Windthrow Impact on Alpine Forest Humipedon: Soil Microarthropod Communities and Humus Dynamics Five Years after an Extreme Windstorm Event
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Experimental Design
2.3. Soil Features
2.4. Humus Characterization
2.5. Soil Respiration
2.6. Soil Microarthropod Extraction
2.7. Data Analysis
3. Results
3.1. Chemical Analysis
3.2. Humus Characterization
3.3. Microarthropod Parameters and Soil Feature Associations
3.3.1. Val Di Fassa
3.3.2. Cansiglio
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lindner, M.; Maroschek, M.; Netherer, S.; Kremer, A.; Barbati, A.; Garcia-Gonzalo, J.; Seidl, R.; Delzon, S.; Corona, P.; Kolström, M.; et al. Climate Change Impacts, Adaptive Capacity, and Vulnerability of European Forest Ecosystems. For. Ecol. Manag. 2010, 259, 698–709. [Google Scholar] [CrossRef]
- Seidl, R.; Schelhaas, M.J.; Rammer, W.; Verkerk, P.J. Increasing Forest Disturbances in Europe and Their Impact on Carbon Storage. Nat. Clim. Change 2014, 4, 806–810. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC) (Ed.) IPCC Summary for Policymakers. In Climate Change 2021–The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2023; pp. 3–32. ISBN 9781009157889. [Google Scholar]
- Barry, G.; Schuck, A.; Schelhaas, M.-J.; Orazio, O.; Blennow, K.; Nicoll, B. Living with Storm Damage to Forests; European Forestry Institute: Joensuu, Finland, 2013; pp. 15–22. ISBN 9789525980080. [Google Scholar]
- Patacca, M.; Lindner, M.; Lucas-Borja, M.E.; Cordonnier, T.; Fidej, G.; Gardiner, B.; Hauf, Y.; Jasinevičius, G.; Labonne, S.; Linkevičius, E.; et al. Significant Increase in Natural Disturbance Impacts on European Forests since 1950. Glob. Change Biol. 2023, 29, 1359–1376. [Google Scholar] [CrossRef]
- Motta, R.; Ascoli, D.; Corona, P.; Marchetti, M.; Vacchiano, G. Selvicoltura e Schianti Da Vento: Il Caso Della “Tempesta Vaia”. Forest@—J. Silvic. For. Ecol. 2018, 15, 94–98. [Google Scholar] [CrossRef]
- Beatty, S.W.; Stone, E.L. The Variety of Soil Microsites Created by Tree Falls. Can. J. For. Res. 1986, 16, 539–548. [Google Scholar] [CrossRef]
- Bormann, B.T.; Spaltenstein, H.; McClellan, M.H.; Ugolini, F.C.; Cromack, K., Jr.; Nay, S.M. Rapid Soil Development after Windthrow Disturbance in Pristine Forests. J. Ecol. 1995, 83, 747–757. [Google Scholar] [CrossRef]
- Schaetzl, R.J.; Johnson, D.L.; Burns, S.F.; Small, T.W. Tree Uprooting: Review of Terminology, Process, and Environmental Implications. Can. J. For. Res. 1989, 19, 1–11. [Google Scholar] [CrossRef]
- Köster, K.; Püttsepp, Ü.; Pumpanen, J. Comparison of Soil CO2 Flux between Uncleared and Cleared Windthrow Areas in Estonia and Latvia. For. Ecol. Manag. 2011, 262, 65–70. [Google Scholar] [CrossRef]
- Mayer, M.; Sandén, H.; Rewald, B.; Godbold, D.L.; Katzensteiner, K. Increase in Heterotrophic Soil Respiration by Temperature Drives Decline in Soil Organic Carbon Stocks after Forest Windthrow in a Mountainous Ecosystem. Funct. Ecol. 2017, 31, 1163–1172. [Google Scholar] [CrossRef]
- Kramer, M.G.; Sollins, P.; Sletten, R.S. Soil Carbon Dynamics Across a Windthrow Disturbance Sequence in Southeast Alaska. Ecology 2004, 85, 2230–2244. [Google Scholar] [CrossRef]
- Lüscher, P. Humus Dynamics and Changes in Rooting Patterns in Windthrow Areas. Appl. Soil Ecol. 2002, 77, 345–354. [Google Scholar] [CrossRef]
- Ulanova, N.G. The Effects of Windthrow on Forests at Different Spatial Scales: A Review. For. Ecol. Manag. 2000, 135, 155–167. [Google Scholar] [CrossRef]
- Ponge, J.F. Humus Forms in Terrestrial Ecosystems: A Framework to Biodiversity. Soil Biol. Biochem. 2003, 35, 935–945. [Google Scholar] [CrossRef]
- Zanella, A.; Berg, B.; Ponge, J.F.; Kemmers, R.H. Humusica 1, Article 2: Essential Bases—Functional Considerations. Appl. Soil Ecol. 2018, 122, 22–41. [Google Scholar] [CrossRef]
- Čuchta, P.; Miklisová, D.; Kováč, Ľ. A Three-Year Study of Soil Collembola Communities in Spruce Forest Stands of the High Tatra Mts (Slovakia) after a Catastrophic Windthrow Event. Eur. J. Soil Biol. 2012, 50, 151–158. [Google Scholar] [CrossRef]
- Lóšková, J.; Ľuptáčik, P.; Miklisová, D.; Kováč, Ľ. Community Structure of Soil Oribatida (Acari) Two Years after Windthrow in the High Tatra Mountains. Biologia 2013, 68, 932–940. [Google Scholar] [CrossRef]
- Coyle, D.R.; Nagendra, U.J.; Taylor, M.K.; Campbell, J.H.; Cunard, C.E.; Joslin, A.H.; Mundepi, A.; Phillips, C.A.; Callaham, M.A. Soil Fauna Responses to Natural Disturbances, Invasive Species, and Global Climate Change: Current State of the Science and a Call to Action. Soil Biol. Biochem. 2017, 110, 116–133. [Google Scholar] [CrossRef]
- Moscatelli, M.C.; Bonifacio, E.; Chiti, T.; Cudlín, P.; Dinca, L.; Gömöryova, E.; Grego, S.; Porta, N.L.; Karlinski, L.; Pellis, G.; et al. Soil Properties as Indicators of Treeline Dynamics in Relation to Anthropogenic Pressure and Climate Change. Clim. Res. 2017, 73, 73–84. [Google Scholar] [CrossRef]
- Bengtsson, J. Disturbance and Resilience in Soil Animal Communities. Eur. J. Soil Biol. 2002, 38, 119–125. [Google Scholar] [CrossRef]
- Zanella, A.; Ponge, J.F.; Andreetta, A.; Aubert, M.; Bernier, N.; Bonifacio, E.; Bonneval, K.; Bolzonella, C.; Chertov, O.; Costantini, E.A.C.; et al. Combined Forest and Soil Management after a Catastrophic Event. J. Mt. Sci. 2020, 17, 2459–2484. [Google Scholar] [CrossRef]
- Sterzyńska, M.; Skłodowski, J. Divergence of Soil Microarthropod (Hexapoda: Collembola) Recovery Patterns during Natural Regeneration and Regeneration by Planting of Windthrown Pine Forests. For. Ecol. Manag. 2018, 429, 414–424. [Google Scholar] [CrossRef]
- Tajovský, K.; Schlaghamerský, J.; Pižl, V. Contributions to Soil Zoology in Central Europe III. In Proceedings of the 9th Central European Workshop on Soil Zoology, České Budějovice, Czech Republic, 17–20 April 2007; Institute of Soil Biology: Biology Centre, Academy of Sciences of the Czech Republic: Prague, Czech Republic, 2009. ISBN 9788086525136. [Google Scholar]
- Menta, C.; Lozano Fondón, C.; Remelli, S. Soil Arthropod Community in Spruce Forests (Picea Abies) Affected by a Catastrophic Storm Event. Diversity 2022, 14, 440. [Google Scholar] [CrossRef]
- Sterzyńska, M.; Shrubovych, J.; Tajovský, K.; Čuchta, P.; Starý, J.; Kaňa, J.; Smykla, J. Responses of Soil Microarthropod Taxon (Hexapoda: Protura) to Natural Disturbances and Management Practices in Forest-Dominated Subalpine Lake Catchment Areas. Sci. Rep. 2020, 10, 5572. [Google Scholar] [CrossRef] [PubMed]
- SSIS. Società Italiana della Scienza del Suolo, Metodi Normalizzati Di Analisi Del Suolo; Edagricole: Bologna, Italy, 1986; ISBN 9788820626747. [Google Scholar]
- Colombo, C.; Miano, T. Metodi_di_Analisi_Chimica_del_Suolo; Società Italiana delle Scienze del Suolo: Firenze, Italy, 2015. [Google Scholar]
- Zanella, A.; Ponge, J.F.; Jabiol, B.; Van Delft, B.; De Waal, R.; Katzensteiner, K.; Kolb, E.; Bernier, N.; Mei, G.; Blouin, M.; et al. A Standardized Morpho-Functional Classification of the Planet’s Humipedons. Soil Syst. 2022, 6, 59. [Google Scholar] [CrossRef]
- Parisi, V.; Menta, C.; Gardi, C.; Jacomini, C.; Mozzanica, E. Microarthropod Communities as a Tool to Assess Soil Quality and Biodiversity: A New Approach in Italy. Agric. Ecosyst. Environ. 2005, 105, 323–333. [Google Scholar] [CrossRef]
- Zampedri, R.; Zanella, A.; Giannini, R. Soil, Humipedon and Forest Management. Forest@—J. Silvic. For. Ecol. 2023, 20, 13–19. [Google Scholar] [CrossRef]
- Zampedri, R.; Bernier, N.; Zanella, A.; Giannini, R.; Menta, C.; Visentin, F.; Mairota, P.; Mei, G.; Zandegiacomo, G.; Carollo, S.; et al. Soil, Humipedon, Forest Life and Management. Int. J. Plant Biol. 2023, 14, 571–592. [Google Scholar] [CrossRef]
- Zanella, A.; Ponge, J.F.; Jabiol, B.; Sartori, G.; Kolb, E.; Le Bayon, R.C.; Gobat, J.M.; Aubert, M.; De Waal, R.; Van Delft, B.; et al. Humusica 1, Article 5: Terrestrial Humus Systems and Forms—Keys of Classification of Humus Systems and Forms. Appl. Soil Ecol. 2018, 122, 75–86. [Google Scholar] [CrossRef]
- Bernier, N. Hotspots of Biodiversity in the Underground: A Matter of Humus Form? Appl. Soil Ecol. 2018, 123, 305–312. [Google Scholar] [CrossRef]
- Bernier, N.; Ponge, J.-F. Humus Form Dynamics during the Sylvogenetic Cycle in a Mountain Spruce Forest. Biol. Biochem. 1994, 26, 183–220. [Google Scholar] [CrossRef]
- Burgess-Conforti, J.R.; Moore, P.A.; Owens, P.R.; Miller, D.M.; Ashworth, A.J.; Hays, P.D.; Evans-White, M.A.; Anderson, K.R. Are Soils beneath Coniferous Tree Stands More Acidic than Soils beneath Deciduous Tree Stands? Environ. Sci. Pollut. Res. 2019, 26, 14920–14929. [Google Scholar] [CrossRef]
- Schulze, K.; Borken, W.; Muhr, J.; Matzner, E. Stock, Turnover Time and Accumulation of Organic Matter in Bulk and Density Fractions of a Podzol Soil. Eur. J. Soil Sci. 2009, 60, 567–577. [Google Scholar] [CrossRef]
- Trumbore, S.E.; Chadwick, O.A.; Amundson, R. Rapid Exchange Between Soil Carbon and Atmospheric Carbon Dioxide Driven by Temperature Change. Science 1996, 272, 393–396. [Google Scholar] [CrossRef]
- Kobler, J.; Jandl, R.; Dirnböck, T.; Mirtl, M.; Schindlbacher, A. Effects of Stand Patchiness Due to Windthrow and Bark Beetle Abatement Measures on Soil CO2 Efflux and Net Ecosystem Productivity of a Managed Temperate Mountain Forest. Eur. J. For. Res. 2015, 134, 683–692. [Google Scholar] [CrossRef]
- Zanella, A.; Ponge, J.F.; Jabiol, B.; Sartori, G.; Kolb, E.; Gobat, J.M.; Bayon, R.C.L.; Aubert, M.; De Waal, R.; Delft, B.V.; et al. Humusica 1, Article 4: Terrestrial Humus Systems and Forms—Specific Terms and Diagnostic Horizons. Appl. Soil Ecol. 2018, 122, 56–74. [Google Scholar] [CrossRef]
- Wehner, K.; Simons, N.K.; Blüthgen, N.; Heethoff, M. Drought, Windthrow and Forest Operations Strongly Affect Oribatid Mite Communities in Different Microhabitats. Glob. Ecol. Conserv. 2021, 30, e01757. [Google Scholar] [CrossRef]
- Potapov, A.M.; Goncharov, A.A.; Semenina, E.E.; Korotkevich, A.Y.; Tsurikov, S.M.; Rozanova, O.L.; Anichkin, A.E.; Zuev, A.G.; Samoylova, E.S.; Semenyuk, I.I.; et al. Arthropods in the Subsoil: Abundance and Vertical Distribution as Related to Soil Organic Matter, Microbial Biomass and Plant Roots. Eur. J. Soil Biol. 2017, 82, 88–97. [Google Scholar] [CrossRef]
- Price, D.W.; Benham, G.S. Vertical Distribution of Soil-Inhabiting Microarthropods in an Agricultural Habitat in California. Environ. Entomol. 1977, 6, 575–580. [Google Scholar] [CrossRef]
- Menta, C.; Leoni, A.; Gardi, C.; Delia Conti, F. Are Grasslands Important Habitats for Soil Microarthropod Conservation? Biodivers. Conserv. 2011, 20, 1073–1087. [Google Scholar] [CrossRef]
- Edwards, C.A. The Ecology of Symphyla. Entomol. Exp. Appl. 1958, 1, 308–319. [Google Scholar] [CrossRef]
- Lisa, C.; Paffetti, D.; Nocentini, S.; Marchi, E.; Bottalico, F.; Fiorentini, S.; Travaglini, D. Impact of Wildfire on the Edaphic Microarthropod Community in a Pinus Pinaster Forest in Central Italy. Iforest-Biogeosci. For. 2015, 8, 874–883. [Google Scholar] [CrossRef]
- Zhang, Q.; Hong, Y.; Zou, F.; Zhang, M.; Lee, T.M.; Song, X.; Rao, J. Avian Responses to an Extreme Ice Storm Are Determined by a Combination of Functional Traits, Behavioural Adaptations and Habitat Modifications. Sci. Rep. 2016, 6, 22344. [Google Scholar] [CrossRef] [PubMed]
- Voigtländer, K.; Decker, P.; Burkhardt, U.; Spelda, J. The Present Knowledge of the Symphyla and Pauropoda (Myriapoda) in Germany: An Annotated Checklist. Acta. Soc. Zool. Bohem. 2016, 80, 51–85. [Google Scholar]
- Fusco, T.; Fortini, L.; Casale, F.; Jacomini, C.; Di Giulio, A. Fast Soil Recovery after a Fire: Case Study in Maritime Alps (Piedmont, Italy) Using Microarthropods and QBS-Ar Index. Front. Ecol. Evol. 2023, 11, 1303867. [Google Scholar] [CrossRef]
- Salmon, S.; Artuso, N.; Frizzera, L.; Zampedri, R. Relationships between Soil Fauna Communities and Humus Forms: Response to Forest Dynamics and Solar Radiation. Soil Biol. Biochem. 2008, 40, 1707–1715. [Google Scholar] [CrossRef]
- Kreibich, E.; Grauf, C.; Strauch, S. Changes of the Oribatid Community after a Windthrow Event. In Trends in Acarology; Springer: Dordrecht, The Netherlands, 2010; pp. 111–115. [Google Scholar]
- Gan, H. Oribatid Mite Communities in Soil: Structure, Function and Response to Global Environmental Change. Ph.D. Dissertation, University of Michigan, Ann Arbor, MI, USA, 2013. Available online: https://deepblue.lib.umich.edu/bitstream/handle/2027.42/102446/huijgan_1.pdf (accessed on 5 July 2024).
- Schneider, K.; Renker, C.; Scheu, S.; Maraun, M. Feeding Biology of Oribatid Mites: A Minireview. Phytophaga 2004, 14, 247–256. [Google Scholar]
- Smrž, J. Nutritional Biology of Oribatid Mites from Different Microhabitats in the Forest. In Trends in Acarology; Springer: Dordrecht, The Netherlands, 2010; pp. 213–216. [Google Scholar]
- Čuchta, P.; Kaňa, J.; Pouska, V. An Important Role of Decomposing Wood for Soil Environment with a Reference to Communities of Springtails (Collembola). Environ. Monit. Assess. 2019, 191, 222. [Google Scholar] [CrossRef]
- Duelli, P.; Obrist, M.K.; Wermelinger, B. Windthrow-Induced Changes in Faunistic Biodiversity in Alpine Spruce Forests. For. Snow Landsc. Res. 2002, 77, 117–131. [Google Scholar]
pH | SOM (%) | Thickness O (cm) | Thickness A (cm) | Humus System (%) | |||||
---|---|---|---|---|---|---|---|---|---|
Mull | Amphi | Moder | Tangel | ||||||
Val Di Fassa | IF | 5.34 ± 0.13 | 43.18 ± 5.91 | 10.03 ± 2.27 | 6.92 ± 1.09 | 0 | 83.3 | 16.7 | 0 |
M | 5.59 ± 0.10 | 21.12 ± 1.94 | 3.73 ± 0.52 | 11.55 ± 0.52 | 66.7 | 33.3 | 0 | 0 | |
G | 5.88 ± 0.15 | 19.42 ± 1.98 | 3.86 ± 0.90 | 11.53 ± 0.97 | 55.6 | 44.4 | 0 | 0 | |
W | 5.59 ± 0.25 | 29.95 ± 6.35 | 7.92 ± 1.44 | 9.25 ± 1.84 | 50 | 41.7 | 0 | 8.3 | |
B | 5.88 ± 0.55 | 17.78 ± 10.13 | 0.33 ± 0.33 | 14.67 ± 0.33 | 66.7 | 33.3 | 0 | 0 | |
Cansiglio | IF | 5.01 ± 0.19 | 33.43 ± 3.79 | 6.42 ± 0.92 | 9.08 ± 1.12 | 8.3 | 91.7 | 0 | 0 |
Wt | 5.86 ± 0.19 | 26.85 ±3.70 | 4.27 ± 1.38 | 11.87 ± 1.24 | 33.3 | 60 | 0 | 6.7 |
Area | Comparison | SIMPER Coefficient | Group | Cumulative Dissimilarity Explained | Ind/m2 First Condition (Mean ± St. Error) | Ind/m2 Second Condition (Mean ± St. Error) |
VdF | B vs. M | 0.716 | Collembola | 0.249 | 211.79 ± 197.52 | 2987.48 ± 645.39 |
Non-Oribatida | 0.458 | 981.92 ± 910.06 | 2679.42 ± 375.55 | |||
Oribatida | 0.599 | 298.43 ± 298.43 | 834.31 ± 152.04 | |||
Coleoptera-Lavae | 0.680 | 0 | 173.28 ± 20.15 | |||
Symphyla | 0.742 | 9.63 ± 9.63 | 253.50 ± 96.23 | |||
B vs. G | 0.689 | Non-Oribatida | 0.263 | 981.92 ± 910.06 | 3411.05 ± 560.50 | |
Collembola | 0.468 | 211.79 ± 197.52 | 1846.72 ± 326.59 | |||
Oribatida | 0.654 | 298.43 ± 298.43 | 1565.94 ± 531.89 | |||
Protura | 0.706 | 0 | 190.93 ± 116.67 | |||
B vs. IF | 0.691 | Collembola | 0.240 | 211.79 ± 197.52 | 2486.89 ± 589.42 | |
Non-Oribatida | 0.472 | 981.92 ± 910.06 | 2613.64 ± 402.34 | |||
Oribatida | 0.668 | 298.43 ± 298.43 | 1702.32 ± 494.76 | |||
Hemiptera | 0.720 | 0 | 120.33 ± 39.98 | |||
B vs. W | 0.677 | Collembola | 0.281 | 211.79 ± 197.52 | 2596.79 ± 886.71 | |
Non-Oribatida | 0.493 | 981.92 ± 910.06 | 1280.35 ± 313.24 | |||
Oribatida | 0.671 | 298.43 ± 298.43 | 527.06 ± 82.16 | |||
Coleoptera-larvae | 0.734 | 0 | 72.20 ± 16.48 | |||
W vs. G | 0.417 | Collembola | 0.222 | 2596.79 ± 886.71 | 1846.72 ± 326.59 | |
Non-Oribatida | 0.416 | 1280.35 ± 313.24 | 3411.05 ± 560.50 | |||
Oribatida | 0.549 | 527.06 ± 82.16 | 1565.94 ± 531.89 | |||
Protura | 0.609 | 7.22 ± 3.77 | 190.93 ± 116.67 | |||
Pauropoda | 0.665 | 40.91 ± 16.85 | 123.54 ± 42.01 | |||
Symphyla | 0.718 | 45.73 ± 17.22 | 105.89 ± 41.96 | |||
W vs. IF | 0.417 | Collembola | 0.234 | 2596.79 ± 886.71 | 2486.89 ± 589.42 | |
Non-Oribatida | 0.399 | 1280.35 ± 313.24 | 2613.64 ± 402.34 | |||
Oribatida | 0.544 | 527.06 ± 82.16 | 1702.32 ± 494.76 | |||
Hemiptera | 0.603 | 2.41 ± 2.41 | 120.33 ± 39.98 | |||
Diplopoda | 0.653 | 67.39 ± 20.21 | 48.13 ± 26.62 | |||
Pauropoda | 0.700 | 40.91 ± 16.86 | 73.80 ± 21.43 | |||
Area | Comparison | SIMPER coefficient | Group | Cumulative dissimilarity explained | Ind/m2 IF (mean ± st.error) | Ind/m2 Wt (mean ± st.error) |
Can | IF vs. Wt Conifers | 0.468 | Non-Oribatida | 0.155 | 1631.72 ± 640.19 | 2113.05 ± 398.25 |
Collembola | 0.292 | 948.23 ± 495.09 | 1010.8 ± 206.51 | |||
Symphyla | 0.414 | 173.28 ± 98.64 | 644.99 ± 265.49 | |||
Oribatida | 0.514 | 827.89 ± 513.04 | 601.67 ± 228.31 | |||
Hemiptera | 0.588 | 67.39 ± 33.90 | 423.57 ± 406.29 | |||
Coleoptera—larvae | 0.652 | 255.11 ± 89.30 | 182.91 ± 50.08 | |||
Diplopoda | 0.692 | 77.01 ± 26.54 | 19.25 ± 14.28 | |||
Pauropoda | 0.729 | 28.88 ± 28.88 | 52.95 ± 25.19 | |||
IF vs. Wt Deciduous | 0.413 | Non-Oribatida | 0.169 | 5318.73 ± 1000.03 | 1992.72 ± 658.58 | |
Protura | 0.298 | 1044.49 ± 438.77 | 1273.92 ± 1002.49 | |||
Oribatida | 0.411 | 2098.61 ± 561.43 | 523.05 ± 156.08 | |||
Collembola | 0.508 | 2223.76 ± 201.88 | 1870.78 ± 556.37 | |||
Coleoptera—larvae | 0.566 | 192.53 ± 41.96 | 644.99 ± 521.48 | |||
Symphyla | 0.619 | 524.65 ± 187.52 | 231.04 ± 55.30 | |||
Pauropoda | 0.672 | 505.4 ± 327.23 | 170.07 ± 93.26 | |||
Diplopoda | 0.714 | 125.15 ± 39.92 | 407.53 ± 232.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Visentin, F.; Remelli, S.; Zanella, A.; Menta, C. Windthrow Impact on Alpine Forest Humipedon: Soil Microarthropod Communities and Humus Dynamics Five Years after an Extreme Windstorm Event. Land 2024, 13, 1458. https://doi.org/10.3390/land13091458
Visentin F, Remelli S, Zanella A, Menta C. Windthrow Impact on Alpine Forest Humipedon: Soil Microarthropod Communities and Humus Dynamics Five Years after an Extreme Windstorm Event. Land. 2024; 13(9):1458. https://doi.org/10.3390/land13091458
Chicago/Turabian StyleVisentin, Francesca, Sara Remelli, Augusto Zanella, and Cristina Menta. 2024. "Windthrow Impact on Alpine Forest Humipedon: Soil Microarthropod Communities and Humus Dynamics Five Years after an Extreme Windstorm Event" Land 13, no. 9: 1458. https://doi.org/10.3390/land13091458