Gully Erosion Development in Drainage Basins: A New Morphometric Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.1.1. Adriatic Side of Central Italy
2.1.2. Gillette Area, Wyoming (USA)
2.2. Morphometric Analysis
- Step 1: Tracing of the drainage network, definition of the watercourse orders, and calculation of the basic morphometric parameters by GIS procedures.
- Step 2: Construction of the frequency distribution histogram (FDH).
- Step 3: Construction of the hypsometric curve and the flow contribution curve (FCC).
- Step 4: Detection of gullying initiation areas by satellite image interpretation.
3. Results
4. Discussion
5. Conclusions
- Using an open-source digital terrain model with 10 m resolution, easily downloadable from public sites, it is possible to obtain the hydrographic network hierarchized according to the Strahler method of each river basin through simple geoprocessing operations in a GIS environment.
- The third-order reaches, classified with the method described above, correspond to segments of the hydrographic network characterized by intense linear erosion processes (gullies); this correspondence is easily verifiable through aerial photo interpretation.
- The mean starting elevation of these features coincides with the mean elevation of the basin (calculated from the hypsometric curve with GIS procedures) and with the highest elevation among those where the reaches described above show a peak in the frequency distribution: a similar coincidence exists between these relative elevations and the more elevated inflection point of the hypsometric curve of the basin.
- The elevation of the inflection point obtained from the hypsographic curve, which coincides with the mean elevation of the drainage basin, is confirmed to be a transition point between low-impact erosive processes (sheet and rill erosion) and deep incision phenomena (gullies).
- The portion of the basin necessary to activate these intense erosive processes is always included in a range of 1–2 hectares or, in any case, in a relatively narrow range regardless of the size and the morphometric characteristics of a specific basin.
- The almost completely automated method described in this study represents both an advantage and a limitation for its application since, as mentioned, it can only be used in homogeneous and practically unconditioned drainage basins.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- De Vente, J.; Poesen, J.; Verstraeten, G. The application of semi-quantitative methods and reservoir sedimentation rates for the prediction of basin sediment yield in Spain. J. Hydrol. 2005, 305, 63–86. [Google Scholar] [CrossRef]
- Dube, H.B.; Mutema, M.; Muchaonyerwa, P.; Poesen, J.; Chaplot, V. A global analysis of the morphology of linear erosion features. CATENA 2020, 190, 104542. [Google Scholar] [CrossRef]
- García-Ruiz, J.M.; Beguería, S.; Nadal-Romero, E.; González-Hidalgo, J.C.; Lana-Renault, N.; Sanjuán, Y. A meta-analysis of soil erosion rates across the world. Geomorphology 2015, 239, 160–173. [Google Scholar] [CrossRef]
- García-Ruiz, J.M.; Nadal-Romero, E.; Lana-Renault, N.; Beguería, S. Erosion in Mediterranean landscapes: Changes and future challenges. Geomorphology 2013, 198, 20–36. [Google Scholar] [CrossRef]
- Hooke, R.L. On the history of human as geomorphic agents. Geology 2000, 28, 843–846. [Google Scholar] [CrossRef]
- Huon, S.; Bellanger, B.; Bonté, P.; Sogon, S.; Podwojewski, P.; Girardin, C.; Valentin, C.; de Rouw, A.; Velasquez, F.; Bricquet, J.-P.; et al. Monitoring Soil Organic Carbon Erosion with Isotopic Tracers: Two Case Studies on Cultivated Tropical Catchments with Steep Slopes (Laos, Venezuela). In Soil Erosion and Carbon Dynamics; CRC Press: Boca Raton, FL, USA, 2005; pp. 301–328. [Google Scholar]
- Krause, A.K.; Franks, S.W.; Kalma, J.D.; Loughran, R.J.; Rowan, J.S. Multi-parameter fingerprinting of sediment deposition in a small gullied catchment in SE Australia. CATENA 2003, 53, 327–348. [Google Scholar] [CrossRef]
- Poesen, J.; Nachtergaele, J.; Verstraeten, G.; Valentin, C. Gully erosion and environmental change: Importance and research needs. CATENA 2003, 50, 91–133. [Google Scholar] [CrossRef]
- Wasson, R.J.; Caitcheon, G.; Murray, A.S.; McCulloch, M.; Quade, J. Sourcing sediment using multiple tracers in the catchment of Lake Argyle, Northwestern Australia. Environ. Manag. 2002, 29, 634–646. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Klik, A.; Wu, F. Gully Erosion Features and Its Causes of Formation on the (Yuan) Land in the Loess Plateau, China; Li, Y., Poesen, J., Valentin, C., Eds.; Gully Erosion under Global Change, Sichuan Science and Technology Press: Chengdu, China, 2004. [Google Scholar]
- Poesen, J.W.A.; Torri, D.B.; Van Walleghem, T. Gully Erosion: Procedures to Adopt When Modelling Soil Erosion in Landscapes Affected by Gullying. In Handbook of Erosion Modelling; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2011. [Google Scholar]
- Torri, D.; Poesen, J.; Rossi, M.; Amici, V.; Spennacchi, D.; Cremer, C. Gully head modelling: A Mediterranean badland case study. Earth Surf. Process. Landf. 2018, 43, 2547–2561. [Google Scholar] [CrossRef]
- Nadal-Romero, E.; Martínez-Murillo, J.F.; Vanmaercke, M.; Poesen, J. Scale-dependency of sediment yield from badland areas in Mediterranean environments. Prog. Phys. Geogr. 2011, 35, 297–332. [Google Scholar] [CrossRef]
- Siepel, A.C.; Steenhuis, T.S.; Rose, C.W.; Parlange, J.Y.; McIsaac, G.F. A simplified hillslope erosion model with vegetation elements for practical applications. J. Hydrol. 2002, 258, 111–121. [Google Scholar] [CrossRef]
- Gomez, B.; Banbury, K.; Marden, M.; Trustrum, N.A.; Peacock, D.H.; Hoskin, P.J. Gully erosion and sediment production: Te Weraroa Stream, New Zealand. Water Resour. Res. 2003, 39. [Google Scholar] [CrossRef]
- Gutiérrez, Á.G.; Schnabel, S.; Contador, F.L. Gully erosion, land use and topographical thresholds during the last 60 years in a small rangeland catchment in SW Spain. Land Degrad. Dev. 2009, 20, 535–550. [Google Scholar] [CrossRef]
- Sidorchuk, A. Stochastic components in the gully erosion modelling. CATENA 2005, 63, 299–317. [Google Scholar] [CrossRef]
- Clarke, J.J. Morphometry from Maps, Essays in Geomorphology; Elsevier: Amsterdam, The Netherlands, 1966; pp. 235–274. [Google Scholar]
- Horton, R.E. Drainage-basin characteristics. Eos Trans. Am. Geophys. Union 1932, 13, 350–361. [Google Scholar] [CrossRef]
- Leopold, L.B.; Wolman, M.G.; Miller, J.P. Fluvial Processes in Geomorphology; Dover Publications, Inc.: New York, NY, USA, 1964; ISBN 0486685888. [Google Scholar]
- Schumm, S.A. Geomorphic thresholds: The concept and its applications. Trans. Inst. Br. Geogr. 1979, 4, 485. [Google Scholar] [CrossRef]
- Schumm, S.A. Origin of the Chuska Sandstone, Arizona-New Tertiary Eolian Sediment. Geol. Soc. Am. Bull. 1956, 67, 597–646. [Google Scholar]
- Strahler, A.N. Hypsometric (area-altitude) analysis of erosional topography. Bull. Geol. Soc. Am. 1952, 63, 1117–1142. [Google Scholar] [CrossRef]
- Tricart, J. Principes et Méthodes de la Géomorphologie; Masson: Paris, France, 1965. [Google Scholar]
- Tricart, J. Les discontinuites dans les phenomenes d’erosion. Int. Ass. Sci. Hydol. Publ. 1962, 59, 233–243. [Google Scholar]
- Nachtergaele, J.; Poesen, J.; Sidorchuk, A.; Torri, D. Prediction of concentrated flow width in ephemeral gully channels. Hydrol. Process. 2002, 16, 1935–1953. [Google Scholar] [CrossRef]
- Capra, A.; Mazzara, L.M.; Scicolone, B. Application of the EGEM model to predict ephemeral gully erosion in Sicily, Italy. CATENA 2005, 59, 133–146. [Google Scholar] [CrossRef]
- Capra, A.; Di Stefano, C.; Ferro, V.; Scicolone, B. Similarity between morphological characteristics of rills and ephemeral gullies in Sicily, Italy. Hydrol. Process. 2009, 23, 3334–3341. [Google Scholar] [CrossRef]
- Di Stefano, C.; Ferro, V. Measurements of rill and gully erosion in Sicily. Hydrol. Process. 2011, 25, 2221–2227. [Google Scholar] [CrossRef]
- El Maaoui, M.A.; Sfar Felfoul, M.; Boussema, M.R.; Snane, M.H. Sediment yield from irregularly shaped gullies located on the Fortuna lithologic formation in semi-arid area of Tunisia. CATENA 2012, 93, 97–104. [Google Scholar] [CrossRef]
- Caraballo-Arias, N.A.; Conoscenti, C.; Di Stefano, C.; Ferro, V. Testing GIS-morphometric analysis of some Sicilian badlands. CATENA 2014, 113, 370–376. [Google Scholar] [CrossRef]
- Caraballo-Arias, N.A.; Ferro, V. Assessing, measuring and modelling erosion in calanchi areas: A review. J. Agric. Eng. 2016, 47, 181–190. [Google Scholar] [CrossRef]
- Montgomery, D.R.; Dietrich, W.E. Channel initiation and the problem of landscape scale. Science 1992, 255, 826–830. [Google Scholar] [CrossRef] [PubMed]
- Torri, D.; Poesen, J. A review of topographic threshold conditions for gully head development in different environments. Earth-Sci. Rev. 2014, 130, 73–85. [Google Scholar] [CrossRef]
- Rossi, M.; Torri, D.; De Geeter, S.; Cremer, C.; Poesen, J. Topographic thresholds for gully head formation in badlands. Earth Surf. Process. Landf. 2022, 47, 3558–3587. [Google Scholar] [CrossRef]
- Majhi, A.; Nyssen, J.; Verdoodt, A. What is the best technique to estimate topographic thresholds of gully erosion? Insights from a case study on the permanent gullies of Rarh plain, India. Geomorphology 2021, 375, 107547. [Google Scholar] [CrossRef]
- Schumm, S.A. Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Bull. Geol. Soc. Am. 1956, 67, 597–646. [Google Scholar] [CrossRef]
- Strahler, A.N. Quantitative analysis of watershed geomorphology. Eos Trans. Am. Geophys. Union 1957, 38, 913–920. [Google Scholar] [CrossRef]
- Centamore, E.; Deiana, G.; Micarelli, A.; Potetti, M. Il Trias-Paleogene delle Marche. In Studi Geologici Camerti, Volume Speciale “La Geologia delle Marche”; Università di Camerino: Camerino, Italy, 1986; pp. 9–27. [Google Scholar]
- Gentili, B.; Pambianchi, G.; Aringoli, D.; Materazzi, M.; Giacopetti, M. Pliocene-Pleistocene geomorphological evolution of the Adriatic side of Central Italy. Geol. Carpathica 2017, 68, 6–18. [Google Scholar] [CrossRef]
- D’Intino, J.; Buccolini, M.; Di Nardo, E.; Esposito, G.; Miccadei, E. Geomorphology of the Anversa degli Abruzzi badlands area (Central Apennines, Italy). J. Maps 2020, 16, 488–499. [Google Scholar] [CrossRef]
- Gentilucci, M.; Bufalini, M.; D’Aprile, F.; Materazzi, M.; Pambianchi, G. Comparison of data from rain gauges and the IMERG product to analyse precipitation in mountain areas of central Italy. ISPRS Int. J. Geo-Inf. 2021, 10, 795. [Google Scholar] [CrossRef]
- Gentilucci, M.; Materazzi, M.; Pambianchi, G.; Burt, P.; Guerriero, G. Temperature variations in Central Italy (Marche region) and effects on wine grape production. Theor. Appl. Climatol. 2020, 140, 303–312. [Google Scholar] [CrossRef]
- Buccolini, M.; Materazzi, M.; Aringoli, D.; Gentili, B.; Pambianchi, G.; Scarciglia, F. Late Quaternary catchment evolution and erosion rates in the Tyrrhenian side of central Italy. Geomorphology 2014, 204, 21–30. [Google Scholar] [CrossRef]
- Bufalini, M.; Omran, A.; Bosino, A. Assessment of Badlands Erosion Dynamics in the Adriatic Side of Central Italy. Geosciences 2022, 12, 208. [Google Scholar] [CrossRef]
- Bufalini, M.; Materazzi, M.; Martinello, C.; Rotigliano, E.; Pambianchi, G.; Tromboni, M.; Paniccià, M. Soil Erosion and Deposition Rate Inside an Artificial Reservoir in Central Italy: Bathymetry versus RUSLE and Morphometry. Land 2022, 11, 1924. [Google Scholar] [CrossRef]
- Gentili, B.; Materazzi, M.; Pambianchi, G.; Scalella, G.; Aringoli, D.; Cilla, G.; Farabollini, P. The slope deposits of the Ascensione Mount (Southern Marche, Italy). Geogr. Fis. Din. Quat. 1998, 21, 205–214. [Google Scholar]
- Luppens, J.A.; Scott, D.C.; Haacke, J.E.; Osmonson, L.M.; Rohrbacher, T.J.; Ellis, M.S. Assessment of Coal Geology, Resources, and Reserves in the Gillette Coalfield, Powder River Basin, Wyoming; Open-File Report 2008-1202; U.S. Geological Survey: Sunrise Valley Drive Reston, VA, USA, 2008; pp. 1–127.
- Robinson, C.S.; Mapel, W.J.; Bergendahl, M.H. Stratigraphy and Structure of the Northern and Western Flanks of the Black Hills Uplift, Wyoming, Montana, and South Dakota; U.S. Government Printing Office: Washington, DC, USA, 1981.
- Tarquini, S.; Isola, I.; Favalli, M.; Battistini, A.; Dotta, G.T. A Digital Elevation Model of Italy with a 10 Meters Cell Size (Version 1.1); Istituto Nazionale di Geofisica e Vulcanologia (INGV): Roma, Italy, 2023; Volume 1, 2p.
- Vörös, F.; van Wyk de Vries, B.; Guilbaud, M.N.; Görüm, T.; Karátson, D.; Székely, B. DTM-Based Comparative Geomorphometric Analysis of Four Scoria Cone Areas—Suggestions for Additional Approaches. Remote Sens. 2022, 14, 6152. [Google Scholar] [CrossRef]
- Vörös, F.; Van Wyk de Vries, B.; Székely, B. Geomorphometric Descriptive Parameters of Scoria Cones from Different DTMs: A Resolution Invariance Study. In Proceedings of the 7th International Conference on Cartography and GIS, Sozopol, Bulgaria, 18–23 June 2018; Bandrova, T., Konečný, M., Eds.; pp. 603–612. [Google Scholar]
- Fornaciai, A.; Favalli, M.; Karátson, D.; Tarquini, S.; Boschi, E. Morphometry of scoria cones, and their relation to geodynamic setting: A DEM-based analysis. J. Volcanol. Geotherm. Res. 2012, 217–218, 56–72. [Google Scholar] [CrossRef]
- Miller, V.C. A quantitative Geomorphic Study of Drainage Basin Characteristics in the Clinch Mountain , Virginia and Tennessee; Department of Geology, Columbia University: New York, NY, USA, 1953. [Google Scholar]
- Pérez-Peña, J.V.; Azañón, J.M.; Azor, A. CalHypso: An ArcGIS extension to calculate hypsometric curves and their statistical moments. Applications to drainage basin analysis in SE Spain. Comput. Geosci. 2009, 35, 1214–1223. [Google Scholar] [CrossRef]
- Rossi, M.; Torri, D.; Santi, E. Bias in topographic thresholds for gully heads. Nat. Hazards 2015, 79, 51–69. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, G.; Wang, C.; Xing, S. Gully Morphological Characteristics and Topographic Threshold Determined by UAV in a Small Watershed on the Loess Plateau. Remote Sens. 2022, 14, 3529. [Google Scholar] [CrossRef]
- Vandekerckhove, L.; Poesen, J.; Wijdenes, D.O.; Nachtergaele, J.; Kosmas, C.; Roxo, M.J.; De Figueiredo, T. Thresholds for gully initiation and sedimentation in Mediterranean Europe. Earth Surf. Process. Landf. 2000, 25, 1201–1220. [Google Scholar] [CrossRef]
- Wu, Y.; Cheng, H. Monitoring of gully erosion on the Loess Plateau of China using a global positioning system. CATENA 2005, 63, 154–166. [Google Scholar] [CrossRef]
- McNamara, J.P.; Ziegler, A.D.; Wood, S.H.; Vogler, J.B. Channel head locations with respect to geomorphologic thresholds derived from a digital elevation model: A case study in northern Thailand. For. Ecol. Manag. 2006, 224, 147–156. [Google Scholar] [CrossRef]
- Moore, I.D.; Wilson, J.P. Length-slope factors for the revised universal soil loss equation: Simplified method of estimation. J. Soil Water Conserv. 1992, 47, 423–428. [Google Scholar]
- Wilson, J.P.; Gallant, J.C. (Eds.) Digital Terrain Analysis. Terrain Analysis: Principles and Applications; John Wiley & Sons: New York, NY, USA, 2000. [Google Scholar]
- Park, S.J.; McSweeney, K.K.; Lowery, B.B. Identification of the spatial distribution of soils using a process-based terrain characterization. Geoderma 2001, 103, 249–272. [Google Scholar] [CrossRef]
- Conoscenti, C.; Di Maggio, C.; Rotigliano, E. GIS analysis to assess landslide susceptibility in a fluvial basin of NW Sicily (Italy). Geomorphology 2008, 94, 325–339. [Google Scholar] [CrossRef]
BASIN | Area (km2) | Perimeter (km) | Average Slope | Hmax (m) | Hmin (m) | Δh (m) | Circularity Ratio | Hypsographic Curve Function | OIP (m) | Hypso_Int | Hmean_gullie Field (m) | Hmean_III Start (m) | Hmean_III FCC (m) | Hmean (m) | Std. Dev. σ | Amean_III Contr (m2) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Basin 1 ITALY | 6.18 | 14.46 | 0.30 | 377.00 | 114.00 | 263.00 | 0.372 | y = −474.13x^3 + 696.78x^2 − 435.58x + 332.08 | 230.16 | 0.431 | 230.50 | 223.25 | 250.00 | 227.35 | 9.25 | 13,406.00 |
Basin 2 ITALY | 2.65 | 8.65 | 0.30 | 304.00 | 78.00 | 226.00 | 0.445 | y = −252.79x^3 + 396.49x^2 − 345.44x + 289.78 | 181.40 | 0.473 | 196.50 | 176.07 | 190.00 | 184.90 | 7.03 | 15,008.00 |
Basin 3 ITALY | 2.91 | 11.62 | 0.29 | 368.00 | 47.00 | 321.00 | 0.271 | y = −236.06x^3 + 378.18x^2 − 436.5x + 353.27 | 192.07 | 0.483 | 195.91 | 171.00 | 170.00 | 202.04 | 13.22 | 10,656.00 |
Basin 4 ITALY | 2.68 | 9.25 | 0.28 | 283.00 | 68.00 | 215.00 | 0.394 | y = −290.14x^3 + 441x^2 − 332.68x + 258.58 | 165.45 | 0.459 | 177.20 | 156.67 | 170.00 | 166.69 | 6.66 | 12,666.00 |
Basin 5 ITALY | 14.63 | 22.56 | 0.23 | 331.00 | 49.00 | 282.00 | 0.361 | y = −419.28x^3 + 689.84x^2 − 492.66x + 283.28 | 151.46 | 0.401 | 169.12 | 157.27 | 140.00 | 162.08 | 9.87 | 11,575.00 |
Basin 6 ITALY | 6.56 | 14.60 | 0.29 | 432.00 | 151.00 | 281.00 | 0.387 | y = −277.06x^3 + 371.65x^2 − 328.99x + 397.73 | 300.18 | 0.487 | 305.15 | 276.10 | 250.00 | 287.85 | 19.71 | 13,369.00 |
Basin 7 ITALY | 16.48 | 24.42 | 0.27 | 414.00 | 118.00 | 296.00 | 0.347 | y = −387.87x^3 + 628.63x^2 − 487.95x + 368.95 | 227.69 | 0.402 | 239.11 | 224.45 | 230.00 | 236.99 | 5.56 | 14,587.00 |
Basin 8 ITALY | 33.83 | 37.50 | 0.25 | 453.00 | 58.00 | 395.00 | 0.303 | y = −713.95x^3 + 1207.5x^2 − 793.84x + 372.03 | 180.31 | 0.355 | 196.15 | 187.58 | 150.00 | 198.23 | 17.44 | 11,974.00 |
Basin 9 ITALY | 6.09 | 13.42 | 0.34 | 496.00 | 68.00 | 428.00 | 0.426 | y = −569.25x^3 + 993.29x^2 − 786.07x + 434.41 | 201.14 | 0.378 | 245.30 | 205.84 | 190.00 | 229.78 | 20.18 | 14,443.00 |
Basin 10 ITALY | 6.88 | 14.71 | 0.31 | 333.00 | 67.00 | 266.00 | 0.400 | y = −455.64x^3 + 713.34x^2 − 471.06x + 289.79 | 173.46 | 0.417 | 185.40 | 157.90 | 210.00 | 177.92 | 17.09 | 15,261.00 |
Basin 11 ITALY | 1.36 | 6.85 | 0.23 | 435.00 | 171.00 | 264.00 | 0.364 | y = −292x^3 + 464.27x^2 − 407.38x + 417.52 | 288.55 | 0.472 | 284.64 | 298.74 | 320.00 | 295.61 | 12.30 | 12,201.00 |
Basin 12 ITALY | 2.61 | 9.30 | 0.28 | 340.00 | 143.00 | 197.00 | 0.380 | y = −300.77x^3 + 486.83x^2 − 359.21x + 321.95 | 222.57 | 0.439 | 193.81 | 215.24 | 180.00 | 229.48 | 18.50 | 13,952.00 |
Basin 13 ITALY | 2.94 | 12.22 | 0.21 | 364.00 | 119.00 | 245.00 | 0.247 | y = −407.48x^3 + 620.58x^2 - 436.85x + 345.53 | 230.34 | 0.461 | 244.94 | 225.28 | 240.00 | 231.95 | 7.04 | 15,123.00 |
Basin 14 ITALY | 5.17 | 13.14 | 0.21 | 312.00 | 105.00 | 207.00 | 0.376 | y = −288.65x^3 + 476.31x^2 − 352.24x + 272.39 | 174.71 | 0.376 | 171.35 | 172.42 | 190.00 | 182.83 | 7.12 | 14,883.00 |
Basin 1 USA | 2.49 | 7.80 | 0.14 | 1527.00 | 1416.00 | 111.00 | 0.514 | y = −160.06x^3 + 200.51x^2 − 133.42x + 1515 | 1482.57 | 0.529 | 1485.21 | 1470.92 | 1470.00 | 1474.72 | 6.15 | 12,807.00 |
Basin 2 USA | 8.79 | 13.87 | 0.14 | 1551.00 | 1440.00 | 111.00 | 0.574 | y = −166.77x^3 + 235.34x^2 − 165.71x + 1548.2 | 1504.98 | 0.559 | 1512.44 | 1497.12 | 1490.00 | 1502.05 | 7.53 | 18,468.00 |
Basin 3 USA | 3.13 | 7.89 | 0.14 | 1494.00 | 1400.00 | 94.00 | 0.631 | y = −111.84x^3 + 160.36x^2 − 126.23x + 1483.4 | 1447.48 | 0.481 | 1453.69 | 1441.32 | 1440.00 | 1445.21 | 4.87 | 16,462.00 |
Basin 4 USA | 6.88 | 11.80 | 0.14 | 1587.00 | 1460.00 | 127.00 | 0.622 | y = −162.46x^3 + 250.72x^2 − 185.27x + 1566 | 1514.94 | 0.443 | 1523.71 | 1513.24 | 1510.00 | 1516.26 | 4.55 | 15,345.00 |
Basin 5 USA | 1.15 | 4.38 | 0.14 | 1586.00 | 1492.00 | 94.00 | 0.753 | y = −188.45x^3 + 302.21x^2 − 198.28x + 1581.2 | 1532.76 | 0.465 | 1544.26 | 1530.62 | 1550.00 | 1535.71 | 7.32 | 16,146.00 |
Basin 6 USA | 6.86 | 12.04 | 0.14 | 1502.00 | 1395.00 | 107.00 | 0.595 | y = −167.37x^3 + 237.75x^2 − 160.21x + 1494.4 | 1454.10 | 0.530 | 1449.98 | 1442.76 | 1450.00 | 1451.71 | 3.79 | 16,798.00 |
Basin 7 USA | 5.56 | 10.54 | 0.11 | 1483.00 | 1390.00 | 93.00 | 0.630 | y = −122.32x^3 + 160.9x^2 − 111.8x + 1478.4 | 1450.01 | 0.598 | 1452.55 | 1441.60 | 1450.00 | 1445.61 | 3.88 | 15,529.00 |
Basin 8 USA | 3.86 | 10.51 | 0.15 | 1459.00 | 1338.00 | 121.00 | 0.439 | y = −97.791x^3 + 126.93x^2 − 127.11x + 1440.9 | 1401.72 | 0.472 | 1400.84 | 1391.17 | 1400.00 | 1395.11 | 4.02 | 16,187.00 |
Basin 9 USA | 1.27 | 5.96 | 0.22 | 1454.00 | 1347.00 | 107.00 | 0.448 | y = −120.92x^3 + 122.01x^2 − 104.26x + 1453 | 1427.15 | 0.601 | 1419.11 | 1401.67 | 1400.00 | 1411.31 | 10.31 | 14,992.00 |
Basin 10 USA | 4.18 | 9.21 | 0.07 | 1531.00 | 1471.00 | 60.00 | 0.619 | y = −70.996x^3 + 107.49x^2 − 88.141x + 1527.4 | 1501.15 | 0.506 | 1511.69 | 1497.61 | 1500.00 | 1501.36 | 4.85 | 15,596.00 |
Basin 11 USA | 2.46 | 6.93 | 0.09 | 1529.00 | 1465.00 | 64.00 | 0.644 | y = −50.376x^3 + 64.438x^2 − 67.169x + 1523.3 | 1502.48 | 0.526 | 1504.36 | 1496.82 | 1500.00 | 1498.66 | 2.68 | 16,104.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciccolini, U.; Bufalini, M.; Materazzi, M.; Dramis, F. Gully Erosion Development in Drainage Basins: A New Morphometric Approach. Land 2024, 13, 792. https://doi.org/10.3390/land13060792
Ciccolini U, Bufalini M, Materazzi M, Dramis F. Gully Erosion Development in Drainage Basins: A New Morphometric Approach. Land. 2024; 13(6):792. https://doi.org/10.3390/land13060792
Chicago/Turabian StyleCiccolini, Ugo, Margherita Bufalini, Marco Materazzi, and Francesco Dramis. 2024. "Gully Erosion Development in Drainage Basins: A New Morphometric Approach" Land 13, no. 6: 792. https://doi.org/10.3390/land13060792