Source Apportionment and Analysis of Potentially Toxic Element Sources in Agricultural Soils Based on the Positive Matrix Factorization and Geo-Detector Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Sampling and Analyses
2.3. PMF Model Construction
2.4. Geographical Detector
2.5. Analytical Statistical Method
3. Results and Discussion
3.1. Content Characteristics of Cd and Other Elements in Topsoil
3.2. Spatial Distribution of Components
3.3. Source Apportionment of Potentially Toxic Elements in the PMF Model
3.4. Source Identification of Geographical Detectors
3.5. Summary of Source Apportionment
3.6. Comparison and Verification of the Results of the Two Models
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Haque, E.; Thorne, P.S.; Nghiem, A.A.; Yip, C.S.; Bostick, B.C. Lead (Pb) concentrations and speciation in residential soils from an urban community impacted by multiple legacy sources. J. Hazard. Mater. 2021, 416, 125886. [Google Scholar] [CrossRef] [PubMed]
- Aoshima, K. Itai-itai disease: Renal tubular osteomalacia induced by environmental exposure to cadmium-historical review and perspectives. Soil. Sci. Plant Nutr. 2016, 62, 319–326. [Google Scholar] [CrossRef]
- Qin, S.; Liu, H.; Nie, Z.; Rengel, Z.; Gao, W.; Li, C.; Zhao, P. Toxicity of cadmium and its competition with mineral nutrients for uptake by plants: A review. Pedosphere 2020, 30, 168–180. [Google Scholar] [CrossRef]
- Åkesson, A.; Barregard, L.; Bergdahl, I.A.; Nordberg, G.F.; Nordberg, M.; Skerfving, S. Non-Renal Effects and the Risk Assessment of Environmental Cadmium Exposure. Environ. Health Perspect. 2014, 122, 431–438. [Google Scholar] [CrossRef]
- Angon, P.B.; Islam, M.S.; KC, S.; Das, A.; Anjum, N.; Poudel, A.; Suchi, S.A. Sources, effects and present perspectives of heavy metals contamination: Soil, plants and human food chain. Heliyon 2024, 10, e28357. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Han, Z.; Wang, W.; Zhang, B.; Wu, H.; Nie, L.; Zhou, J.; Chi, Q.; Xu, S.; Liu, H.; et al. Continental-scale geochemical survey of lead (Pb) in mainland China’s pedosphere: Concentration, spatial distribution and influences. Appl. Geochem. 2019, 100, 55–63. [Google Scholar] [CrossRef]
- Shi, P.; Zhang, Y.; Li, Z.; Li, P.; Xu, G. Influence of land use and land cover patterns on seasonal water quality at multi-spatial scales. Catena 2017, 151, 182–190. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, L.; Yan, M.; Ma, B.; Cao, R. Source apportionment of soil heavy metals based on multivariate statistical analysis and the PMF model: A case study of the Nanyang Basin, China. Environ. Technol. Innov. 2024, 33, 103537. [Google Scholar] [CrossRef]
- Yao, C.; Yang, Y.; Li, C.; Shen, Z.; Li, J.; Mei, N.; Luo, C.; Wang, Y.; Zhang, C.; Wang, D. Heavy metal pollution in agricultural soils from surrounding industries with low emissions: Assessing contamination levels and sources. Sci. Total Environ. 2024, 917, 170610. [Google Scholar] [CrossRef]
- Kumar Chakraborty, T.; Zaima Mobaswara, M.; Simoon Nice, M.; Rashedul Islam, K.; Nahar Netema, B.; Sozibur Rahman, M.; Habib, A.; Zaman, S.; Chandra Ghosh, G.; Tul-Coubra, K.; et al. Application of machine learning and multivariate approaches for source apportionment and risks of hazardous elements in the cropland soils near industrial areas in Bangladesh. Ecol. Indic. 2023, 154, 110856. [Google Scholar] [CrossRef]
- Xu, H.; Wang, H.; Singh, B.P.; Croot, P.; Zhang, C. Identification of possible sources for potentially toxic elements and polycyclic aromatic hydrocarbons and their spatially varying relationships in urban soils of Dublin, Ireland. Environ. Pollut. 2023, 333, 122034. [Google Scholar] [CrossRef] [PubMed]
- Fei, X.; Lou, Z.; Xiao, R.; Ren, Z.; Lv, X. Contamination assessment and source apportionment of heavy metals in agricultural soil through the synthesis of PMF and GeoDetector models. Sci. Total Environ. 2020, 747, 141293. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Wang, P.; Zheng, J.; Deng, Y.; Zhuang, C.; Huang, F.; Xiao, R. A comprehensive framework for identifying contributing factors of soil trace metal pollution using Geodetector and spatial bivariate analysis. Sci. Total Environ. 2023, 857, 159636. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Y.; Wang, X.; Han, Z.; Tian, M.; Wang, Q.; Wu, H.; Liu, F. Geodetector based identification of influencing factors on spatial distribution patterns of heavy metals in soil: A case in the upper reaches of the Yangtze River, China. Appl. Geochem. 2022, 146, 105459. [Google Scholar] [CrossRef]
- Huang, S.; Xiao, L.; Zhang, Y.; Wang, L.; Tang, L. Interactive effects of natural and anthropogenic factors on heterogenetic accumulations of heavy metals in surface soils through geodetector analysis. Sci. Total Environ. 2021, 789, 147937. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Zhao, Y.; Hu, B.; Yang, J.; Huang, Y. Spatial and temporal distribution of heavy metals in riparian zone and soil environmental quality analysis. Environ. Pollut. Control 2017, 39, 981–986, (In Chinese with English abstract). [Google Scholar]
- Dal, J.; Yi, Y.; Luyu, W.; Wang, Y. Segmentation of the Point Source and Non-point Source Pollution Load of Several Pollutants in the River. Ind. Saf. Environ. Prot. 2016, 42, 72–75, (In Chinese with English abstract). [Google Scholar]
- Yang, Q.; Yang, Z.; Filippelli, G.M.; Ji, J.; Ji, W.; Liu, X.; Wang, L.; Yu, T.; Wu, T.; Zhuo, X.; et al. Distribution and secondary enrichment of heavy metal elements in karstic soils with high geochemical background in Guangxi, China. Chem. Geol. 2021, 567, 120081. [Google Scholar] [CrossRef]
- Yang, Q.; Yang, Z.; Zhang, Q.; Liu, X.; Zhuo, X.; Wu, T.; Wang, L.; Wei, X.; Ji, J. Ecological risk assessment of Cd and other heavy metals in soil-rice system in the karst areas with high geochemical background of Guangxi, China. Sci. China Earth Sci. 2021, 64, 1126–1139. [Google Scholar] [CrossRef]
- DZ/T 0258-2014; MLR Specification of Multi-Purpose Regional Geochemical Survey (1: 250000). Standards Press of China: Beijing, China, 2014.
- Liang, J.; Liu, Z.; Tian, Y.; Shi, H.; Fei, Y.; Qi, J.; Mo, L. Research on health risk assessment of heavy metals in soil based on multi-factor source apportionment: A case study in Guangdong Province, China. Sci. Total Environ. 2023, 858, 159991. [Google Scholar] [CrossRef]
- Wang, J.; Hu, Y. Environmental health risk detection with GeogDetector. Environ. Modell. Softw. 2012, 33, 114–115. [Google Scholar] [CrossRef]
- Jiang, X.; Xiong, Z.; Liu, H.; Liu, G.; Liu, W. Distribution, source identification, and ecological risk assessment of heavy metals in wetland soils of a river–reservoir system. Environ. Sci. Pollut. Res. 2017, 24, 436–444. [Google Scholar] [CrossRef]
- Qiao, M.; Cai, C.; Huang, Y.; Liu, Y.; Lin, A.; Zheng, Y. Characterization of soil heavy metal contamination and potential health risk in metropolitan region of northern China. Environ. Monit. Assess. 2011, 172, 353–365. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Zhou, Y.; Jiang, Y.; Ji, W.; Fu, Z.; Shao, S.; Li, S.; Huang, M.; Zhou, L.; Shi, Z. Spatio-temporal variation and source changes of potentially toxic elements in soil on a typical plain of the Yangtze River Delta, China (2002–2012). J. Environ. Manag. 2020, 271, 110943. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Cai, L.; Wen, H.; Luo, J.; Wang, Q.; Liu, X. Spatial distribution and source apportionment of heavy metals in soil from a typical county-level city of Guangdong Province, China. Sci. Total Environ. 2019, 655, 92–101. [Google Scholar] [CrossRef]
- He, S.; Lu, Q.; Li, W.; Ren, Z.; Zhou, Z.; Feng, X.; Zhang, Y.; Li, Y. Factors controlling cadmium and lead activities in different parent material-derived soils from the Pearl River Basin. Chemosphere 2017, 182, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Zhang, H.; Cui, S.; Xu, Q.; Tang, Z.; Gao, F. Assessment of the distribution and risks of organochlorine pesticides in core sediments from areas of different human activity on Lake Baiyangdian, China. Stoch. Environ. Res. Risk A 2014, 28, 1035–1044. [Google Scholar] [CrossRef]
- Cui, Z.; Wang, Y.; Zhao, N.; Yu, R.; Xu, G.; Yu, Y. Spatial Distribution and Risk Assessment of Heavy Metals in Paddy Soils of Yongshuyu Irrigation Area from Songhua River Basin, Northeast China. Chinese Geogr. Sci. 2018, 28, 797–809. [Google Scholar] [CrossRef]
- Dong, S.; Ochoa Gonzalez, R.; Harrison, R.M.; Green, D.; North, R.; Fowler, G.; Weiss, D. Isotopic signatures suggest important contributions from recycled gasoline, road dust and non-exhaust traffic sources for copper, zinc and lead in PM10 in London, United Kingdom. Atmos. Environ. 2017, 165, 88–98. [Google Scholar] [CrossRef]
- Jones, L.; Sullivan, T.; Kinsella, B.; Furey, A.; Regan, F. Occurrence of Selected Metals in Wastewater Effluent and Surface Water in Ireland. Anal. Lett. 2017, 50, 724–737. [Google Scholar] [CrossRef]
- Shao, D.; Zhan, Y.; Zhou, W.; Zhu, L. Current status and temporal trend of heavy metals in farmland soil of the Yangtze River Delta Region: Field survey and meta-analysis. Environ. Pollut. 2016, 219, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Yan, Z.; Qin, J.; Xiao, Z. Effects of long-term cattle manure application on soil properties and soil heavy metals in corn seed production in Northwest China. Environ. Sci. Pollut. Res. 2014, 21, 7586–7595. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Guo, D.; Liu, K.; Meng, H.; Zheng, Y.; Yuan, F.; Zhu, G. Levels, sources, and spatial distribution of heavy metals in soils from a typical coal industrial city of Tangshan, China. Catena 2019, 175, 101–109. [Google Scholar] [CrossRef]
Min. | Q25 | Mean | Median | Q75 | Max. | Std. | CV (%) | |
---|---|---|---|---|---|---|---|---|
As | 1.17 | 6.28 | 11.76 | 9.17 | 13.30 | 246.00 | 11.96 | 101.70 |
Cd | 0.01 | 0.09 | 0.16 | 0.13 | 0.19 | 6.18 | 0.19 | 119.84 |
Cr | 4.50 | 31.00 | 45.48 | 43.00 | 53.00 | 319.00 | 24.38 | 53.59 |
Cu | 1.87 | 10.45 | 16.56 | 14.40 | 20.85 | 99.70 | 9.30 | 56.13 |
Hg | 0.02 | 0.07 | 0.13 | 0.10 | 0.12 | 8.11 | 0.30 | 225.58 |
Ni | 2.04 | 8.09 | 12.67 | 11.20 | 15.92 | 81.20 | 7.04 | 55.53 |
Pb | 7.40 | 21.30 | 32.25 | 31.20 | 41.65 | 171.00 | 14.33 | 44.42 |
Zn | 5.50 | 30.20 | 47.89 | 45.50 | 59.40 | 275.00 | 25.91 | 54.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Yang, Z.; Li, B.; Wu, Z.; Wang, L.; Yu, T.; Li, C.; He, Z.; Xie, M.; Deng, C.; et al. Source Apportionment and Analysis of Potentially Toxic Element Sources in Agricultural Soils Based on the Positive Matrix Factorization and Geo-Detector Models. Land 2025, 14, 146. https://doi.org/10.3390/land14010146
Liu X, Yang Z, Li B, Wu Z, Wang L, Yu T, Li C, He Z, Xie M, Deng C, et al. Source Apportionment and Analysis of Potentially Toxic Element Sources in Agricultural Soils Based on the Positive Matrix Factorization and Geo-Detector Models. Land. 2025; 14(1):146. https://doi.org/10.3390/land14010146
Chicago/Turabian StyleLiu, Xu, Zhongfang Yang, Bo Li, Zhiliang Wu, Lei Wang, Tao Yu, Cheng Li, Zexin He, Minghui Xie, Chenning Deng, and et al. 2025. "Source Apportionment and Analysis of Potentially Toxic Element Sources in Agricultural Soils Based on the Positive Matrix Factorization and Geo-Detector Models" Land 14, no. 1: 146. https://doi.org/10.3390/land14010146
APA StyleLiu, X., Yang, Z., Li, B., Wu, Z., Wang, L., Yu, T., Li, C., He, Z., Xie, M., Deng, C., & Shi, H. (2025). Source Apportionment and Analysis of Potentially Toxic Element Sources in Agricultural Soils Based on the Positive Matrix Factorization and Geo-Detector Models. Land, 14(1), 146. https://doi.org/10.3390/land14010146