R) \ {0}
F2m [u,v]
(u2,v2)

(uv) S1 (0), U(R), (u) \ soc(R), (v) \ soc(R), (u + v) \ soc(R), soc(R) \ {0}
Fpm [u]
(u4)

(u3) S(4) (0), U(R), J \ J2, J2 \ J3, soc(R) \ {0}

Next, we proceed to a numerical illustration of these calculations and associated
procedures using a ring of order 34 = 81 as an example. Before constructing S, we will first
focus on understanding ŝi under ∼.

Example 6. We now construct S for R = F3[u,v]
(u2−v2,uv) . This means that p = 3 and m = 1, i.e., R is

with parameters 3, 1, 4, and 3. The equivalent classes are therefore

ŝ1 = {0}x1 = 0,
ŝ2 = U(R), x2 = 1,
ŝ3 = (u) \ (u2), x3 = u,
ŝ4 = (v) \ (u2), x4 = v,
ŝ5 = (u + v) \ (u2), x5 = u + v
ŝ6 = soc(R) \ {0} = (u2), x6 = u2.

Thus, in the light of Theorem 8 and after making the necessary computations, S takes the
form of

S2 =



1 54 6 6 6 2

1 0 0 0 0 −1

1 0 −3 6 −3 1

1 0 6 −3 −3 1

1 0 −3 −3 6 1

1 −27 6 6 6 1


.

6. Conclusions

We conclude that, up to isomorphism, all local rings of the form R = Fpm + uFpm +

vFpm + wFpm and | R |= p4m have been successfully classified in terms of the invariants
p, m, 4, and 3. In addition, symmetrized weight enumerators and generator matrices for
linear codes over such rings have been described. These are widely used and efficient
methods for data encoding over chain rings; such a situation might not be achievable with
codes over local non-chain rings of higher orders. Since non-chain local rings are not PIRs,
the difficulty lies in determining the minimum number of generators and calculating the
code size. This limitation implies that more studies and improved techniques are required
to investigate this kind of problem in general.
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