On the Solitary Waves and Nonlinear Oscillations to the Fractional Schrödinger–KdV Equation in the Framework of the Caputo Operator
Abstract
:1. Introduction
2. Basic Definitions
- (1)
- (2)
- (3)
3. General Implementation
- and for each
- .
4. Numerical Results
Example
5. Numerical and Graphical Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Noor, S.; Hammad, M.M.; Shah, R.; Alrowaily, A.W.; El-Tantawy, S.A. Numerical Investigation of Fractional-Order Fornberg–Whitham Equations in the Framework of Aboodh Transformation. Symmetry 2023, 15, 1353. [Google Scholar] [CrossRef]
- Yasmin, H.; Abu Hammad, M.M.; Shah, R.; Alotaibi, B.M.; Ismaeel, S.M.; El-Tantawy, S.A. On the Solutions of the Fractional-Order Sawada–Kotera–Ito Equation and Modeling Nonlinear Structures in Fluid Mediums. Symmetry 2023, 15, 605. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Baleanu, D.; Guvenc, Z.B.; Tenreiro Machado, J.A. New Trends in Nanotechnology and Fractional Calculus Applications; Springer: New York, NY, USA, 2010. [Google Scholar]
- Caputo, M. Elasticita e Dissipazione; Zanichelli: Bologna, Italy, 1969. [Google Scholar]
- Riemann, G.F.B. Versuch Einer Allgemeinen Auffassung der Integration und Differentiation; Gesammelte Mathematische Werke: Leipzig, Germany, 1896. [Google Scholar]
- Liouville, J. Memoire sur quelques questions de geometrie et de mecanique, et sur un nouveaugenre de calcul pour resoudre ces questions. J. Ec. Polytech. 1832, 13, 1–69. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Miller, K.S.; Ross, B. An Introduction to Fractional Calculus and Fractional Differential Equations; Wiley: New York, NY, USA, 1993. [Google Scholar]
- Li, Y.; Liu, F.; Turner, I.W.; Li, T. Time-fractional diffusion equation for signal smoothing. Appl. Math. Comput. 2018, 326, 108–116. [Google Scholar] [CrossRef]
- Lin, W. Global existence theory and chaos control of fractional differential equations. J. Math. Anal. Appl. 2007, 332, 709–726. [Google Scholar] [CrossRef]
- Veeresha, P.; Prakasha, D.G.; Baskonus, H.M. Solving smoking epidemic model of fractional order using a modified homotopy analysis transform method. Math. Sci. 2019, 13, 115–128. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, Y.; Zhang, W. A Composite Adaptive Fault-Tolerant Attitude Control for a Quadrotor UAV with Multiple Uncertainties. J. Syst. Sci. Complex. 2022, 35, 81–104. [Google Scholar] [CrossRef]
- Xie, X.; Huang, L.; Marson, S.M.; Wei, G. Emergency response process for sudden rainstorm and flooding: Scenario deduction and Bayesian network analysis using evidence theory and knowledge meta-theory. Nat. Hazards 2023, 117, 3307–3329. [Google Scholar] [CrossRef]
- Zhu, H.; Xue, M.; Wang, Y.; Yuan, G.; Li, X. Fast Visual Tracking with Siamese Oriented Region Proposal Network. IEEE Signal Process. Lett. 2022, 29, 1437. [Google Scholar] [CrossRef]
- Meng, Q.; Ma, Q.; Shi, Y. Adaptive Fixed-time Stabilization for a Class of Uncertain Nonlinear Systems. IEEE Trans. Autom. Control 2023, 1–8. [Google Scholar] [CrossRef]
- Zhong, Q.; Han, S.; Shi, K.; Zhong, S.; Kwon, O. Co-Design of Adaptive Memory Event-Triggered Mechanism and Aperiodic In-termittent Controller for Nonlinear Networked Control Systems. IEEE Trans. Circuits Syst. II Express Briefs 2022, 69, 4979–4983. [Google Scholar] [CrossRef]
- Guo, C.; Hu, J. Fixed-Time Stabilization of High-Order Uncertain Nonlinear Systems: Output Feedback Control Design and Settling Time Analysis. J. Syst. Sci. Complex. 2023, 1–22. [Google Scholar] [CrossRef]
- Guo, C.; Hu, J. Time base generator based practical predefined-time stabilization of high-order systems with unknown disturbance. IEEE Trans. Circuits Syst. II Express Briefs 2023. [Google Scholar] [CrossRef]
- Alhejaili, W.; Douanla, D.V.; Alim, A.; Tiofack, C.G.; Mohamadou, A.; El-Tantawy, S.A. Multidimensional dust-acoustic rogue waves in electron-depleted complex magnetoplasmas. Phys. Fluids 2023, 35, 063102. [Google Scholar]
- Mouhammadoul, B.B.; Alim, A.; Tiofack, C.G.; Mohamadou, A.; Alrowaily, A.W.; Ismaeel, S.; El-Tantawy, S.A. On the super positron-acoustic rogue waves in q-nonextensive magnetoplasmas. Phys. Fluids 2023, 35, 054109. [Google Scholar]
- El-Tantawy, S.A.; Salas, A.H.; Alyousef, H.A.; Alharthi, M.R. Novel approximations to a nonplanar nonlinear Schrödinger equation and modeling nonplanar rogue waves/breathers in a complex plasma. Chaos Solitons Fractals 2023, 163, 112612. [Google Scholar] [CrossRef]
- El-Tantawy, S.A.; Alharbey, R.A.; Salas, A.H. Novel approximate analytical and numerical cylindrical rogue wave and breathers solutions: An application to electronegative plasma. Chaos Solitons Fractals 2022, 155, 111776. [Google Scholar] [CrossRef]
- Albalawi, W.; El-Tantawy, S.A.; Salas, A.H. On the rogue wave solution in the framework of a Korteweg–de Vries equation. Results Phys. 2021, 30, 104847. [Google Scholar] [CrossRef]
- El-Tantawy, S.A.; Alshehri, M.H.; Duraihem, F.Z.; El-Sherif, L.S. Dark soliton collisions and method of lines approach for modeling freak waves in a positron beam plasma having superthermal electrons. Results Phys. 2020, 19, 103452. [Google Scholar] [CrossRef]
- Hasegawa, A.; Tappert, F. Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion. Appl. Phys. Lett. 1973, 23, 142–144. [Google Scholar] [CrossRef]
- Zakharov, V.E.; Shabat, A.B. Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP 1972, 34, 62–69. [Google Scholar]
- Fan, E. Multiple travelling wave solutions of nonlinear evolution equations using a unified algebraic method. J. Phys. A Math. Gen. 2002, 35, 6853. [Google Scholar] [CrossRef]
- Kucukarslan, S. Homotopy perturbation method for coupled schrödinger-KdV equation. Nonlinear Anal. Real World Appl. 2009, 10, 2264–2271. [Google Scholar] [CrossRef]
- Triki, H.; Biswas, A. Dark solitons for a generalized nonlinear Schrödinger equation with parabolic law and dual power nonlinearity. Math. Methods Appl. Sci. 2011, 34, 958–962. [Google Scholar] [CrossRef]
- Zhang, L.H.; Si, J.G. New soliton and periodic solutions of (1+2)-dimensional nonlinear Schrödinger equation with dual power nonlinearity. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 2747–2754. [Google Scholar] [CrossRef]
- Biswas, A. A pertubation of solitons due to power law nonlinearity. Chaos Solitons Fractals 2001, 12, 579–588. [Google Scholar] [CrossRef]
- JBronski, C.; Carr, L.D.; Deconinck, B.; Kutz, J.N. Bose-Einstein condensates in standing waves: The cubic nonlinear Schrödinger equation with a periodic potential. Phys. Rev. Lett. 2001, 86, 1402–1405. [Google Scholar] [CrossRef]
- Nore, C.; Brachet, M.E.; Fauve, S. Numerical study of hydrodynamics using the nonlinear Schrödinger equation. Phys. D Nonlinear Phenom. 1993, 65, 154–162. [Google Scholar] [CrossRef]
- Eslami, M.; Mirzazadeh, M. Topological 1-soliton of nonlinear Schrödinger equation with dual power nonlinearity in optical fibers. Eur. Phys. J. Plus 2013, 128, 141–147. [Google Scholar] [CrossRef]
- Albalawi, W.; Shah, R.; Nonlaopon, K.; El-Sherif, L.S.; El-Tantawy, S.A. Laplace Residual Power Series Method for Solving Three-Dimensional Fractional Helmholtz Equations. Symmetry 2023, 15, 194. [Google Scholar] [CrossRef]
- Li, C.; Qian, D.; Chen, Y. On Riemann-Liouville and caputo derivatives. Discret. Dyn. Nat. Soc. 2011, 2011, 562494. [Google Scholar] [CrossRef]
- Kexue, L.; Jigen, P. Laplace transform and fractional differential equations. Appl. Math. Lett. 2011, 24, 2019–2023. [Google Scholar] [CrossRef]
- He, H.M.; Peng, J.G.; Li, H.Y. Iterative approximation of fixed point problems and variational inequality problems on Hadamard manifolds. UPB Bull. Ser. A 2022, 84, 25–36. [Google Scholar]
- Arqub, O.A.; El-Ajou, A.; Momani, S. Constructing and predicting solitary pattern solutions for nonlinear time-fractional dispersive partial differential equations. J. Comput. Phys. 2015, 293, 385–399. [Google Scholar] [CrossRef]
- Alaroud, M. Application of Laplace residual power series method for approximate solutions of fractional IVP’s. Al-Exandria Eng. J. 2022, 61, 1585–1595. [Google Scholar] [CrossRef]
- Yavuz, M.; Sulaiman, T.A.; Yusuf, A.; Abdeljawad, T. The Schrödinger-KdV equation of fractional order with Mit-tag-Leffler nonsingular kernel. Alex. Eng. J. 2021, 60, 2715–2724. [Google Scholar] [CrossRef]
(AE) Present Method | ||||
---|---|---|---|---|
0 | 0.002 | 0.002 | 3.32134 × 10−7 | 7.18227967 × 10−9 |
0.1 | 0.101118 | 0.101118 | 3.27273 × 10−7 | 4.63407702 × 10−9 |
0.2 | 0.195239 | 0.195239 | 3.18380 × 10−7 | 7.56282521 × 10−8 |
0.3 | 0.279864 | 0.279864 | 3.05178 × 10−7 | 2.19723957 × 10−7 |
0.4 | 0.351214 | 0.351214 | 2.87404 × 10−7 | 3.9217564 × 10−7 |
0.5 | 0.406451 | 0.406451 | 2.64809 × 10−7 | 5.13195369 × 10−7 |
0.6 | 0.443772 | 0.443772 | 2.37161 × 10−7 | 5.10202766 × 10−7 |
Abs.Present Method | ||||
---|---|---|---|---|
0 | 4.25 × 10−6 | 4.24999 × 10−6 | 8.86383 × 10−7 | 8.86522 × 10−12 |
0.1 | 0.010363 | 0.010363 | 1.78092 × 10−7 | 1.16606 × 10−7 |
0.2 | 0.04001 | 0.040009 | 2.77216 × 10−7 | 4.06303 × 10−7 |
0.3 | 0.087225 | 0.087224 | 3.85756 × 10−7 | 7.30429 × 10−7 |
0.4 | 0.149373 | 0.149372 | 5.03436 × 10−7 | 9.40811 × 10−7 |
0.5 | 0.223169 | 0.223168 | 6.29958 × 10−7 | 9.48364 × 10−7 |
0.6 | 0.304988 | 0.304987 | 7.65000 × 10−7 | 7.51894 × 10−7 |
Abs. Present Method | |||
---|---|---|---|
0.1 | 0.855102 | 0.855125 | 2.3172 × 10−5 |
0.2 | 0.797029 | 0.797071 | 416755 × 10−5 |
0.3 | 0.7052 | 0.705253 | 5.21771 × 10−5 |
0.4 | 0.586198 | 0.586252 | 5.34746 × 10−5 |
0.5 | 0.44782 | 0.447866 | 4.6502 × 10−5 |
0.6 | 0.298091 | 0.298125 | 3.36853 × 10−5 |
0.7 | 0.14443 | 0.144448 | 1.80268 × 10−5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noor, S.; Alotaibi, B.M.; Shah, R.; Ismaeel, S.M.E.; El-Tantawy, S.A. On the Solitary Waves and Nonlinear Oscillations to the Fractional Schrödinger–KdV Equation in the Framework of the Caputo Operator. Symmetry 2023, 15, 1616. https://doi.org/10.3390/sym15081616
Noor S, Alotaibi BM, Shah R, Ismaeel SME, El-Tantawy SA. On the Solitary Waves and Nonlinear Oscillations to the Fractional Schrödinger–KdV Equation in the Framework of the Caputo Operator. Symmetry. 2023; 15(8):1616. https://doi.org/10.3390/sym15081616
Chicago/Turabian StyleNoor, Saima, Badriah M. Alotaibi, Rasool Shah, Sherif M. E. Ismaeel, and Samir A. El-Tantawy. 2023. "On the Solitary Waves and Nonlinear Oscillations to the Fractional Schrödinger–KdV Equation in the Framework of the Caputo Operator" Symmetry 15, no. 8: 1616. https://doi.org/10.3390/sym15081616
APA StyleNoor, S., Alotaibi, B. M., Shah, R., Ismaeel, S. M. E., & El-Tantawy, S. A. (2023). On the Solitary Waves and Nonlinear Oscillations to the Fractional Schrödinger–KdV Equation in the Framework of the Caputo Operator. Symmetry, 15(8), 1616. https://doi.org/10.3390/sym15081616