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Abstract: Asymmetric distributions are frequently seen in real-world datasets due to a number of
factors, such as sample biases and nonlinear interactions between the variables observed. Thus, in
order to better characterize real-world phenomena, studying asymmetric distribution is of great
interest. In this work, we derive stress–strength reliability formulas of the type P(X < Y) when both
X and Y follow p-max stable laws with three parameters, which are inherently asymmetric. The
new relations are given in terms of extreme-value H-functions and have been obtained under fewer
parameter restrictions when compared to similar results in the literature. We estimate the parameters
of the p-max stable laws by a stochastic optimization method and the stress–strength probability by
a maximum likelihood procedure. The performance of the analytical models is evaluated through
simulations and real-life dataset modeling.

Keywords: stress–strength reliability; H-function; p-max stable laws

1. Introduction

Reliability measures of the type P(X < Y), often represented as R and referred to as
stress–strength reliability, are important for evaluating the performance of different systems
and processes. This measure indicates the probability that a random variable X, which can
represent a general performance metric or quality indicator, is less than another random
variable Y, which could signify a threshold or standard to be met. In this context, X and Y
are not limited to engineering concepts like stress and strength but are applicable in any
scenario where two quantities are compared. A higher R value signifies a more reliable
system, indicating a greater likelihood that the performance metric X will be below the
threshold Y. Calculating P(X < Y) requires an understanding of the joint distribution of X
and Y, which can be determined through various methods, including simulation, analytical
solutions, or the use of copulas to model dependencies between variables. We refer the
reader to [1] for further details on this subject.

Let Y and X be independent continuous random variables from probability density
function (PDF) fY and cumulative distribution function (CDF) FX, respectively. We can
write the stress–strength reliability measure as:

R = P(X < Y) =
∫ ∞

−∞
FX(x) fY(x)dx. (1)

Thus, R is a measure of component reliability, and it may be interpreted as the proba-
bility of a system failure when the applied stress Y is greater than its strength X. It is often
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assumed that X and Y are independent random variables and that they belong to the same
family of probability distributions. Rathie et al. [2] present a recent survey on the subject.

Studying reliability measures such as P(X < Y) for asymmetric marginal distributions
is crucial for understanding a variety of real-world scenarios that require data-driven
solutions. In the case of finance applications, where risk assessment is critical, asymmetric
distributions play a central role, especially heavy tailed ones [3]. For example, in stock
market analysis, knowing the likelihood that a particular stock will do better than another
is crucial to making wise investment choices. Investors can efficiently manage risk and
optimize their portfolios with the aid of reliability metrics, which assist in quantifying these
probabilities [4].

Furthermore, asymmetry in distributions is common in a wide range of social and
ecological phenomena, including the spread of illnesses and the distribution of money [5].
Asymmetric distributions can be used to describe the different scenarios of disease trans-
mission within populations in epidemiology [6]. Researchers can better understand the
likelihood of particular outcomes and aid in the creation of tailored intervention methods
by examining reliability measurements in such circumstances. In short, studying reliability
measures of the type P(X < Y) for asymmetric distributions makes modeling and pre-
diction more precise, which in turn helps one to make more informed decisions across a
variety of domains.

In particular, reliability measures of the stress–strength type for classic extreme value
distributions were studied by [7], who derived expressions for R in terms of special func-
tions for l-max stable laws (Fréchet, Weibull, and Gumbel). Several authors have worked
on the estimation and application of stress–strength for the l-max stable distributions
(e.g., [8–11]). Some generalizations of l-max stable distributions have been proposed to
either allow better data fitting or provide more convenient mathematical properties. In the
work of Aryal and Tsokos [12], for example, the generalized extreme value distribution
(GEV) was extended to a model named transmuted GEV (TGEV). Bivariate data were also
considered like bimodal Weibull [13], bimodal Gumbel [14], and bimodal GEV (BGEV) [15]
distributions.

The l−max stable distributions are derived as a limiting distribution of linearly normal-
ized partial maxima. Another approach to generalize such distributions is by non-linearly
normalizing partial maxima of independent identically distributed random variables (iid
RVs). This way, for a given CDF F(·), suppose there exists sequences of real numbers {γn}
and {βn} with γn, βn > 0 such that

lim
n→∞

Fn
(

γn|x|βn sign(x)
)
= H(x), (2)

weakly, where H(·) is a non-degenerate CDF. The three-parameter p-max stable laws can
be obtained from CDF (2) by the definition of the same p-type. That means that we assume
there exist positive constants α, β, and γ such that

Hi(x; α, β, γ) = Hi(γ|x|βsign(x); α), i = 1, · · · , 6.

where α = 1 for i = 5, 6. It was shown in [16] that H is of the same p-type as one of
the following distributions: log-Fréchet, log-Weibull, inverse log-Fréchet, inverse log-
Weibull, standard Fréchet, and standard Weibull. Such limiting distributions are heavy
tailed and asymmetric. Therefore, the convergence in (2) is usually studied by assessing
the approximation on the tails, as discussed, for example, by Feng and Chen [17] and
references therein.

To the best of our knowledge, the literature lacks previous in-depth studies on re-
liability inference for p-max stable distributions, and this work stands as a contribution
by providing estimation methods for R based on stochastic optimization for this class of
distributions. Thus, in this paper, we consider the problem of estimating the stress–strength
parameter R when X and Y are independent three-parameter p-max stable random vari-
ables with the same CDF but different parameters. In order to validate our results, a robust
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framework was proposed and applied to model real and synthetic datasets, rigorously
indicating the capacities of the p-max models and the usability of the analytical formulas
hereby derived to calculate R.

Our main contributions are as follows:

1. to analytically derive R in terms of special functions, for each three-parameter p-max sta-
ble law with fewer parameter restrictions compared to previous results in the literature;

2. to propose an estimator for R;
3. to apply the results to the modeling of real datasets. In particular, two real scenarios

are investigated, showing the versatility of stress–strength reliability (SSR) modeling
approaches using p-max models. First, soccer pass completion proportions of two
different championships (UEFA Champions League and 2022 FIFA World Cup) were
compared, allowing scouting professionals to use the SSR results as a proxy for tech-
nical level comparison of teams that competed at those tournaments. Then, a second
application involved the modeling and comparison of the strength of carbon fibers
of different lengths when subjected to tension efforts. In both modeling scenarios,
the best fitting p-max stable distribution (both qualitatively (by graphical methods)
and quantitatively (by information criteria)) was taken as a starting point.

This paper is organized as follows: Section 2 introduces preliminaries, especially the
definition of the H-function, the H-function, and the three-parameter p-max stable laws.
Section 3, on the other hand, deals with the derivation of R when X and Y are independent
p-max stable random variables. The maximum likelihood estimation for R is presented in
Section 4. In Section 5, we deal with Monte Carlo simulations as well as with the modeling
of two real situations involving football datasets and different-length carbon fibers. The
Section 6 deals with conclusions.

2. Preliminaries

In this section, we give some definitions and results, which will be used subsequently.

2.1. Special Functions

The H-function is defined by

Hm,n
p,q

[
z
∣∣∣ (a1, A1), · · · , (ap, Ap)

(b1, B1), · · · , (bq, Bq)

]
=

1
2πi

∫
L

∏m
k=1 Γ(bj + Bjs)∏n

j=1 Γ(1 − aj − Ajs)

∏
q
k=m+1 Γ(1 − bj − Bjs)∏

p
j=n+1 Γ(aj + Ajs)

z−sds,

where i =
√
−1, 0 ≤ m ≤ q, 0 ≤ n ≤ p (not both m and n simultaneously zero), Aj > 0

(j = 1, · · · , p), Bk > 0 (k = 1, · · · , q), and aj and bk are complex numbers such that no poles
of Γ(bk + Bks) (k = 1, · · · , m) coincide with poles of Γ(1 − aj − Ajs) (j = 1, · · · , n). L is a
suitable contour w − i∞ to w + i∞, w ∈ R, separating the poles of the two types mentioned
above. For more details, see [18]. As a special case, for a > 0, b > 0, and c > 0, we have

∫ ∞

0
exp{−ay − byc}dy =

1
b1/cc

H1,1
1,1

[
a

b1/c

∣∣∣ ( c−1
c , 1

c )
(0, 1)

]
. (3)

Next, let us consider the extreme-value H-function, recently defined in [19]. Thus, this
function, hereby denoted as H, can be defined as

H(a1, a2, a3, a4, a5, a6) :=
∫ ∞

0
ya6 exp{−a1y − (a2ya3 + a4)

a5}dy, (4)

where ℜ(a1),ℜ(a2),ℜ(a4) ∈ R+, a3, a5 ∈ C, not both ℜ(a1) and ℜ(a2) can be equal to
zero at the same time, ℜ(a6) > −1 when a1 ̸= 0 or a1 = 0 and sign(a3) = sign(a5), and
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ℜ(a6) < −1 when a1 = 0 and sign(a3) ̸= sign(a5). In this paper, R, C, and ℜ denote the
real numbers, complex numbers, and the real part of a complex number, respectively.

An important special case of this function is obtained by taking a4 = 0, which rep-
resents an upper (or lower) bound for its value depending on the sign of a5. This case is,
therefore, an extreme value of the function and can be written in terms of the H-function
as [19]:

H(a1, a2, a3, 0, a5, a6) =
∫ ∞

0
ya6 exp{−a1y − aa5

2 ya3a5}dy

=
1

a(1+a6)/a3
2 a3a5

H1,1
1,1

[
a1a−1/a3

2

∣∣∣ (1 − (1+a6)
a3a5

, 1
a3a5

)

(0, 1)

]

=
1

aa6+1
1

H1,1
1,1

[(
a2

aa3
1

)a5 ∣∣∣ (−a6, a3a5)
(0, 1)

]
, (5)

when sign(a3) = sign(a5) and

H(a1, a2, a3, 0, a5, a6) =
1

a(1+a6)/a3
2 |a3a5|

H2,0
0,2

[
a1a−1/a3

2

∣∣∣ −
(0, 1), ( (1+a6)

a3a5
, 1
|a3a5|

)

]

=
1

aa6+1
1

H2,0
0,2

[(
a2

aa3
1

)a5 ∣∣∣ −
(0, 1), (1 + a6, |a3a5|)

]
, (6)

otherwise.
In the next sections, we prove that all stress–strength probabilities involving three-

parameter p-max stable laws can be written as H−functions and, in addition, some param-
eter restrictions allow Equation (3) to be readily used.

2.2. Three-Parameter p-Max Stable Laws

As indicated, the three-parameter p-max stable laws are obtained by taking CDFs of
the types Hi, i = 1, · · · , 6, where all Hi satisfy (2) such that:

H1(x; α) =

{
0, if x < 1,
exp{−(log x)−α}, if x ≥ 1,

(7)

H2(x; α) =


0, if x < 0,
exp{−(− log x)α}, if 0 ≤ x < 1,
1, if x ≥ 1,

(8)

H3(x; α) =


0, if x < −1,
exp{−(− log(−x))−α}, if −1 ≤ x < 0,
1, if x ≥ 0,

(9)

H4(x; α) =

{
exp{−(log(−x))α}, if x < −1,
1, if x ≥ −1,

(10)

H5(x) =
{

0, if x < 0,
exp{−x−1} if x ≥ 0,

(11)

H6(x) =
{

exp{x}, if x < 0,
1 if x ≥ 0,

(12)
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where α > 0. These distributions are called Extreme Value Distributions under power
normalization or p-max stable laws, and they are known, respectively, as log-Fréchet, log-
Weibull, inverse log-Fréchet, inverse log-Weibull, standard Fréchet, and standard Weibull.
For a complete characterization of these distributions see [20].

The corresponding three-parameter PDFs are given by

h1(x; α, β, γ) = exp
{
−[log γxβ]−α

}αβ

x
[log(γxβ)]−α−1

1(γ−1/β ,∞)(x),

h2(x; α, β, γ) = exp
{
−
[
− log(γxβ)

]α}[
− log(γxβ)

]α−1 βα

x
1(0,γ−1/β)(x),

h3(x; α, β, γ) = exp
{
−
[
− log(γ(−x)β)

]−α
}

αβ

−x

[
− log(γ(−x)β)

]−α−1
1(−γ−1/β ,0)(x),

h4(x; α, β, γ) = exp{−
[
log(γ(−x)β)

]α
}
[
log(γ(−x)β)

]α−1 αβ

−x
1(−∞,−γ−1/β)(x),

h5(x; β, γ) = exp
{
−(γxβ)−1

} β

γ
x−β−1

1[0,∞)(x),

h6(x; β, γ) = exp{−γ(−x)β}γβ(−x)β−1
1(−∞,0)(x),

where α, β, γ ∈ R+, and 1A(x) denote the indicator function of the set A.
In Section 5, we apply the PDFs h1, h2, and h5 to the modeling of data with positive

support. Furthermore, the supports of h1 and h2 depend on the parameters. Thus, the maxi-
mum likelihood estimation is not as straightforward as in the usual cases. Figures 1–3 show
the behavior of these densities for some choices of parameters, revealing the asymmetry
and heavy tails of the PDFs.

Figure 1. Plots for the PDF h1(x; α, β, γ).
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Figure 2. Plots for the PDF h2(x; α, β, γ).

Figure 3. Plots for the PDF h5(x; β, γ).

3. Reliability P(X < Y) for Three-Parameter p-Max Stable Laws

In this section, the reliability of two independent three-parameter p-max stable random
variables is derived in terms of the H−function. In addition, with suitable parameter
restrictions, the H-function and a simpler form in terms of standard functions are obtained.
Firstly, we consider the case of two independents H1(·; α, β, γ).

Theorem 1. Let Y and X be independent random variables, respectively, with CDF H1(·; α1, β1, γ1)
and H1(·; α2, β2, γ2), αj, β j, γj ∈ R+, and j = 1, 2. Then,

R = P(X < Y) = H
(

1,
β2

β1
,− 1

α1
, log γ2 −

β2

β1
log γ1,−α2, 0

)
, (13)

provided that γ
−1/β1
1 ≥ γ

−1/β2
2 . In particular, if γ

1/β1
1 = γ

1/β2
2 , then

R =

(
β2

β1

)α1 α1

α2
H1,1

1,1

[(
β2

β1

)α1 ∣∣∣ ( α2−α1
α2

, α1
α2
)

(0, 1)

]
. (14)
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When α = α1 = α2, R can be written explicitly as

R =
βα

2
βα

1 + βα
2

. (15)

Proof. Set αj, β j, andγj ∈ R+ (j = 1, 2). Then,

R = P(X < Y) =
∫ ∞

−∞
H1(x; α2, β2, γ2)h1(x; α1, β1, γ1)dx

=
∫ ∞

M
exp

{
−
[
log(γ2xβ2)

]−α2 −
[
log(γ1xβ1)

]−α1
}

α1β1

x
[log(γ1xβ1)]−α1−1dx, (16)

where M = max{γ
−1/β1
1 , γ

−1/β2
2 }. Substituting y =

[
log(γ1xβ1)

]−α1 and taking

γ
−1/β1
1 ≥ γ

−1/β2
2 , we can rewrite (16) as

R =
∫ ∞

0
exp

{
−y −

[
β2

β1
y−1/α1 + log γ2 −

β2

β1
log γ1

]−α2
}

dy. (17)

Hence, (13) follows from (17) and (4). In addition, applying (3) with γ
−1/β1
1 = γ

−1/β2
2 , we

obtain (14). In the case where α = α1 = α2, we have the explicit form (15).

Secondly, we consider the case of two independents H2(·; α, β, γ).

Theorem 2. Let Y and X be independent random variables, respectively, with CDF H2(·; α1, β1, γ1)
and H2(·; α2, β2, γ2), αj, β j, γj ∈ R+, and j = 1, 2. Then,

R = P(X < Y) = H
(

1,
β2

β1
,

1
α1

,− log γ2 +
β2

β1
log γ1, α2, 0

)
, (18)

provided that γ
−1/β1
1 ≤ γ

−1/β2
2 . In particular, if γ

1/β1
1 = γ

1/β2
2 , then

R =

(
β1

β2

)α1 α1

α2
H1,1

1,1

[(
β1

β2

)α1 ∣∣∣ ( α2−α1
α2

, α1
α2
)

(0, 1)

]
. (19)

When α = α1 = α2, R can be written explicitly as

R =
βα

1
βα

1 + βα
2

. (20)

Proof. Set αj, β j, andγj ∈ R+ (j = 1, 2). Then,

R = P(X < Y) =
∫ ∞

−∞
H2(x; α2, β2, γ2)h2(x; α1, β1, γ1)dx

=
∫ m

0
exp

{
−
[
− log(γ2xβ2)

]α2 −
[
− log(γ1xβ1)

]α1
}α1β1

x
[− log(γ1xβ1)]α1−1dx, (21)

where m = min{γ
−1/β1
1 , γ

−1/β2
2 }. Substituting y =

[
− log(γ1xβ1)

]α1 and taking

γ
−1/β1
1 ≤ γ

−1/β2
2 , we can rewrite (21) as

R =
∫ ∞

0
exp

{
−y −

[
β2

β1
y1/α1 − log γ2 +

β2

β1
log γ1

]α2
}

dy. (22)

Hence, (18) follows from (22) and (4). In addition, applying (3) with γ
−1/β1
1 = γ

−1/β2
2 , we

obtain (19). In the case where α = α1 = α2, we have the explicit form (20).
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Thirdly, we consider the case of two independents H3(·; α, β, γ). The proofs of
Theorems 3 and 4 are similar to those of Theorems 1 and 2, respectively. The details
are omitted.

Theorem 3. Let Y and X be independent random variables, respectively, with CDF H3(·; α1, β1, γ1)
and H3(·; α2, β2, γ2), αj, β j, γj ∈ R+, j = 1, 2. Then,

R = P(X < Y) = H
(

1,
β2

β1
,− 1

α1
,− log γ2 +

β2

β1
log γ1,−α2, 0

)
, (23)

provided that −γ
−1/β1
1 ≥ −γ

−1/β2
2 . In particular, if γ

1/β1
1 = γ

1/β2
2 , then

R =

(
β2

β1

)α1 α1

α2
H1,1

1,1

[(
β2

β1

)α1 ∣∣∣ ( α2−α1
α2

, α1
α2
)

(0, 1)

]
.

When α = α1 = α2, R can be written explicitly as

R =
βα

2
βα

1 + βα
2

.

Now, we consider the case of two independents H4(·; α, β, γ).

Theorem 4. Let Y and X be independent random variables, respectively, with CDF H4(·; α1, β1, γ1)
and H4(·; α2, β2, γ2), αj, β j, γj ∈ R+, and j = 1, 2. Then,

R = P(X < Y) = H
(

1,
β2

β1
,

1
α1

, log γ2 −
β2

β1
log γ1, α2, 0

)
, (24)

provided that −γ
−1/β1
1 ≤ −γ

−1/β2
2 . In particular, if γ

1/β1
1 = γ

1/β2
2 , then

R =

(
β1

β2

)α1 α1

α2
H1,1

1,1

[(
β1

β2

)α1 ∣∣∣ ( α2−α1
α2

, α1
α2
)

(0, 1)

]
.

When α = α1 = α2, R can be written explicitly as

R =
βα

1
βα

1 + βα
2

.

Lastly, we consider the cases of two independents Hj(·; β, γ) (j = 5, 6).

Theorem 5. Let Y and X be independent random variables, respectively, with CDF Hi(·; β j, γj),
j = 1, 2, and i = 5, 6. Then,

(a) for i = 5,

R = P(X < Y) =
1

γ1
H
(

1
γ1

,
1

γ2
,

β2

β1
, 0, 1, 0

)
(25)

=
γ

β1/β2
2 β1

γ1β2
H1,1

1,1

[
γ

β1/β2
2
γ1

∣∣∣ ( β2−β1
β2

, β1
β2
)

(0, 1)

]
. (26)

In particular, if β = β1 = β2, we have

R =
γ2

γ1 + γ2
; (27)
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(b) for i = 6,

R = P(X < Y) = γ1H
(

γ1, γ2,
β2

β1
, 0, 1, 0

)
=

γ1β1

γ
β1/β2
2 β2

H1,1
1,1

[
γ1

γ
β1/β2
2

∣∣∣ ( β2−β1
β2

, β1
β2
)

(0, 1)

]
.

In particular, if β = β1 = β2, we have

R =
γ1

γ1 + γ2
;

Proof. We prove case i = 5, and case i = 6 follows analogously. We have

R = P(X < Y) =
∫ ∞

−∞
H5(x; α2, β2, γ2)h5(x; α1, β1, γ1)dx

=
∫ ∞

0
exp

{
−(γ2xβ2)−1 − (γ1xβ1)−1

} β1

γ1
x−β1−1dx. (28)

Substituting y = x−β1 in (28), we obtain

R =
1

γ1

∫ ∞

0
exp

{
−γ−1

1 y − γ−1
2 yβ2/β1

}
dy. (29)

Therefore, (25) follows from (29) and (4) (alternatively, (26) follows from (29) and (3)).
In particular, taking β = β1 = β2, (27) follows from (29).

By combining all the Theorems from 1 to 4, it is possible to state the following Corollary:

Corollary 1. Let Y and X be independent random variables, respectively, with CDF Hw(·; α1, β1, γ1)
and Hw(·; α2, β2, γ2), αj, β j, γj ∈ R+, j = 1, 2, and w = 1, . . . , 4. Then,

Rw = P(X < Y)

= H

1,
β2

β1
,
(−1)w

α1
,

cos
(

π
4 + (w−1)π

2

)
cos
(

π
4
) (

log γ2 −
β2

β1
log γ1

)
, (−1)wα2, 0

, (30)

provided that γ
−1/β1
1 ≥ γ

−1/β2
2 . In particular, if γ

1/β1
1 = γ

1/β2
2 , then

Rw =

(
β2

β1

)(−1)w+1α1 α1

α2
H1,1

1,1

[(
β2

β1

)(−1)w+1α1 ∣∣∣ ( α2−α1
α2

, α1
α2
)

(0, 1)

]
. (31)

When α = α1 = α2, Rw can be written explicitly as

Rw =
sin2(wπ

2
)

βα
2 + cos2(wπ

2
)

βα
1

βα
1 + βα

2
. (32)

We finish this section by noting that Theorems 1–5 can be generalized to random
samples of a given F distribution that is in the domain of attraction of one of the p-max
stable laws (see [20] for a complete characterization of the domains of attraction of the
p-max stable laws). We describe below these generalizations.
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Let X1, · · · , Xn be a sample from the CDF F and assume that there exist sequences of
real numbers {an} and {bn} with an, bn > 0 such that (2) holds for some Hi (i = 1, · · · , 6).

Set Mn = max{X1, · · · , Xn} and M̃n =
∣∣∣Mn

an

∣∣∣1/bn
sign(Mn). Equations (1) and (2) imply

lim
n→∞

P(M̃n < Y) = lim
n→∞

∫ ∞

−∞
FM̃n

(x) fY(x)dx

=
∫ ∞

−∞
lim

n→∞
Fn
(

an|x|bn sign(x)
)

hi(x; α1, β1, γ1)dx

=
∫ ∞

−∞
Hi(x; α2, β2, γ2)hi(x; α1, β1, γ1)dx (33)

where Y ∼ Hi(·; α1, β1, γ1). Using the corresponding Theorems (1–5), (33) can be obtained
in terms of the1 H-function.

4. Estimation

This section deals with parameter estimation for the p-max stable laws via a random
optimization method and bootstrap confidence intervals.

Several authors (e.g., [8,9,11]) have estimated R by maximum likelihood. However,
they relied on strong parameter restrictions to obtain an explicit form for R. Thus, the es-
timation of the parameters must be done jointly in the two samples. In our case, such
restrictions were not necessary since we worked with expressions of R in terms of func-
tions H and H1,1

1,1, releasing any requirements about similar parameters between different
samples.

To the best of our knowledge, there are few studies concerning parameter estimation,
although the literature suggests several theoretical studies of p-max stable distributions
(e.g., [21]). Here, we present a different approach for parameter estimation for the p-max
stable laws.

We initially consider the PDF h2(·; α, β, γ). For the other p-max stable laws, similar
expressions are obtained using the PDFs presented in Section 2.2. Take x = (x1, · · · , xn) as
a sample of n observations. The likelihood function for the PDF h2(·; α, β, γ) is given by the
following:

L2(α, β, γ; x) = αnβn exp

{
−

n

∑
i=1

[
− log(γxβ

i )
]α
}
×

×
n

∏
i=1

[
− log(γxβ

i )
]α−1

xi
1(0,γ−1/β)(xi). (34)

Note that ∏n
i=1 1(0,γ−1/β)(xi) > 0 if and only if xi ∈ (0, γ−1/β) for all i = 1, · · · , n.

Then, we are not able to obtain the MLE explicitly, so an additional condition is required in
the likelihood maximization process.

Remark 1. The MLE of R is obtained using the invariance property of MLE. This is due to the
Theorems 1–5 that describe R in terms of the function H (which is an integral, hence a continuous
and measurable function).

4.1. A Random Optimization Method for Approximating the MLE

Now, we describe the optimization methodology to be implemented for parameter
estimation. Let L : Θ ⊂ Rd → R be a likelihood function for which the maximum
y0 = max{L(θ); θ ∈ Θ} is assumed to be finite.

Algorithm 1 can find the point of maximum θ0 for which L(θ0) = y0. Particularly,
unlike conventional algorithms, random points in space are generated according to a
generic distribution G (not necessarily uniform) on the parameter space Θ. This allows us
to introduce weights in some regions of the parameter space, as a kind of prior information.
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Algorithm 1. Let ξ1, ξ2, · · · be independent and identically distributed random vectors with
common distribution G on Θ. Let (θ1, Y1), (θ2, Y2), · · · be defined by

Step 1 . θ1 = ξ1 and Y1 = L(θ1).
Step k + 1. Having defined (θk, Yk), let (θk+1, Yk+1) be defined as{

θk+1 = ξk+1 and Yk+1 = L(ξk+1), if L(ξk+1) ≥ Yk;
θk+1 = θk and Yk+1 = Yk, otherwise.

It was proved by [22] that for given ε > 0 and 0 < δε < 1

P(|L(θn)− y0| ≤ ε) ≥ 1 − δε,

that is, the ε−region of attraction of y0 has been attained with probability 1 − δε, provided
that the stop rule consists of terminating the algorithm for k such that

k ≥ −m(Θ) log δε

ε
, (35)

where m denotes the Lebesgue measure on RN . This means that with high probability,
the algorithm reaches the desired maximum.

4.2. Bootstrap

The bootstrap method used in the next section to obtain bootstrap confidence intervals
of R is described below.

Algorithm 2 describes the approach used in the next section to obtain bootstrap
confidence intervals of R.

1. Generate independent bootstrap samples X and Y of sizes nx and ny, respectively.
2. Compute the parameter estimation based on X and Y.
3. Obtain R̂.
4. Repeat steps 1 − 3 M = 1000 times.
5. The approximate 100(1 − α)% confidence interval of R is given by [R̂M(α/2),

R̂M(1− α/2)], where R̂M(α) ≈ Ĝ−1(α) and Ĝ are the cumulative distribution function
of R̂.

Algorithm 2. Let X and Y be samples of sizes nx and ny, respectively, and a positive integer M.

Step 1 Generate independent bootstrap samples X and Y.
Step 2 Compute the parameter estimation based on X and Y.
Step 3 Obtain R̂.
Step 4 Repeat steps 1 to 3 M times.
Step 5 The approximate 100(1 − ν)% confidence interval of R is given by [R̂M(ν/2), R̂M(1 −

ν/2)], where R̂M(ν) ≈ Ĝ−1(ν) and Ĝ is the cumulative distribution function of R̂.

5. Applications

In this section, we present Monte Carlo simulations as well as the modeling of two
real situations involving football datasets and different-length carbon fibers. In order to
enable readers to apply the methodology hereby proposed, the codes are available at a
public repository [23] (link to be shared after acceptance).

5.1. Simulation Results

To illustrate the behavior of the random optimization method for approximating the
MLE described in Algorithm 1 and to evaluate the performance of the estimate R̂, we
simulate random samples from CDFs H1, H2, and H5 (the other distributions could be used
as well). The random samples are simulated using the generalized inverse of the CDFs
applied to uniform random variables.
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Values of α1, β1, γ1, α2, β2, γ2, ε, δε, and n are pre-specified, where n is the sample size
and ε and δε are the parameters of the random optimization Algorithm 1.

Monte Carlo simulations were implemented in the language and environment for sta-
tistical computing R-4.4.0 [24], and each simulation outcome is based on M = 1000 samples
of the parameter settings. In Tables 1 and 2, we study the performance of the estimator R̂
when the PDF is h2. The PDFs h1 and h5 are treated in Tables 3 and 4.

Table 1. Mean, bias, and RMSE of R̂ for PDF h2 (ε = 0.1, δε = 0.1, and n = 30).

N α2 β2 γ2 α1 β1 γ1 R R̂MC Bias RMSE

2 1 0.50 0.30 0.70 0.50 0.30 0.5240 0.5203 −0.0036 0.1550
2 1 0.50 0.30 0.70 0.75 0.30 0.4057 0.3716 −0.0342 0.1487
2 1 0.50 0.30 1.00 0.75 0.30 0.4017 0.3524 −0.0493 0.1480
2 1 0.30 0.55 0.70 0.55 0.90 0.3762 0.2873 −0.0888 0.1537
2 1 0.30 0.55 0.70 0.55 0.90 0.3762 0.2915 −0.0846 0.1575
2 1 0.30 0.55 1.00 0.55 0.90 0.3769 0.2860 −0.0910 0.1558
2 1 1.00 1.00 0.90 0.50 0.50 0.6641 0.6647 0.0007 0.1308
2 1 1.00 1.00 0.95 0.50 0.50 0.6654 0.6643 −0.0011 0.1287
2 1 1.00 1.00 0.97 0.50 0.50 0.6659 0.6650 −0.0009 0.1319
2 1 1.00 1.00 1.00 0.50 0.50 0.6667 0.6668 0.0002 0.1287

5 1 0.50 0.30 0.70 0.50 0.30 0.5240 0.5392 0.0152 0.1501
5 1 0.50 0.30 0.70 0.75 0.30 0.4057 0.4051 −0.0007 0.1379
5 1 0.50 0.30 1.00 0.75 0.30 0.4017 0.3606 −0.0411 0.1435
5 1 0.30 0.55 0.70 0.55 0.90 0.3762 0.3107 −0.0654 0.1380
5 1 0.30 0.55 0.70 0.55 0.90 0.3762 0.3110 −0.0651 0.1412
5 1 0.30 0.55 1.00 0.55 0.90 0.3769 0.3056 −0.0713 0.1438
5 1 1.00 1.00 0.90 0.50 0.50 0.6641 0.6621 −0.0020 0.1255
5 1 1.00 1.00 0.95 0.50 0.50 0.6654 0.6537 −0.0117 0.1309
5 1 1.00 1.00 0.97 0.50 0.50 0.6659 0.6575 −0.0085 0.1301
5 1 1.00 1.00 1.00 0.50 0.50 0.6667 0.6552 −0.0115 0.1292

10 1 0.50 0.30 0.70 0.50 0.30 0.5240 0.5320 0.0080 0.1492
10 1 0.50 0.30 0.70 0.75 0.30 0.4057 0.4078 0.0021 0.1412
10 1 0.50 0.30 1.00 0.75 0.30 0.4017 0.3765 −0.0251 0.1419
10 1 0.30 0.55 0.70 0.55 0.90 0.3762 0.3204 −0.0558 0.1319
10 1 0.30 0.55 0.70 0.55 0.90 0.3762 0.3248 −0.0514 0.1325
10 1 0.30 0.55 1.00 0.55 0.90 0.3769 0.3110 −0.0660 0.1390
10 1 1.00 1.00 0.90 0.50 0.50 0.6641 0.6396 −0.0244 0.1376
10 1 1.00 1.00 0.95 0.50 0.50 0.6654 0.6398 −0.0256 0.1360
10 1 1.00 1.00 0.97 0.50 0.50 0.6659 0.6400 −0.0259 0.1342
10 1 1.00 1.00 1.00 0.50 0.50 0.6667 0.6401 −0.0266 0.1286

Remark 2. (a) We start our study of simulations by PDF h2 inspired by the applications presented
in Section 5.2. As it will be seen, h2 presented a good modeling performance in those cases.

(b) Recall that Algorithm 1 depends on parameters (ε, δε) and on a distribution G on the
parameter space Θ. To estimate (α, β, γ), Θ must be a subspace of R3

+. We start by fixing the values
ε = 0.1, δε = 0.1, the search region Θ0 = [0, N]3 for a fixed N value, and the uniform distribution
on Θ0. Table 1 gives the results for different values of N. Changes in the constants ε = 0.1 and
δε = 0.1 or on the upper bound of N could result in better or worse estimation. Table 2 shows
results for ε = 0.01 and δε = 0.05.

(c) If we want to search the entire parameter space, we should use another distribution with
support on R3

+ (e.g., gamma distribution).

For the simulation, we fix a search region Θ0 of the parameter space Θ, and for each
line in the table

1. 1000 random samples of X ∼ H2(α2, β2, γ2) and Y ∼ H2(α1, β1, γ1) are simulated;
2. for each simulation, the parameter R = P(X < Y) is estimated, according to the

likelihood function (34) and Algorithm 1;
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3. the mean of the 1000 corresponding R̂ (denote R̂MC) is obtained;
4. the Bias and the Root Mean Squared Error (RMSE) are computed.

Table 1 shows that

• in general, the estimation of R had good results, indicated by the small value of
the bias;

• the bias values were within the fixed range ε = 0.1;
• RMSE did not increase as we increased the search space Θ0.

Table 2 shows that by reducing the value of ε and δε while increasing n, we are able to
reduce the RMSE values of Table 1, although we did not obtain significant reductions in
the Bias values.

Table 2. Mean, bias, and RMSE of R̂ for PDF h2 (ε = 0.01, δε = 0.05, and n = 200).

N α2 β2 γ2 α1 β1 γ1 R R̂MC Bias RMSE

2 1 0.50 0.30 0.70 0.50 0.30 0.5240 0.5331 0.0090 0.0940
2 1 0.50 0.30 0.70 0.75 0.30 0.4057 0.3671 −0.0390 0.0880
2 1 0.50 0.30 1.00 0.75 0.30 0.4017 0.3418 −0.0600 0.0940
2 1 0.30 0.55 0.70 0.55 0.90 0.3762 0.2811 −0.0950 0.1170
2 1 0.30 0.55 0.70 0.55 0.90 0.3762 0.2801 −0.0960 0.1170
2 1 0.30 0.55 1.00 0.55 0.90 0.3769 0.2785 −0.0980 0.1180
2 1 1.00 1.00 0.90 0.50 0.50 0.6641 0.6628 −0.0010 0.0720
2 1 1.00 1.00 0.95 0.50 0.50 0.6654 0.6621 −0.0030 0.0690
2 1 1.00 1.00 0.97 0.50 0.50 0.6659 0.6602 −0.0060 0.0680
2 1 1.00 1.00 1.00 0.50 0.50 0.6667 0.6649 −0.0020 0.0660

5 1 0.50 0.30 0.70 0.50 0.30 0.5240 0.5299 0.0060 0.0920
5 1 0.50 0.30 0.70 0.75 0.30 0.4057 0.3632 −0.0430 0.0900
5 1 0.50 0.30 1.00 0.75 0.30 0.4017 0.3395 −0.0620 0.0960
5 1 0.30 0.55 0.70 0.55 0.90 0.3762 0.2854 −0.0910 0.1140
5 1 0.30 0.55 0.70 0.55 0.90 0.3762 0.2820 −0.0940 0.1160
5 1 0.30 0.55 1.00 0.55 0.90 0.3769 0.2767 −0.1000 0.1200
5 1 1.00 1.00 0.90 0.50 0.50 0.6641 0.6606 −0.0030 0.0720
5 1 1.00 1.00 0.95 0.50 0.50 0.6654 0.6601 −0.0050 0.0710
5 1 1.00 1.00 0.97 0.50 0.50 0.6659 0.6626 −0.0030 0.0680
5 1 1.00 1.00 1.00 0.50 0.50 0.6667 0.6663 0.0000 0.0670

10 1 0.50 0.30 0.70 0.50 0.30 0.5240 0.5311 0.0072 0.0898
10 1 0.50 0.30 0.70 0.75 0.30 0.4057 0.3664 −0.0394 0.0907
10 1 0.50 0.30 1.00 0.75 0.30 0.4017 0.3365 −0.0651 0.0984
10 1 0.30 0.55 0.70 0.55 0.90 0.3762 0.2839 −0.0923 0.1155
10 1 0.30 0.55 0.70 0.55 0.90 0.3762 0.2827 −0.0935 0.1167
10 1 0.30 0.55 1.00 0.55 0.90 0.3769 0.2770 −0.1000 0.1211
10 1 1.00 1.00 0.90 0.50 0.50 0.6641 0.6634 −0.0007 0.0703
10 1 1.00 1.00 0.95 0.50 0.50 0.6654 0.6635 −0.0019 0.0692
10 1 1.00 1.00 0.97 0.50 0.50 0.6659 0.6620 −0.0040 0.0688
10 1 1.00 1.00 1.00 0.50 0.50 0.6667 0.6619 −0.0047 0.0694

As in the h2 case, for the PDFs h1 and h5, the search space is Θ0 = [0, N]3. Thus, based
on the results from Tables 1 and 2 and on the computational difficulties with the increasing
of N, we restrict our analysis for N = 2 when the PDF is h1 (for h5, which has only two
parameters to be estimated, we keep N = 10).

Tables 3 and 4 present the mean, bias, and RMSE of R̂MC for M = 1000 Monte Carlo
simulations of X and Y from H1 and H5, respectively, with n = 30, ε = 0.01, and δε = 0.05.
For the simulations, we followed the same procedure used in the generation of Table 1.
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Table 3. Mean, bias, and RMSE of R̂ for PDF h1 (ε = 0.01, δε = 0.05, N = 2, and n = 30).

α2 β2 γ2 α1 β1 γ1 R R̂MC Bias RMSE

1 0.50 0.30 0.70 0.50 0.30 0.5240 0.4161 −0.1078 0.2443
1 0.50 0.30 0.70 0.75 0.30 0.3721 0.3728 0.0007 0.2103
1 0.50 0.30 1.00 0.75 0.30 0.3064 0.4284 0.1219 0.2032
1 0.30 0.55 0.70 0.55 0.90 0.3182 0.3056 −0.0125 0.1478
1 0.30 0.55 0.70 0.55 0.90 0.3182 0.3097 −0.0085 0.1562
1 0.30 0.55 1.00 0.55 0.90 0.2414 0.2493 0.0079 0.1214
1 1.00 1.00 0.90 0.50 0.50 0.7961 0.7569 −0.0391 0.1347
1 1.00 1.00 0.95 0.50 0.50 0.7949 0.7661 −0.0288 0.1215
1 1.00 1.00 0.97 0.50 0.50 0.7944 0.7668 −0.0276 0.1151
1 1.00 1.00 1.00 0.50 0.50 0.7937 0.7657 −0.0279 0.1236

Table 4. Mean, bias, and RMSE of R̂ for PDF h5 (ε = 0.01, δε = 0.05, N = 10, and n = 30).

β2 γ2 β1 γ1 R R̂MC Bias RMSE

0.30 0.50 0.20 0.30 0.7362 0.7811 0.0450 0.0783
0.30 0.50 0.60 0.50 0.3443 0.3309 −0.0134 0.0743
0.30 0.50 0.90 1.00 0.2050 0.1337 −0.0713 0.0848
0.50 0.70 0.20 0.30 0.8706 0.9080 0.0374 0.0545
0.50 0.70 0.60 0.50 0.5473 0.5249 −0.0225 0.0796
0.50 0.70 0.90 1.00 0.3507 0.2960 −0.0546 0.0853
1.00 1.00 0.20 0.30 0.9393 0.9666 0.0273 0.0344
1.00 1.00 0.60 0.50 0.7370 0.7050 −0.0320 0.0755
1.00 1.00 0.90 1.00 0.5071 0.5247 0.0176 0.0778
1.00 1.00 1.00 1.00 0.5000 0.4997 −0.0003 0.0755

Table 4 shows that the estimator R̂MC has a better performance with a more precise
estimation when the PDF is h5, also with less RMSEs. This was expected since there are
only two parameters to be estimated from a random sample of X and two others from Y.

5.2. Real Dataset Applications

We now give two applications using real data analyzed earlier in the literature.

5.2.1. Medium Pass Completion Proportion

We use the data for the UEFA Champions League and 2022 FIFA World Cup datasets
(Available at https://www.kaggle.com/ accessed on 13 February 2024) to illustrate the
model developed in the preceding sections. We compare the medium pass completion
proportion, that is, relative frequency of successful passes between 14 and 18 m - thus a
number from 0 (none of the passes) to 1 (all the passes). These datasets were modeled
before in [25]. For the convenience of the reader, datasets from UEFA (X) and FIFA (Y) are
presented below:

X = (0.289, 0.700, 0.211, 0.733, 0.444, 0.544, 0.089, 0.767, 0.433, 0.911,

0.800, 0.733, 0.278, 0.456, 0.178, 0.200, 0.244, 0.467, 0.022, 0.400, 0.378,

0.589, 0.600, 0.567, 0.844, 0.711, 0.289, 0.178, 0.489, 0.278, 0.611, 0.544,

0.267, 0.489, 0.467, 0.300, 0.311)

and

Y = (0.888, 0.815, 0.907, 0.891, 0.827, 0.898, 0.856, 0.861, 0.890, 0.860,

0.920, 0.894, 0.913, 0.849, 0.781, 0.828, 0.864, 0.820, 0.846, 0.879,

0.860, 0.885, 0.862, 0.769, 0.845, 0.846, 0.931, 0.863, 0.856, 0.879,

0.812, 0.841).

https://www.kaggle.com/
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Descriptive statistics for X and Y are presented in Table 5. The boxplot shown in
Figure 4 shows that X is more dispersed than Y and that Y values tend to be larger than
X values (1st quartile of Y is greater than 3rd quartile of Y). Computing the value of
the statistic R is important to probabilistically measure such a difference observed in
the datasets.

Table 5. Descriptive statistics for X and Y.

Dataset Min. 1st Qu. Median Mean 3rd Qu. Max. n

X 0.02 0.28 0.46 0.45 0.60 0.91 37
Y 0.77 0.84 0.86 0.86 0.89 0.93 32

Figure 4. Boxplots of X (left ) and Y (right).

As the datasets have positive support, the PDF candidates to model such datasets are
h1, h2, and h5. After estimating the parameters for the three distributions, the information
criteria AIC, BIC, and EDC were applied, justifying the choice of PDF h2 (see Table 6). This
choice was also supported by the Kolmogorov–Smirnov test, whose p-values were 0.8954
and 0.726, for X and Y, respectively, indicating that we could not reject the null hypothesis
that the CDF is H2. Figure 5 shows the fit of distributions to datasets.

Table 6. Estimated parameters and information criteria for model selection.

Dataset PDF α̂ β̂ γ̂ AIC BIC EDC

X h1 0.7698 0.4113 5.4562 103.95 88.29 102.25
h2 1.8231 0.7822 0.8249 −8.26 −23.93 −9.97
h5 – 0.9778 3.5948 29.66 19.22 28.53

Y h1 17.9328 1.1439 3.3069 −113.48 −128.27 −114.94
h2 2.1254 9.7882 1.8085 −127.37 −142.17 −128.83
h5 – 17.8660 19.9746 −112.29 −122.15 −113.26

Using Theorem 2, we obtain R̂ = 0.9235 and the 95% Bootstrap confident interval is
(0.8921, 1.0000). That indicates a high probability that the proportion of successful passes
between 14 and 18 m in UEFA matches was lower than in FIFA.
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Figure 5. Plots for X (left) and Y (right). On (top), histogram and fitted PDF; on (bottom), empirical
CDF and fitted CDF.

5.2.2. Carbon Fibers

We now present an application of stress–strength probability calculation in the mod-
eling and comparison of carbon fibers of length 20 mm (X) and 10 mm (Y). X and Y
represent the strength data measured in GPa (Gigapascal) for single carbon fibers tested
under tension and are also presented below in addition to being frequently used in the
literature (e.g., [26]).

X = (1.312, 1.314, 1.479, 1.552, 1.700, 1.803, 1.861, 1.865, 1.944, 1.958, 1.966,

1.977, 2.006, 2.021, 2.027, 2.055, 2.063, 2.098, 2.140, 2.179, 2.224, 2.240,

2.253, 2.270, 2.272, 2.274, 2.301, 2.301, 2.359, 2.382, 2.382, 2.426, 2.434,

2.435, 2.478, 2.490, 2.511, 2.514, 2.535, 2.554, 2.566, 2.570, 2.586, 2.629,

2.633, 2.642, 2.648, 2.684, 2.697, 2.726, 2.770, 2.773, 2.800, 2.809, 2.818,

2.821, 2.848, 2.880, 2.954, 3.012, 3.067, 3.084, 3.090, 3.096, 3.128, 3.233,

3.433, 3.585, 3.585)
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Y = (1.901, 2.132, 2.203, 2.228, 2.257, 2.350, 2.361, 2.396, 2.397, 2.445,

2.454, 2.474, 2.518, 2.522, 2.525, 2.532, 2.575, 2.614, 2.616, 2.618,

2.624, 2.659, 2.675, 2.738, 2.740, 2.856, 2.917, 2.928, 2.937, 2.937,

2.977, 2.996, 3.030, 3.125, 3.139, 3.145, 3.220, 3.223, 3.235, 3.243,

3.264, 3.272, 3.294, 3.332, 3.346, 3.377, 3.408, 3.435, 3.493, 3.501,

3.537, 3.554, 3.562, 3.628, 3.852, 3.871, 3.886, 3.971, 4.024, 4.027,

4.225, 4.395, 5.020)

Table 7 and Figure 6 show that the descriptive profile of X and Y in which it is possible
to observe that Y (carbon fibers of length 10 mm) tends to have greater values than X
(carbon fibers of length 20 mm). This indicates that we expect a probability R = P (X < Y)
greater than 1/2.

Table 7. Descriptive statistics for X and Y.

Dataset Min. 1st Qu. Median Mean 3rd Qu. Max. n

X 1.31 2.10 2.48 2.45 2.77 3.58 69
Y 1.90 2.55 3.00 3.06 3.42 5.02 63

Figure 6. Boxplots of X (left) and Y (right).

Considering that both X and Y are positive datasets, for the estimation of R, we must
choose a p-max stable distribution with positive support. In this case, the candidates
are h1, h2, and h5, whose estimated parameters are shown in Table 8. In this same table,
we also compared the fitted p-max distributions to the fittings obtained for the Weibull
(WB) and the Exponentiated Weibull (EWB) distributions, with the latter being introduced
in [27]. As a selection criterion for the best distribution, the AIC, BIC, and EDC criteria
are evaluated, and we choose PDF h2. For the Y random variable, h2 is found to be the
best distribution according to all the metrics used. On the other hand, for the X random
variable, by a small margin, the Weibull distribution is the best according to AIC e BIC;
on the other hand, h2 shows up as the best model according to EDC. Considering that EDC
is a generalization of both AIC and BIC and that it encompasses an optimal penalization
term, h2 was chosen as the best model for the X random variable as well. The fit of the
p-max distributions considered, in particular H2, to the data can be seen in Figure 7.
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Table 8. Estimated parameters and information criteria for model selection.

Dataset PDF α̂ β̂ γ̂ AIC BIC EDC

X h1 26.1763 0.1583 2.4240 138.20 157.60 140.86
h2 2.1882 2.0072 0.0706 104.57 123.98 107.23
h5 – 3.3015 0.1254 153.71 166.65 155.48

WB 3.8428 (shape) – 11.3142 (scale) 101.74 114.68 114.68
EWB 0.4839 1.8690 1.84582 150.83 163.77 163.77

Y h1 32.7124 0.1640 2.3043 113.27 94.41 110.74
h2 4.2267 1.1982 0.1073 106.26 87.40 103.73
h5 – 2.4785 0.0639 162.05 149.48 160.37

WB 3.9090 (shape) – 38.5449 (scale) 124.30 136.88 125.99
EWB 0.3860 1.7889 1.4415 183.50 196.07 185.18

Legend: Weibull (WB), Exponentiated Weibull (EWB).

Figure 7. Plots for X (left) and Y (right). On top, histogram and fitted PDF; on bottom, empirical
CDF and fitted CDF.

We present the following conclusions:

• According to the AIC, BIC, and EDC criteria, PDF h2 is the one that best fits data X
and Y. This was expected since the same data were already modeled via Weibull
distribution (see [11,28]) and having positive right endpoint, Theorem 3.1 in [20]
establishes that H2 would be the corresponding p-max stable distribution;

• The p-values of the Kolmogorov–Smirnov test are 0.9404 and 0.8390, respectively,
which indicate that we cannot reject the null hypotheses that the X and Y CDFs are H2.

• The same conclusion for Table 8 can be obtained from the analysis of Figure 7, which
presents the adjustment of the PDFs h1, h2, and h3 to the datasets.
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• Based on the choice of H2 to model the data X and Y and on the estimated parameters
(Table 8), the estimated value of R calculated from (18) is R̂ = 0.7701, and the 95%
Bootstrap confident interval for R is (0.7017, 0.8425).

6. Conclusions

Our study aimed to investigate the estimation of the R = P(X < Y) for independent
marginals X and Y following p-max stable distributions. In order to do so, we obtained
exact expressions for R. By using the new formulas proposed, direct and exact reliability
applications are made possible for an important class of asymmetric distributions.

We discuss the application of a novel class of special functions , the so-called extreme
value H−function, which allows us to write the expressions of R explicitly and with
minimal restrictions. In particular, by imposing additional parameter restrictions, R can be
calculated in terms of H−functions as well as even more compact expressions.

To the best of our knowledge, there are no previous works in the literature aim-
ing to provide expressions and frameworks to perform reliability statistical inference for
p-max stable distributions, and this work stands as a contribution by providing estimation
methods based on stochastic optimization.

A restraint of our estimation method is the fact that it relies on compact search spaces
[0, N]3 for fixed N. However, we tested the performance of the proposed estimator by
a Monte Carlo simulation study. Even though the search range N exponentially gov-
erns the computational effort required, the reported results reveal the correctness of the
methodological approach hereby proposed.

Two applications to real datasets were carried out to show the performance of the
p-max stable laws in reliability scenarios. Future work may explore other extreme value
distributions and their reliability calculations, such as bimodal Weibull, bimodal Gumbel,
bimodal GEV, and the extreme-value Birnbaum-Saunders distribution.

Overall, it is possible to summarize the strengths of the present paper as follows:

1. General expressions were analytically derived for R = P(X < Y) when X and Y follow
three-parameter p-max stable laws with fewer parameter restrictions compared to
previous results in the literature;

2. A stochastic optimization procedure was proposed to build an estimator for R based
on the novel expressions derived;

3. The validity of the expressions and of the general methodological framework devel-
oped were demonstrated by Monte Carlo simulations;

4. The suitability of the p-max distributions to model real datasets was attested by
study cases.

On the other hand, the main weaknesses of the present paper are as follows:

1. The stochastic optimization procedure relies on compact search spaces [0, N]3 for fixed
N, whose impact is exponential on the computational effort required;

2. The amount of data used to illustrate the methodology and equations developed
in the paper is limited; thus, the superiority of the p-max distributions over other
possible models needs to be assessed in a case-by-case fashion.
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