Threshold of Stochastic SIRS Epidemic Model from Infectious to Susceptible Class with Saturated Incidence Rate Using Spectral Method
Abstract
:1. Introduction
2. Description of the Method
Legendre Polynomials
3. Stability Analysis
- Case 2: Here, . In this case, the calculation has been done using Maple software version 13. We successfully obtain the following stable endemic equilibrium :
4. Numerical Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kermack, W.O.; McKendrick, A.G. A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. Ser. 1927, 115, 700–721. [Google Scholar]
- Arundel, A.V.; Sterling, E.M.; Biggin, J.H.; Sterling, T.D. Indirect health effects of relative humidity in indoor envi-ronments. Environ. Health Perspect. 1986, 65, 351–361. [Google Scholar]
- Minhaz Ud-Dean, S.M. Structural explanation for the effect of humidity on persistence of airborne virus: Seasonality of influenza. J. Theoret. Biol. 2010, 264, 822–829. [Google Scholar] [CrossRef] [PubMed]
- Keeling, M.J.; Rohani, P. Modeling Infectious Diseases in Human and Animals; Princeton University Press: Princeton, NJ, USA, 2008. [Google Scholar]
- Dexter, N. Stochastic models of foot and mouth disease in feral pigs in the Australian semi-arid rangelands. J. Appl. Ecol. 2003, 40, 293–306. [Google Scholar] [CrossRef]
- Liu, M.; Wang, K. Persistence and extinction of a stochastic single-specie model under regime switching in a polluted environment. J. Theor. Biol. 2010, 264, 934–944. [Google Scholar] [CrossRef] [PubMed]
- Gray, A.; Greenhalgh, D.; Mao, X.; Pan, J. The SIS epidemic model with Markovian switching. J. Math. Anal. Appl. 2012, 394, 496–516. [Google Scholar] [CrossRef]
- Bao, J.; Shao, J. Permanence and extinction of regime-switching predator-prey models. SIAM J. Math. Anal. 2016, 48, 725–739. [Google Scholar] [CrossRef]
- Mao, X. Stochastic Differential Equations and Applications; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Bacar, N.; Khaladi, M. On the basic reproduction number in a random environment. J. Math. Biol. 2013, 67, 1729–1739. [Google Scholar] [CrossRef]
- Bacar, N.; Ed-Darraz, A. On linear birth-and-death processes in a random environment. J. Math. Biol. 2014, 69, 73–90. [Google Scholar] [CrossRef]
- Khan, S.U.; Ali, I. Application of Legendre spectral-collocation method to delay differential and stochastic delay differential equation. AIP Adv. 2008, 8, 035301. [Google Scholar] [CrossRef]
- Khan, S.U.; Ali, M.; Ali, I. A spectral collocation method for stochastic Volterra integro-differential equations and its error analysis. J. Adv. Differ. Equ. 2019, 1, 161. [Google Scholar] [CrossRef]
- Khan, S.U.; Ali, I. Numerical analysis of stochastic SIR model by Legendre spectral collocation method. Adv. Mech. Eng. 2019, 11, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Greenhalgh, D.; Liang, Y.; Mao, X. Modelling the effect of telegraph noise in the SIRS epidemic model using Markovian switching. Phys. A 2016, 462, 684–704. [Google Scholar] [CrossRef]
- Ali, I.; Khan, S.U. Analysis of stochastic delayed SIRS model with exponential birth and saturated incidence rate. Chaos Solitons Fractals 2020, 138, 110008. [Google Scholar] [CrossRef]
- Khan, S.U.; Ali, I. Convergence and error analysis of a spectral collo- cation method for solving system of nonlinear Fredholm integral equations of second kind. Comput. Appl. Math. 2019, 38, 125. [Google Scholar] [CrossRef]
- Khan, S.U.; Ali, I. Applications of Legendre spectral collocation method for solving system of time delay differential equations. Adv. Mech. Eng. 2020, 12, 1687814020922113. [Google Scholar] [CrossRef]
- Hieu, N.T.; Du, N.H.; Auger, P.; Dang, N.H. Dynamical behavior of a stochastic SIRS epidemic model. Math. Model. Nat. Phenom. 2015, 10, 5673. [Google Scholar] [CrossRef]
- Din, R.; Algehyne, E.A. Mathematical analysis of COVID-19 by using SIR model with convex incidence rate. Results Phys. 2021, 23, 103970. [Google Scholar] [CrossRef]
- Chu, Y.M.; Ali, A.; Khan, M.A.; Islam, S.; Ullah, S. Dynamics of fractional order COVID-19 model with a case study of Saudi Arabia. Results Phys. 2021, 21, 103787. [Google Scholar] [CrossRef]
- Atangana, A.; Araz, S.I. New concept in calculus: Piecewise differential and integral operators. Chaos Solitons Fractals 2021, 145, 110638. [Google Scholar] [CrossRef]
- Atangana, A.; Araz, S.I. Modeling Third Waves of COVID-19 Spread with Piecewise Differential and Integral Operators. Turkey, Spain and Czechia. medRxiv 2021. [Google Scholar] [CrossRef]
- Rahman, M.; Arfan, M.; Shah, K.; Gómez-Aguilar, J.F. Investigating a nonlinear dynamical model of COVID-19 disease under fuzzy caputo, random and ABC fractional order derivative. Chaos Solitons Fractals 2020, 140, 110232. [Google Scholar] [CrossRef]
- El Koufi, A.; Bennar, A.; El Koufi, N.; Yousfi, N. Asymptotic properties of a stochastic SIQR epidemic model with Lévy jumps and Beddington–DeAngelis incidence rate. Results Phys. 2021, 27, 104472. [Google Scholar] [CrossRef]
- Matadi, M.B. Lie symmetry analysis of stochastic SIRS model. Commun. Math. Biol. Neurosci. 2019, 23, 6–9. [Google Scholar]
- Wilkinson, R.R.; Ball, F.G.; Sharkey, K.J. The relationships between message passing, pairwise, Kermack–McKendrick and stochastic SIR epidemic models. J. Math. Biol. 2017, 75, 1563–1590. [Google Scholar] [CrossRef]
- Lahrouz, A.; Omari, L. Extinction and stationary distribution of a stochastic SIRS epidemic model with non-linear incidence. Stat. Probab. Lett. 2013, 83, 960–968. [Google Scholar] [CrossRef]
- Meng, W.; Nanjing, H.; Changwen, Z. European option pricing with time delay. In Proceedings of the 2008 27th Chinese Control Conference, Kunming, China, 16–18 July 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 589–593. [Google Scholar]
- Anderson, R.M.; May, R.M. Population biology of infectious diseases: Part I. Nature 1979, 280, 361–367. [Google Scholar] [CrossRef]
- Song, Y.; Miao, A.; Zhang, T.; Wang, X.; Liu, J. Extinction and persistence of a stochastic SIRS epidemic model with saturated incidence rate and transfer from infectious to susceptible. Adv. Differ. Equ. 2008, 2018, 293. [Google Scholar] [CrossRef]
- Capasso, V. Mathematical Structure of Epidemic Systems. In Lecture Notes in Biomathematics; Springer: Berlin, Germany, 1993; Volume 97. [Google Scholar]
- Levin, S.A.; Hallam, T.G.; Gross, L.J. Applied Mathematical Ecology; Springer: New York, NY, USA, 1989. [Google Scholar]
- Xia, Y.; Gog, J.R.; Grenfell, B.T. Semiparametric estimation of the duration of immunity from infectious disease time series: Influenza as a case-study. J. R. Stat. Soc. Ser. C 2005, 54, 659–672. [Google Scholar] [CrossRef]
- El Koufi, A.; Adnani, J.; Bennar, A.; Yousfi, N. Analysis of a stochastic SIR model with vaccination and nonlinear incidence rate. Int. J. Differ. Equ. Appl. 2019, 2019, 9275051. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Wang, Q. A stochastic SIR epidemic model with Lévy jump and media coverage. Adv. Differ. Equ. 2020, 2020, 70. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Sun, W. Periodic solutions of stochastic differential equations driven by Lévy noises. J. Nonlinear Sci. 2021, 31, 32. [Google Scholar] [CrossRef]
- El Koufi, A.; Adnani, J.; Bennar, A.; Yousfi, N. Dynamics of a stochastic SIR epidemic model driven by Lévy jumps with saturated incidence rate and saturated treatment function. Stoch. Anal. Appl. 2021. [Google Scholar] [CrossRef]
- El Koufi, A.; El Koufi, N. Stochastic differential equation model of COVID-19: Case study of Pakistan. Results Phys. 2022, 21, 105218. [Google Scholar] [CrossRef]
- Dieu, N.T.; Nguyen, D.H.; Du, N.H.; Yin, G. Classification of asymptotic behavior in a stochastic SIR model. SIAM J. Appl. Dyn. Syst. 2016, 15, 1062–1084. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, I.; Khan, S.U. Threshold of Stochastic SIRS Epidemic Model from Infectious to Susceptible Class with Saturated Incidence Rate Using Spectral Method. Symmetry 2022, 14, 1838. https://doi.org/10.3390/sym14091838
Ali I, Khan SU. Threshold of Stochastic SIRS Epidemic Model from Infectious to Susceptible Class with Saturated Incidence Rate Using Spectral Method. Symmetry. 2022; 14(9):1838. https://doi.org/10.3390/sym14091838
Chicago/Turabian StyleAli, Ishtiaq, and Sami Ullah Khan. 2022. "Threshold of Stochastic SIRS Epidemic Model from Infectious to Susceptible Class with Saturated Incidence Rate Using Spectral Method" Symmetry 14, no. 9: 1838. https://doi.org/10.3390/sym14091838
APA StyleAli, I., & Khan, S. U. (2022). Threshold of Stochastic SIRS Epidemic Model from Infectious to Susceptible Class with Saturated Incidence Rate Using Spectral Method. Symmetry, 14(9), 1838. https://doi.org/10.3390/sym14091838