Hydrological Response to Rewetting of Drained Peatlands—A Case Study of Three Raised Bogs in Norway
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
Study Site | Temperature (°C) | Precipitation (mm) | ||||||
---|---|---|---|---|---|---|---|---|
Mean | Min | Max | Mean | Min | Max | Driest Year | Wettest Year | |
Kaldvassmyra 1 | 6.2 | −2.1 (Jan) | 15.1 (Jul) | 900 | 50 (Feb) | 114 (Sep) | 789 (2018) | 1006 (2021) |
Aurstadmåsan 2 | 6.1 | −3.9 (Jan) | 16.7 (Jul) | 839 | 32 (Apr) | 101 (Sep) | 601 (2018) | 1037 (2015) |
Midtfjellmåsan 3 | 5.9 | −4.2 (Jan) | 16.1 (Jul) | 713 | 36 (Apr) | 86 (Nov) | 470 (2018) | 926 (2020) |
2.2. Installation of Piezometers and Water Level Measurements
2.3. Implementation of Restoration Measures
2.4. Data Analysis
3. Results
3.1. Changes in Groundwater Tables
3.2. Impact Radius of Ditch Blocking
3.3. Changes in GWD Exceedance Frequencies
3.4. Analysis of Meteorological Conditions
4. Discussion
4.1. Response to Ditch Blocking
Name | Country | Peatland Type | Impact Radius of Ditch Blocking [m] | Reference |
---|---|---|---|---|
Bullock Creek Polje | New Zealand | Fen | 30 | [47] |
Kamanos mire | Lithuania | Raised bog | 980 | [43] |
Burns Bog | Canada | Raised bog | 20 | [48] |
Burns Bog | Canada | Raised bog | <50 | [45] |
Grande plée Bleue bog | Canada | Raised bog | 25 | [46] |
4.2. Was Rewetting a Success?
4.3. Future Challenges and Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Piezometers’ Details
Site | Piezometer | XY Coordinates (WGS) | Peat Thickness [m] | Remarks |
---|---|---|---|---|
Kaldvassmyra | K-REF * | 11.59038, 63.72181 | 1.90 | - |
K1-30P | 11.59584, 63.7253 | 1.60 | sand | |
K1-60P | 11.59621, 63.72503 | 1.75 | sand | |
K2-50P | 11.5952, 63.72445 | 1.90 | sand | |
K3-0P | 11.5938, 63.72423 | 2.20 | sand | |
K3-30P | 11.5943, 63.7241 | 2.00 | sand | |
K4-20P | 11.59091, 63.72267 | 1.85 | sand | |
K4-50P | 11.59128, 63.72263 | 1.20 | sand | |
Aurstadmåsan | A1P | 11.34372, 60.1897 | >3.0 | - |
A2P | 11.34355, 60.18958 | >3.0 | - | |
A3P | 11.34334, 60.18966 | >3.0 | - | |
A4P | 11.34346, 60.18984 | 1.50 | silt (gyttia?) | |
A5P | 11.34401, 60.18959 | >3.0 | - | |
A6P | 11.34376, 60.18942 | >3.0 | - | |
A7P | 11.34519, 60.18417 | 1.20 | silt (gyttia?) | |
A8P | 11.34499, 60.18422 | 1.20 | silt (gyttia?) | |
A9P * | 11.34431, 60.18392 | 1.10 | silt | |
A10P | 11.34608, 60.18474 | 1.30 | silt (gyttia?) | |
Midtfjellmåsan | M1P | 11.68344, 59.95217 | 3.20 | - |
M2P | 11.68326, 59.95222 | 2.80 | sand | |
M3P | 11.68363, 59.95203 | 2.70 | sand | |
M4P | 11.68389, 59.9508 | 1.40 | calcareaous sand | |
M5P | 11.68371, 59.95097 | 1.40 | sand | |
M6P * | 11.67236, 59.94601 | 1.80 | bedrock | |
M7P | 11.68289, 59.95095 | 1.60 | till | |
M8P | 11.6826, 59.95079 | 2.50 | - | |
M9P | 11.68233, 59.95052 | 1.70 | bedrock | |
M10P | 11.68248, 59.95059 | 3.40 | - | |
M11P | 11.68255, 59.95068 | 3.50 | - |
Appendix B
The Procedure of Ditch Dam’ Construction Applied in the Described Case Studies
Appendix C
Hydrographs
Appendix D
Site | Piezometer | Groundwater Table [m] | Groundwater Table Change [m] | Distance from the Ditch [m] | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Min | Max | Mean | Median | ||||||||
Before | After | Before | After | Before | After | Before | After | ||||
Kaldvassmyra | K.REF * | −0.63 | −0.98 | −0.08 | −0.08 | −0.29 | −0.32 | −0.29 | −0.27 | −0.03 | 42.0 |
K1.30P | −0.52 | −0.72 | −0.06 | −0.15 | −0.29 | −0.35 | −0.29 | −0.34 | −0.06 | 26.5 | |
K1.60P | −0.76 | −1.08 | −0.12 | −0.11 | −0.36 | −0.40 | −0.35 | −0.36 | −0.04 | 9.0 | |
K2.50P | −0.87 | −0.76 | −0.09 | 0.31 | −0.52 | −0.05 | −0.48 | 0.03 | 0.47 | 7.2 | |
K3.0P | −0.56 | −0.88 | −0.16 | 0.03 | −0.37 | −0.39 | −0.38 | −0.34 | −0.02 | 53.7 | |
K3.30P | −0.51 | −0.57 | −0.02 | 0.11 | −0.24 | −0.18 | −0.21 | −0.18 | 0.06 | 17.7 | |
K4.20P | −0.43 | −0.54 | −0.05 | −0.02 | −0.21 | −0.18 | −0.20 | −0.15 | 0.03 | 35.2 | |
K4.50P | −0.33 | −0.52 | 0.09 | 0.09 | −0.08 | −0.10 | −0.06 | −0.07 | −0.02 | 10.0 | |
Aurstadmåsan | A9P * | −0.18 | −0.67 | 0.02 | 0.01 | −0.06 | −0.10 | −0.05 | −0.08 | −0.04 | 17.0 |
A1P | −0.39 | −0.53 | −0.20 | −0.04 | −0.28 | −0.20 | −0.26 | −0.18 | 0.08 | 7.2 | |
A2P | −0.28 | −0.60 | −0.13 | −0.05 | −0.19 | −0.23 | −0.18 | −0.21 | −0.03 | 11.0 | |
A3P | −0.26 | −0.50 | −0.15 | 0.07 | −0.21 | −0.20 | −0.21 | −0.19 | 0.01 | 13.0 | |
A4P | −0.36 | −0.76 | −0.17 | −0.07 | −0.25 | −0.19 | −0.23 | −0.15 | 0.06 | 9.4 | |
A5P | −0.31 | −0.55 | −0.13 | 0.06 | −0.21 | −0.12 | −0.20 | −0.08 | 0.10 | 7.1 | |
A6P | −0.34 | −0.67 | −0.15 | −0.09 | −0.24 | −0.28 | −0.23 | −0.25 | −0.04 | 15.9 | |
A7P | −0.35 | −0.50 | −0.09 | 0.24 | −0.19 | 0.01 | −0.18 | 0.04 | 0.20 | 2.0 | |
A8P | −0.26 | −0.57 | −0.01 | 0.09 | −0.12 | −0.10 | −0.11 | −0.07 | 0.02 | 12.0 | |
A10P | −0.22 | −0.54 | 0.05 | 0.20 | −0.08 | −0.03 | −0.08 | 0.00 | 0.06 | 13.7 | |
Midtfjellmåsan | M6P * | −0.54 | −0.52 | 0.05 | 0.13 | −0.29 | −0.28 | −0.28 | −0.29 | 0.01 | 150.0 |
M1P | −0.23 | −0.21 | −0.01 | −0.01 | −0.15 | −0.11 | −0.15 | −0.11 | 0.04 | 9.6 | |
M2P | −0.23 | −0.22 | 0.02 | −0.03 | −0.12 | −0.13 | −0.12 | −0.13 | −0.01 | 19.9 | |
M3P | −0.23 | −0.19 | 0.02 | 0.06 | −0.13 | −0.11 | −0.13 | −0.10 | 0.02 | 11.2 | |
M4P | −0.53 | −0.24 | −0.11 | 0.02 | −0.23 | −0.07 | −0.20 | −0.06 | 0.17 | 4.9 | |
M5P | −0.38 | −0.29 | −0.08 | 0.03 | −0.20 | −0.10 | −0.20 | −0.10 | 0.10 | 4.6 | |
M7P | −0.47 | −0.40 | −0.10 | 0.04 | −0.31 | −0.20 | −0.31 | −0.20 | 0.11 | 10.4 | |
M8P | −0.22 | −0.27 | 0.05 | 0.12 | −0.11 | −0.08 | −0.11 | −0.08 | 0.03 | 15.6 | |
M9P | −0.55 | −0.54 | 0.03 | 0.02 | −0.38 | −0.34 | −0.38 | −0.33 | 0.04 | 3.2 | |
M10P | −0.43 | −0.40 | −0.01 | 0.02 | −0.31 | −0.16 | −0.31 | −0.17 | 0.15 | 3.0 | |
M11P | −0.44 | −0.43 | −0.15 | 0.02 | −0.32 | −0.23 | −0.31 | −0.21 | 0.08 | 8.0 |
References
- Williamson, J.; Rowe, E.; Reed, D.; Ruffino, L.; Jones, P.; Dolan, R.; Buckingham, H.; Norris, D.; Astbury, S.; Evans, C.D. Historical Peat Loss Explains Limited Short-Term Response of Drained Blanket Bogs to Rewetting. J. Environ. Manag. 2017, 188, 278–286. [Google Scholar] [CrossRef]
- Urbanová, Z.; Bárta, J. Recovery of Methanogenic Community and Its Activity in Long-Term Drained Peatlands after Rewetting. Ecol. Eng. 2020, 150, 105852. [Google Scholar] [CrossRef]
- Allan, J.M.; Guêné-Nanchen, M.; Rochefort, L.; Douglas, D.J.T.; Axmacher, J.C. Meta-analysis Reveals That Enhanced Practices Accelerate Vegetation Recovery during Peatland Restoration. Restor. Ecol. 2024, 32, e14015. [Google Scholar] [CrossRef]
- Komulainen, V.-M.; Tuittila, E.-S.; Vasander, H.; Laine, J. Restoration of Drained Peatlands in Southern Finland: Initial Effects on Vegetation Change and CO2 Balance. J. Appl. Ecol. 1999, 36, 634–648. [Google Scholar] [CrossRef]
- Stachowicz, M.; Banaszuk, P.; Ghezelayagh, P.; Kamocki, A.; Mirosław-Świątek, D.; Grygoruk, M. Estimating Mean Groundwater Levels in Peatlands Using a Bayesian Belief Network Approach with Remote Sensing Data. Sci. Rev. Eng. Environ. Sci. 2024, 33, 329–351. [Google Scholar] [CrossRef]
- Harris, L.I.; Roulet, N.T.; Moore, T.R. Drainage Reduces the Resilience of a Boreal Peatland. Environ. Res. Commun. 2020, 2, 065001. [Google Scholar] [CrossRef]
- Yan, L.; Li, Y.; Zhang, X.; Wu, H.; Kang, E.; Yan, Z.; Zhang, K.; Li, M.; Yang, A.; Niu, Y.; et al. Carbon Fluxes of Alpine Peatlands Were Jointly Affected by Water Table Level Changes and the Duration. J. Soils Sediments 2023, 23, 3776–3786. [Google Scholar] [CrossRef]
- Kim, J.; Rochefort, L.; Hogue-Hugron, S.; Alqulaiti, Z.; Dunn, C.; Pouliot, R.; Jones, T.G.; Freeman, C.; Kang, H. Water Table Fluctuation in Peatlands Facilitates Fungal Proliferation, Impedes Sphagnum Growth and Accelerates Decomposition. Front. Earth. Sci. 2021, 8, 579329. [Google Scholar] [CrossRef]
- Rydin, H.; Jeglum, J.K. The Biology of Peatlands; Oxford University Press: Oxford, UK, 2013; ISBN 9780199602995. [Google Scholar]
- Liu, H.; Gu, Y.; Ge, J.; Yu, Z.; Xu, X.; Zhang, Z.; Cheng, S.; Xie, S. The Response of the Dajiuhu Peatland Ecosystem to Hydrological Variations: Implications for Carbon Sequestration and Peatlands Conservation. J. Hydrol. 2022, 612, 128307. [Google Scholar] [CrossRef]
- Wilson, D.; Mackin, F.; Tuovinen, J.; Moser, G.; Farrell, C.; Renou-Wilson, F. Carbon and Climate Implications of Rewetting a Raised Bog in Ireland. Glob. Change Biol. 2022, 28, 6349–6365. [Google Scholar] [CrossRef]
- Landry, J.; Rochefort, L. The Drainage of Peatlands: Impacts and Rewetting Techniques; Laval Univeristy: Quebec, QC, Canada, 2012; pp. 1–62. [Google Scholar]
- Haapalehto, T.; Juutinen, R.; Kareksela, S.; Kuitunen, M.; Tahvanainen, T.; Vuori, H.; Kotiaho, J.S. Recovery of Plant Communities after Ecological Restoration of Forestry-drained Peatlands. Ecol. Evol. 2017, 7, 7848–7858. [Google Scholar] [CrossRef]
- Mander, Ü.; Espenberg, M.; Melling, L.; Kull, A. Peatland Restoration Pathways to Mitigate Greenhouse Gas Emissions and Retain Peat Carbon. Biogeochemistry 2023, 167, 523–543. [Google Scholar] [CrossRef]
- Tanneberger, F.; Tegetmeyer, C.; Busse, S.; Barthelmes, A.; Shumka, S.; Mariné, A.M.; Jenderedjian, K.; Steiner, G.M.; Essl, F.; Etzold, J.; et al. The Peatland Map of Europe. Mires Peat 2017, 19, 1–17. [Google Scholar] [CrossRef]
- Bryn, A.; Strand, G.-H.; Angeloff, M.; Rekdal, Y. Land Cover in Norway Based on an Area Frame Survey of Vegetation Types. Nor. Geogr. Tidsskr. 2018, 72, 131–145. [Google Scholar] [CrossRef]
- Johansen, A. Myrarealer Og Torvressurser i Norge [Mire Area and Peat Resources in Norway]. Jordforsk Rapp. 1997, 1, 1–37. (In Norwegian) [Google Scholar]
- Moen, A.; Lyngstad, A.; Øien, D.I. Country Chapters: Norway. In Mires and Peatlands of Europe Status, Distribution and Conservation; Joosten, H., Tanneberger, F., Moen, A., Eds.; Schweizerbart science publishers: Stuttgart, Germany, 2017; pp. 536–548. [Google Scholar]
- Grønlund, A. Arealbruk Og Klimagasser [Land Use and Greenhouse Gases]. Bioforsk Fokus 2013, 8, 78–80. (In Norwegian) [Google Scholar]
- Farstad, F.M.; Hermansen, E.A.T.; Grasbekk, B.S.; Brudevoll, K.; van Oort, B. Explaining Radical Policy Change: Norwegian Climate Policy and the Ban on Cultivating Peatlands. Glob. Environ. Change 2022, 74, 102517. [Google Scholar] [CrossRef]
- Kløve, B.; Berglund, K.; Berglund, Ö.; Weldon, S.; Maljanen, M. Future Options for Cultivated Nordic Peat Soils: Can Land Management and Rewetting Control Greenhouse Gas Emissions? Environ. Sci. Policy 2017, 69, 85–93. [Google Scholar] [CrossRef]
- Escobar, D.; Belyazid, S.; Manzoni, S. Back to the Future: Restoring Northern Drained Forested Peatlands for Climate Change Mitigation. Front. Environ. Sci. 2022, 10, 834371. [Google Scholar] [CrossRef]
- Rowland, J.A.; Bracey, C.; Moore, J.L.; Cook, C.N.; Bragge, P.; Walsh, J.C. Effectiveness of Conservation Interventions Globally for Degraded Peatlands in Cool-Climate Regions. Biol. Conserv. 2021, 263, 109327. [Google Scholar] [CrossRef]
- Tuohy, P.; O’ Sullivan, L.; Bracken, C.J.; Fenton, O. Drainage Status of Grassland Peat Soils in Ireland: Extent, Efficacy and Implications for GHG Emissions and Rewetting Efforts. J. Environ. Manag. 2023, 344, 118391. [Google Scholar] [CrossRef] [PubMed]
- Moen, A. National Atlas of Norway: Vegetation; Norwegian Mapping Authority: Hønefoss, Norway, 1999; 199p. [Google Scholar]
- Moen, A. Myrundersøkelser i Nord-Trøndelag i Forbindelse Med Den Norske Myrreservatplanen [Mire Investigation in Nord-Trøndelag, a Report Prepared in Connection with the Norwegian National Plan for Mire Nature Reserves]. K. norske Vidensk. Selsk. Mus. Rapp. Bot. Ser. 1983, 1, 1–160. [Google Scholar]
- Moen, A.; Singsaas, S. Excursion Guide for the 6th IMCG Field Symposium in Norway 1994. Univ. Trondheim Vitensk mus. Rapp. Bot. Ser. 1994, 2, 1–159. [Google Scholar]
- Løsmasser (Ngu.No). Available online: https://geo.ngu.no/kart/losmasse_mobil/ (accessed on 24 November 2023).
- Berggrunn (Ngu.No). Available online: https://geo.ngu.no/kart/berggrunn_mobil/ (accessed on 24 November 2023).
- Norge i Bilder. Available online: https://www.norgeibilder.no/?id=3502 (accessed on 24 November 2023).
- Grygoruk, M. Hydrological Background of Bog Restoration in Norway: Case Studies of Aurstadmåsan, Kaldvassmyra and Midtfjellmåsan; Miljødirektoratet Internal Report; Miljødirektoratet: Warsaw, Poland; Trondheim, Norway, 2015; 96p. [Google Scholar]
- Seklima.Met.No. Available online: https://seklima.met.no/ (accessed on 29 September 2022).
- Lyngstad, A.; Moen, A.; Øien, D.-I. Konsentrisk Høymyr, Våtmark. Norsk Rødliste for Naturtyper 2018. Artsdatabanken, Trondheim. 2018. Available online: https://artsdatabanken.no/RLN2018/147 (accessed on 23 November 2023).
- Moen, A. Vurdering Av Noen Verneverdige Myrer i Østfold Og Akershus. Rapport Til Miljøverndepartementet. K. norske Vidensk. Selsk. Mus. Trondheim. 1976. Available online: https://www.ntnu.no/documents/10476/18307797/18+%C3%98stfold-Akershus+1976.pdf (accessed on 28 November 2023).
- Lyngstad, A.; Vold, E.M. A Survey of Typical Raised Bog Using Aerial Photographs. Østfold County, Akershus County and the Southern Part of Hedmark County. NTNU Vitenskapsmuseet Naturhist. Rapp. 2015, 3, 1–367. [Google Scholar]
- Miljødirektoratet Plan for Restaurering Av Våtmark i Norge (2016–2020); Miljødirektoratet og Landbruksdirektoratet: Trondheim, Norway, 2016; 67p, Available online: https://www.miljodirektoratet.no/globalassets/publikasjoner/m644/m644.pdf (accessed on 22 November 2023).
- Miljødirektoratet Plan for Restaurering Av Våtmark i Norge (2021–2025); Miljødirektoratet: Trondheim, Norway, 2020; 70p, Available online: https://www.statsforvalteren.no/contentassets/7759cdee40734dd490491681d712f9e7/plan-for-restaurering-av-vatmark-i-norge-2021-2025.pdf (accessed on 22 November 2023).
- Armstrong, A.; Holden, J.; Kay, P.; Foulger, M.; Gledhill, S.; McDonald, A.T.; Walker, A. Drain-Blocking Techniques on Blanket Peat: A Framework for Best Practice. J. Environ. Manag. 2009, 90, 3512–3519. [Google Scholar] [CrossRef] [PubMed]
- Stachowicz, M.; Manton, M.; Abramchuk, M.; Banaszuk, P.; Jarašius, L.; Kamocki, A.; Povilaitis, A.; Samerkhanova, A.; Schäfer, A.; Sendžikaitė, J.; et al. To Store or to Drain—To Lose or to Gain? Rewetting Drained Peatlands as a Measure for Increasing Water Storage in the Transboundary Neman River Basin. Sci. Total Environ. 2022, 829, 154560. [Google Scholar] [CrossRef]
- Agresti, A.; Kateri, M. Foundations of Statistics for Data Scientists; Chapman and Hall/CRC: Boca Raton, FL, USA, 2021; ISBN 9781003159834. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R. Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 29 March 2022).
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis, 2nd ed.; Springer International Publishing: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Ruseckas, J.; Grigaliūnas, V. Effect of drain-blocking and meteorological factors on ground water table fluctuations in kamanos mire. J. Environ. Eng. Landsc. Manag. 2008, 16, 168–177. [Google Scholar] [CrossRef]
- Urzainki, I.; Palviainen, M.; Hökkä, H.; Persch, S.; Chatellier, J.; Wang, O.; Mahardhitama, P.; Yudhista, R.; Laurén, A. A Process-Based Model for Quantifying the Effects of Canal Blocking on Water Table and CO2 Emissions in Tropical Peatlands. Biogeosciences 2023, 20, 2099–2116. [Google Scholar] [CrossRef]
- D’Acunha, B.; Lee, S.-C.; Johnson, M.S. Ecohydrological Responses to Rewetting of a Highly Impacted Raised Bog Ecosystem. Ecohydrology 2018, 11, e1922. [Google Scholar] [CrossRef]
- Gaffney, P.P.J.; Hugron, S.; Jutras, S.; Marcoux, O.; Raymond, S.; Rochefort, L. Ecohydrological Change Following Rewetting of a Deep-drained Northern Raised Bog. Ecohydrology 2020, 13, e2210. [Google Scholar] [CrossRef]
- Sorrell, B.K.; Partridge, T.R.; Clarkson, B.R.; Jackson, R.J.; Chagué-Goff, C.; Ekanayake, J.; Payne, J.; Gerbeaux, P.; Grainger, N.P.J. Soil and Vegetation Responses to Hydrological Manipulation in a Partially Drained Polje Fen in New Zealand. Wetl. Ecol. Manag. 2007, 15, 361–383. [Google Scholar] [CrossRef]
- Howie, S.A.; Whitfield, P.H.; Hebda, R.J.; Munson, T.G.; Dakin, R.A.; Jeglum, J.K. Water Table and Vegetation Response to Ditch Blocking: Restoration of a Raised Bog in Southwestern British Columbia. Can. Water Resour. J. 2009, 34, 381–392. [Google Scholar] [CrossRef]
- Bring, A.; Thorslund, J.; Rosén, L.; Tonderski, K.; Åberg, C.; Envall, I.; Laudon, H. Effects on Groundwater Storage of Restoring, Constructing or Draining Wetlands in Temperate and Boreal Climates: A Systematic Review. Environ. Evid. 2022, 11, 38. [Google Scholar] [CrossRef] [PubMed]
- Putra, S.S.; Holden, J.; Baird, A.J. The Effects of Ditch Dams on Water-level Dynamics in Tropical Peatlands. Hydrol. Process 2021, 35, e14174. [Google Scholar] [CrossRef]
- Konapala, G.; Mishra, A.K.; Wada, Y.; Mann, M.E. Climate Change Will Affect Global Water Availability through Compounding Changes in Seasonal Precipitation and Evaporation. Nat. Commun. 2020, 11, 3044. [Google Scholar] [CrossRef] [PubMed]
- Bourgault, M.-A.; Larocque, M.; Garneau, M. How Do Hydrogeological Setting and Meteorological Conditions Influence Water Table Depth and Fluctuations in Ombrotrophic Peatlands? J. Hydrol. X 2019, 4, 100032. [Google Scholar] [CrossRef]
- Glenk, K.; Faccioli, M.; Martin-Ortega, J.; Schulze, C.; Potts, J. The Opportunity Cost of Delaying Climate Action: Peatland Restoration and Resilience to Climate Change. Glob. Environ. Change 2021, 70, 102323. [Google Scholar] [CrossRef]
- Planas-Clarke, A.M.; Chimner, R.A.; Hribljan, J.A.; Lilleskov, E.A.; Fuentealba, B. The Effect of Water Table Levels and Short-Term Ditch Restoration on Mountain Peatland Carbon Cycling in the Cordillera Blanca, Peru. Wetl. Ecol. Manag. 2020, 28, 51–69. [Google Scholar] [CrossRef]
- Loisel, J.; Gallego-Sala, A. Ecological Resilience of Restored Peatlands to Climate Change. Commun. Earth Environ. 2022, 3, 208. [Google Scholar] [CrossRef]
- Bielańska-Grajner, I.; Mieczan, T.; Cieplok, A. Ecology of Moss-Dwelling Rotifers in a Raised Bog: Differentiation of Rotifer Communities in Microhabitats. Biologia 2017, 72, 175–183. [Google Scholar] [CrossRef]
- Karimi, S.; Maher Hasselquist, E.; Salimi, S.; Järveoja, J.; Laudon, H. Rewetting Impact on the Hydrological Function of a Drained Peatland in the Boreal Landscape. J. Hydrol. 2024, 641, 131729. [Google Scholar] [CrossRef]
- Lanta, V.; Mach, J.; Holcová, V. The Effect of Dam Construction on the Restoration Succession of Spruce Mires in the Giant Mountains (Czech Republic). Ann. Bot. Fenn. 2006, 43, 260–268. [Google Scholar]
- Menberu, M.W.; Tahvanainen, T.; Marttila, H.; Irannezhad, M.; Ronkanen, A.; Penttinen, J.; Kløve, B. Water-table-dependent Hydrological Changes Following Peatland Forestry Drainage and Restoration: Analysis of Restoration Success. Water Resour. Res. 2016, 52, 3742–3760. [Google Scholar] [CrossRef]
- Koch, J.; Elsgaard, L.; Greve, M.H.; Gyldenkærne, S.; Hermansen, C.; Levin, G.; Wu, S.; Stisen, S. Water-Table-Driven Greenhouse Gas Emission Estimates Guide Peatland Restoration at National Scale. Biogeosciences 2023, 20, 2387–2403. [Google Scholar] [CrossRef]
- Lamentowicz, M.; Gałka, M.; Marcisz, K.; Słowiński, M.; Kajukało-Drygalska, K.; Dayras, M.D.; Jassey, V.E.J. Unveiling Tipping Points in Long-Term Ecological Records from Sphagnum-Dominated Peatlands. Biol. Lett. 2019, 15, 20190043. [Google Scholar] [CrossRef]
- Regan, S.; Swenson, M.; O’Connor, M.; Gill, L. Ecohydrology, Greenhouse Gas Dynamics and Restoration Guidelines for Degraded Raised Bogs (EPA Research Report No. 342); Environmental Protection Agency, Johnstown Castle, Co.: Wexford, Ireland, 2020. [Google Scholar]
- Kyrkjeeide, M.O.; Jokerud, M.; Mehlhoop, A.C.; Lunde, L.M.F.; Fandrem, M.; Lyngstad, A. Peatland Restoration in Norway—Evaluation of Ongoing Monitoring and Identification of Plant Indicators of Restoration Success. Nord. J. Bot. 2024, e03988. [Google Scholar] [CrossRef]
- Kreyling, J.; Tanneberger, F.; Jansen, F.; van der Linden, S.; Aggenbach, C.; Blüml, V.; Couwenberg, J.; Emsens, W.-J.; Joosten, H.; Klimkowska, A.; et al. Rewetting Does Not Return Drained Fen Peatlands to Their Old Selves. Nat. Commun. 2021, 12, 5693. [Google Scholar] [CrossRef]
- Schaller, C.; Hofer, B.; Klemm, O. Greenhouse Gas Exchange of a NW German Peatland, 18 Years After Rewetting. J. Geophys. Res. Biogeosci 2022, 127. [Google Scholar] [CrossRef]
- Schimelpfenig, D.W.; Cooper, D.J.; Chimner, R.A. Effectiveness of Ditch Blockage for Restoring Hydrologic and Soil Processes in Mountain Peatlands. Restor. Ecol. 2014, 22, 257–265. [Google Scholar] [CrossRef]
- Page, S.E.; Baird, A.J. Peatlands and Global Change: Response and Resilience. Annu. Rev. Environ. Resour. 2016, 41, 35–57. [Google Scholar] [CrossRef]
- Nordbakken, J.-F.; Halvorsen, R. Vegetasjonsutvikling På Nordre Del Av Rønnåsmyra Naturreservat (Grue, Hedmark) Etter Gjenfylling Av Grøfter (in Norwegian). In Upubl. Notat til Fylkesmannen i i Hedmark, Miljøverna; 2004; p. 10. Available online: https://www.nibio.no/publikasjoner?sok=%22gr%C3%83%C2%B8nn+kunnskap%22&page=3950 (accessed on 1 December 2024).
- Hanssen-Bauer, I.; Førland, E.J.; Hadde-Land, I.; Hisdal, H.; Lawrence, D.; Maye, S.; Nesje, A.; Nilsen, J.E.Ø.; Sandven, S.; Sandø, A.B.; et al. Climate in Norway 2100—A Knowledge Base for Climate Adaptation; Norwegian Environment Agency (Miljødirektoratet): Trondheim, Norway, 2017; ISSN 2387. [Google Scholar]
- Klimaservicesenter.No. Available online: https://klimaservicesenter.no/climateprojections (accessed on 16 November 2023).
- Engen-Skaugen, T.; Haugen, J.E.; Tveito, O.E. Temperature Scenarios for Norway: From Regional to Local Scale. Clim. Dyn. 2007, 29, 441–453. [Google Scholar] [CrossRef]
- Huo, R.; Li, L.; Engeland, K.; Xu, C.Y.; Chen, H.; Paasche, Ø.; Guo, S. Changing Flood Dynamics in Norway since the Last Millennium and to the End of the 21st Century. J. Hydrol. 2022, 613, 128331. [Google Scholar] [CrossRef]
- Mayer, S.; Khasandi Kuya, E.; Antonsen, K.; Abegg, B.; Hanssen-Bauer, I. Warmer and Wetter: Outlining Climate Services for Snow-Dependent Tourism in Norway—The Case of Lofoten. Clim. Serv. 2023, 32, 100405. [Google Scholar] [CrossRef]
- Bertrand, G.; Ponçot, A.; Pohl, B.; Lhosmot, A.; Steinmann, M.; Johannet, A.; Pinel, S.; Caldirak, H.; Artigue, G.; Binet, P.; et al. Statistical Hydrology for Evaluating Peatland Water Table Sensitivity to Simple Environmental Variables and Climate Changes Application to the Mid-Latitude/Altitude Frasne Peatland (Jura Mountains, France). Sci. Total Environ. 2021, 754, 141931. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stachowicz, M.; Lyngstad, A.; Osuch, P.; Grygoruk, M. Hydrological Response to Rewetting of Drained Peatlands—A Case Study of Three Raised Bogs in Norway. Land 2025, 14, 142. https://doi.org/10.3390/land14010142
Stachowicz M, Lyngstad A, Osuch P, Grygoruk M. Hydrological Response to Rewetting of Drained Peatlands—A Case Study of Three Raised Bogs in Norway. Land. 2025; 14(1):142. https://doi.org/10.3390/land14010142
Chicago/Turabian StyleStachowicz, Marta, Anders Lyngstad, Paweł Osuch, and Mateusz Grygoruk. 2025. "Hydrological Response to Rewetting of Drained Peatlands—A Case Study of Three Raised Bogs in Norway" Land 14, no. 1: 142. https://doi.org/10.3390/land14010142
APA StyleStachowicz, M., Lyngstad, A., Osuch, P., & Grygoruk, M. (2025). Hydrological Response to Rewetting of Drained Peatlands—A Case Study of Three Raised Bogs in Norway. Land, 14(1), 142. https://doi.org/10.3390/land14010142