Conditional Skipping Mamba Network for Pan-Sharpening
Abstract
:1. Introduction
- We propose the skipping Mamba network with hierarchical Mamba connections to preserve original features while integrating complementary PAN and MS information, enhancing spatial detail, spectral consistency, and sensitivity to local variations.
- We introduce the AMM, combining the Mamba state-space model with channel features for adaptive multi-modal feature extraction and improved global perception.
- We present the CDMM, enabling efficient spatial–spectral feature fusion using ADA, boosting fusion robustness.
- We evaluate our method on IKONOS and WorldView-2 datasets, demonstrating significant improvements in both quantitative and qualitative performance.
2. Relate Work
3. Method
3.1. Preliminaries
3.1.1. State-Space Models
3.1.2. Selective Scan Mechanism
3.2. Overall Architecture
3.2.1. AMM
3.2.2. Cross-Domain Mamba
3.3. Optimization Function
4. Experiments
4.1. Datasets
4.2. Benchmarks and Evaluation Metrics
4.3. Implementation Details
4.4. Comparative Analysis
4.4.1. Reduced-Resolution Datasets
4.4.2. Full-Scale Datasets
4.4.3. Ablation Study
5. Limitations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, B.; Wu, Y.; Zhao, B.; Chanussot, J.; Hong, D.; Yao, J.; Gao, L. Progress and challenges in intelligent remote sensing satellite systems. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 1814–1822. [Google Scholar] [CrossRef]
- Casagli, N.; Intrieri, E.; Tofani, V.; Gigli, G.; Raspini, F. Landslide detection, monitoring and prediction with remote-sensing techniques. Nat. Rev. Earth Environ. 2023, 4, 51–64. [Google Scholar] [CrossRef]
- Wald, L.; Ranchin, T.; Mangolini, M. Fusion of satellite images of different spatial resolutions: Assessing the quality of resulting images. Photogramm. Eng. Remote Sens. 1997, 63, 691–699. [Google Scholar]
- Ghahremani, M.; Ghassemian, H. Nonlinear IHS: A promising method for pan-sharpening. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1606–1610. [Google Scholar] [CrossRef]
- Sebastian, R. An overview of gradient descent optimization algorithms. arXiv 2016, arXiv:1609.04747. [Google Scholar]
- Lu, H.; Yang, Y.; Huang, S.; Tu, W.; Wan, W. A unified pansharpening model based on band-adaptive gradient and detail correction. IEEE Trans. Image Process. 2021, 31, 918–933. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, H.; Tian, X.; Ma, J. P2Sharpen: A progressive pansharpening network with deep spectral transformation. Inf. Fusion 2023, 91, 103–122. [Google Scholar] [CrossRef]
- Xu, S.; Zhang, J.; Zhao, Z.; Sun, K.; Liu, J.; Zhang, C. Deep gradient projection networks for pan-sharpening. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 1366–1375. [Google Scholar]
- Zhou, H.; Liu, Q.; Wang, Y. PanFormer: A transformer based model for pan-sharpening. In Proceedings of the 2022 IEEE International Conference on Multimedia and Expo (ICME), Taipei, Taiwan, 18–22 July 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–6. [Google Scholar]
- Zhou, M.; Huang, J.; Fang, Y.; Fu, X.; Liu, A. Pan-sharpening with customized transformer and invertible neural network. In Proceedings of the AAAI Conference on Artificial Intelligence, Online, 22 February–1 March 2022; Volume 36, pp. 3553–3561. [Google Scholar]
- Zhou, M.; Huang, J.; Yan, K.; Yu, H.; Fu, X.; Liu, A.; Wei, X.; Zhao, F. Spatial-frequency domain information integration for pan-sharpening. In Proceedings of the European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; Springer: Cham, Switzerland, 2022; pp. 274–291. [Google Scholar]
- Yuan, Q.; Wei, Y.; Meng, X.; Shen, H.; Zhang, L. A multiscale and multidepth convolutional neural network for remote sensing imagery pan-sharpening. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 978–989. [Google Scholar] [CrossRef]
- Laben, C.A.; Brower, B.V. Process for Enhancing the Spatial Resolution of Multispectral Imagery Using Pan-Sharpening. U.S. Patent 6,011,875, 4 January 2000. [Google Scholar]
- Liang, J.; Cao, J.; Sun, G.; Zhang, K.; Van Gool, L.; Timofte, R. Swinir: Image restoration using swin transformer. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 1833–1844. [Google Scholar]
- He, X.; Cao, K.; Yan, K.; Li, R.; Xie, C.; Zhang, J.; Zhou, M. Pan-mamba: Effective pan-sharpening with state space model. arXiv 2024, arXiv:2402.12192. [Google Scholar] [CrossRef]
- Liu, Y.; Tian, Y.; Zhao, Y.; Yu, H.; Xie, L.; Wang, Y.; Ye, Q.; Liu, Y. VMamba: Visual State Space Model. arXiv 2024, arXiv:2401.10166. [Google Scholar]
- Zhu, L.; Liao, B.; Zhang, Q.; Wang, X.; Liu, W.; Wang, X. Vision mamba: Efficient visual representation learning with bidirectional state space model. arXiv 2024, arXiv:2401.09417. [Google Scholar]
- Zhang, K.; Wang, A.; Zhang, F.; Wan, W.; Sun, J.; Bruzzone, L. Spatial-spectral dual back-projection network for pansharpening. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5402216. [Google Scholar] [CrossRef]
- Li, H.; Nie, R.; Cao, J.; Jin, B.; Han, Y. MPEFNet: Multilevel Progressive Enhancement Fusion Network for Pansharpening. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 9358–9368. [Google Scholar] [CrossRef]
- Zhang, K.; Yang, G.; Zhang, F.; Wan, W.; Zhou, M.; Sun, J.; Zhang, H. Learning deep multiscale local dissimilarity prior for pansharpening. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5406015. [Google Scholar] [CrossRef]
- Choi, J.; Yu, K.; Kim, Y. A new adaptive component-substitution-based satellite image fusion by using partial replacement. IEEE Trans. Geosci. Remote Sens. 2010, 49, 295–309. [Google Scholar] [CrossRef]
- Schowengerdt, R.A. Reconstruction of multispatial, multispectral image data using spatial frequency content. Photogramm. Eng. Remote Sens. 1980, 46, 1325–1334. [Google Scholar]
- Aiazzi, B.; Alparone, L.; Baronti, S.; Garzelli, A. Context-driven fusion of high spatial and spectral resolution images based on oversampled multiresolution analysis. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2300–2312. [Google Scholar] [CrossRef]
- Ballester, C.; Caselles, V.; Igual, L.; Verdera, J.; Rougé, B. A variational model for P+ XS image fusion. Int. J. Comput. Vis. 2006, 69, 43–58. [Google Scholar] [CrossRef]
- Jia, S.; Zhu, S.; Wang, Z.; Xu, M.; Wang, W.; Guo, Y. Diffused convolutional neural network for hyperspectral image super-resolution. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5504615. [Google Scholar] [CrossRef]
- Peng, S.; Guo, C.; Wu, X.; Deng, L.J. U2net: A general framework with spatial-spectral-integrated double u-net for image fusion. In Proceedings of the 31st ACM International Conference on Multimedia, Ottawa, ON, Canada, 29 October–3 November 2023; pp. 3219–3227. [Google Scholar]
- Yang, J.; Fu, X.; Hu, Y.; Huang, Y.; Ding, X.; Paisley, J. PanNet: A deep network architecture for pan-sharpening. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 5449–5457. [Google Scholar]
- Lv, Z.; Zhang, P.; Sun, W.; Benediktsson, J.A.; Lei, T. Novel land-cover classification approach with nonparametric sample augmentation for hyperspectral remote sensing images. IEEE Trans. Geosci. Remote Sens. 2023, 61, 4407613. [Google Scholar] [CrossRef]
- Qiao, S.; Chen, L.C.; Yuille, A. Detectors: Detecting objects with recursive feature pyramid and switchable atrous convolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 10213–10224. [Google Scholar]
- Tan, M.; Pang, R.; Le, Q.V. Efficientdet: Scalable and efficient object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 10781–10790. [Google Scholar]
- Liao, Z.; Zhang, W.; Chu, Q.; Ding, H.; Hu, Y. Multispectral remote sensing image deblurring using auxiliary band gradient information. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5403418. [Google Scholar] [CrossRef]
- Gu, A.; Goel, K.; Ré, C. Efficiently modeling long sequences with structured state spaces. arXiv 2021, arXiv:2111.00396. [Google Scholar]
- Gu, A.; Dao, T. Mamba: Linear-time sequence modeling with selective state spaces. arXiv 2023, arXiv:2312.00752. [Google Scholar]
- Mehta, H.; Gupta, A.; Cutkosky, A.; Neyshabur, B. Long range language modeling via gated state spaces. arXiv 2022, arXiv:2206.13947. [Google Scholar]
- He, X.; Yan, K.; Zhang, J.; Li, R.; Xie, C.; Zhou, M.; Hong, D. Multiscale dual-domain guidance network for pan-sharpening. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5403213. [Google Scholar] [CrossRef]
- Gu, A.; Johnson, I.; Goel, K.; Saab, K.; Dao, T.; Rudra, A.; Ré, C. Combining recurrent, convolutional, and continuous-time models with linear state space layers. Adv. Neural Inf. Process. Syst. 2021, 34, 572–585. [Google Scholar]
- Xie, G.; Nie, R.; Cao, J.; Li, H.; Li, J. A Deep Multi-Resolution Representation Framework for Pansharpening. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5517216. [Google Scholar] [CrossRef]
- Alparone, L.; Wald, L.; Chanussot, J.; Thomas, C.; Gamba, P.; Bruce, L.M. Comparison of pansharpening algorithms: Outcome of the 2006 GRS-S data-fusion contest. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3012–3021. [Google Scholar] [CrossRef]
- Pushparaj, J.; Hegde, A.V. Evaluation of pan-sharpening methods for spatial and spectral quality. Appl. Geomat. 2017, 9, 1–12. [Google Scholar] [CrossRef]
- Yuhas, R.H.; Goetz, A.F.; Boardman, J.W. Discrimination among semi-arid landscape endmembers using the spectral angle mapper (SAM) algorithm. In Summaries of the Third Annual JPL Airborne Geoscience Workshop; Volume 1: AVIRIS Workshop; JPL: La Cañada Flintridge, CA, USA, 1992. [Google Scholar]
- Wang, Z.; Bovik, A.C. A universal image quality index. IEEE Signal Process. Lett. 2002, 9, 81–84. [Google Scholar] [CrossRef]
- Garzelli, A.; Nencini, F. Hypercomplex quality assessment of multi/hyperspectral images. IEEE Geosci. Remote Sens. Lett. 2009, 6, 662–665. [Google Scholar] [CrossRef]
- Alparone, L.; Aiazzi, B.; Baronti, S.; Garzelli, A.; Nencini, F.; Selva, M. Multispectral and panchromatic data fusion assessment without reference. Photogramm. Eng. Remote Sens. 2008, 74, 193–200. [Google Scholar] [CrossRef]
- Tang, Y.; Li, H.; Xie, G.; Liu, P.; Li, T. Multi-Frequency Spectral–Spatial Interactive Enhancement Fusion Network for Pan-Sharpening. Electronics 2024, 13, 2802. [Google Scholar] [CrossRef]
- Gillespie, A.R.; Kahle, A.B.; Walker, R.E. Color enhancement of highly correlated images. II. Channel ratio and “chromaticity” transformation techniques. Remote Sens. Environ. 1987, 22, 343–365. [Google Scholar] [CrossRef]
- Vivone, G.; Alparone, L.; Chanussot, J.; Dalla Mura, M.; Garzelli, A.; Licciardi, G.A.; Restaino, R.; Wald, L. A critical comparison among pansharpening algorithms. IEEE Trans. Geosci. Remote Sens. 2014, 53, 2565–2586. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, C.; Sun, M.; Ou, Y. Pan-sharpening using an efficient bidirectional pyramid network. IEEE Trans. Geosci. Remote Sens. 2019, 57, 5549–5563. [Google Scholar] [CrossRef]
- Wang, Y.; Deng, L.J.; Zhang, T.J.; Wu, X. SSconv: Explicit spectral-to-spatial convolution for pansharpening. In Proceedings of the 29th ACM International Conference on Multimedia, Virtual Event, China, 20–24 October 2021; pp. 4472–4480. [Google Scholar]
Methods | Reduced-Resolution | Full-Resolution | |||||
---|---|---|---|---|---|---|---|
Q4↑ | ERGAS↓ | SAM↓ | SCC↑ | QNR↑ | ↓ | ↓ | |
Brovey | 0.7347 | 2.5267 | 3.4047 | 0.888 | 0.7084 | 0.2143 | 0.1097 |
ATWT-M2 | 0.6919 | 2.869 | 3.4583 | 0.8323 | 0.7605 | 0.1559 | 0.1089 |
MSDCNN | 0.8766 | 1.6187 | 2.3738 | 0.9474 | 0.8563 | 0.1071 | 0.0468 |
BDPN | 0.8434 | 1.9006 | 3.0374 | 0.9277 | 0.7802 | 0.1545 | 0.0802 |
MUCNN | 0.8822 | 1.5532 | 2.2227 | 0.9476 | 0.8333 | 0.1026 | 0.0812 |
S2DPBN | 0.8655 | 1.6726 | 2.4063 | 0.9469 | 0.8409 | 0.0924 | 0.0788 |
DMLD | 0.8560 | 1.8216 | 2.6823 | 0.9397 | 0.8387 | 0.1081 | 0.0694 |
MPEFNet | 0.8737 | 1.6605 | 2.3495 | 0.9427 | 0.8560 | 0.1147 | 0.0370 |
OURS | 0.9507 | 1.0895 | 1.5867 | 0.9624 | 0.8268 | 0.0916 | 0.0928 |
Methods | Reduced-Resolution | Full-Resolution | |||||
---|---|---|---|---|---|---|---|
Q8↑ | ERGAS↓ | SAM↓ | SCC↑ | QNR↑ | ↓ | ↓ | |
Brovey | 0.8212 | 6.3161 | 7.9286 | 0.9007 | 0.8688 | 0.1088 | 0.0251 |
ATWT-M2 | 0.7234 | 7.3883 | 7.9224 | 0.8382 | 0.8389 | 0.1088 | 0.0587 |
MSDCNN | 0.9605 | 3.2738 | 5.1168 | 0.9632 | 0.8731 | 0.094 | 0.0363 |
BDPN | 0.9483 | 3.7056 | 5.8499 | 0.947 | 0.8732 | 0.1005 | 0.0293 |
MUCNN | 0.9543 | 3.4941 | 5.3528 | 0.9558 | 0.8709 | 0.0966 | 0.036 |
S2DPBN | 0.9587 | 3.3087 | 5.1763 | 0.9619 | 0.8614 | 0.0885 | 0.055 |
DMLD | 0.9552 | 3.4982 | 5.3348 | 0.9581 | 0.8660 | 0.1076 | 0.0296 |
MPEFNet | 0.9527 | 3.5880 | 5.4751 | 0.9538 | 0.8907 | 0.0928 | 0.0181 |
OURS | 0.9637 | 3.1135 | 4.9105 | 0.9643 | 0.8750 | 0.0964 | 0.0312 |
IKONOS Dataset | Versions | AMM | CMD | Q4↑ | ERGAS↓ | SAM↓ | SCC↑ |
(I) | ✓ | × | 0.8785 | 1.5491 | 2.2442 | 0.9536 | |
(II) | × | ✓ | 0.8759 | 1.5633 | 2.2758 | 0.9492 | |
Ours | ✓ | ✓ | 0.9507 | 1.0895 | 1.5867 | 0.9624 | |
WV-2 Dataset | Versions | AMM | CMD | Q8↑ | ERGAS↓ | SAM↓ | SCC↑ |
(I) | ✓ | × | 0.963 | 3.1258 | 4.889 | 0.9665 | |
(II) | × | ✓ | 0.9621 | 3.1695 | 4.9491 | 0.9656 | |
Ours | ✓ | ✓ | 0.9637 | 3.1135 | 4.9105 | 0.9643 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Y.; Li, H.; Liu, P.; Li, T. Conditional Skipping Mamba Network for Pan-Sharpening. Symmetry 2024, 16, 1681. https://doi.org/10.3390/sym16121681
Tang Y, Li H, Liu P, Li T. Conditional Skipping Mamba Network for Pan-Sharpening. Symmetry. 2024; 16(12):1681. https://doi.org/10.3390/sym16121681
Chicago/Turabian StyleTang, Yunxuan, Huaguang Li, Peng Liu, and Tong Li. 2024. "Conditional Skipping Mamba Network for Pan-Sharpening" Symmetry 16, no. 12: 1681. https://doi.org/10.3390/sym16121681
APA StyleTang, Y., Li, H., Liu, P., & Li, T. (2024). Conditional Skipping Mamba Network for Pan-Sharpening. Symmetry, 16(12), 1681. https://doi.org/10.3390/sym16121681