Assessing the Post-Fire Recovery of Mined-Under Temperate Highland Peat Swamps on Sandstone
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Remote Sensing Data
2.3. In Situ Soil Moisture Monitoring
2.4. In Situ Vegetation Monitoring
2.5. Remote Sensing Indices
2.5.1. Vegetation/NDVI
2.5.2. Fire Severity/dNDVI
2.5.3. Soil Moisture Analysis/SMI
2.6. Validation of Remote Sensing Indices
2.7. Analysis
3. Results
3.1. Fire Severity of the Swamps
3.2. Vegetation Cover Changes
3.3. Soil Moisture Index Fluctuations
3.4. Validation of Remote Sensing Metrics
4. Discussion
4.1. Post-Fire Recovery of Mined-Under and Non-Mined-Under THPSS
4.2. Remote Sensing as a Tool to Assess the Post-Fire Recovery of THPSS
5. Conclusions
- Remote sensing indices can be used to assess post-fire recovery of THPSS swamps.
- The post-fire recovery of THPSS swamps depends on their post-fire hydrology.
- The post-fire recovery of mined-under swamps is slower than that of non-mined-under swamps.
- The NDVI and SMI values derived from satellite imagery of THPSS can present broad recovery patterns of swamp vegetation and hydrology.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Class | Unburnt | Low | Moderate | High | Extreme | Total | User Accuracy | Kappa |
---|---|---|---|---|---|---|---|---|
Unburnt | 67 | 39 | 1 | 0 | 0 | 107 | 0.63 | |
Low | 0 | 50 | 15 | 0 | 0 | 65 | 0.77 | |
Moderate | 0 | 1 | 74 | 8 | 0 | 83 | 0.89 | |
High | 0 | 0 | 3 | 56 | 14 | 73 | 0.77 | |
Extreme | 0 | 0 | 0 | 0 | 26 | 26 | 1 | |
Total | 67 | 90 | 93 | 64 | 40 | 354 | ||
Producer Accuracy | 1 | 0.56 | 0.80 | 0.88 | 0.65 | 0.77 | ||
Kappa | 0.71 |
Location | Fire Severity | Soil Properties | |||
---|---|---|---|---|---|
Hydraulic Conductivity (cm/s) | Total Porosity (cm3/cm3) | Macro-Pore Volume (cm3/cm3) | Plant Available Water (cm3/cm3) | ||
Newnes Plateau | High | 0.002a | 0.56a | 0.18a ns | 0.17a |
Moderate | 0.002a | 0.56a | 0.17a | 0.18a | |
Low | 0.003a ns | 0.57a ns | 0.18a | 0.18a ns |
References
- Young, A. Upland Swamps in the Sydney Region; Ann Young: Thirroul, Australia, 2017. [Google Scholar]
- Shaygan, M.; Baumgartl, T.; McIntyre, N. Characterising soil physical properties of selected Temperate Highland Peat Swamps on Sandstone in the Sydney Basin Bioregion. J. Hydrol. Reg. Stud. 2022, 40, 101006. [Google Scholar] [CrossRef]
- Cowley, K.L.; Fryirs, K.A.; Hose, G.C. The hydrological function of upland swamps in eastern Australia: The role of geomorphic condition in regulating water storage and discharge. Geomorphology 2018, 310, 29–44. [Google Scholar] [CrossRef]
- Fryirs, K.A.; Cowley, K.; Hose, G.C. Intrinsic and extrinsic controls on the geomorphic condition of upland swamps in Eastern NSW. Catena 2016, 137, 100–112. [Google Scholar] [CrossRef]
- Mason, T.; Krogh, M.; Popovic, G.; Glamore, W.; Keith, D. Persistent effects of underground longwall coal mining on freshwater wetland hydrology. Sci. Total Environ. 2021, 772, 144772. [Google Scholar] [CrossRef] [PubMed]
- Mason, T.; Keith, D.; Letten, A. Detecting state changes for ecosystem conservation with long-term monitoring of species composition. Ecol. Appl. 2017, 27, 458–468. [Google Scholar] [CrossRef]
- Keith, D.; Myerscough, P. Floristics and soil relations of upland swamp vegetation near Sydney. Aust. J. Ecol. 1993, 18, 325–344. [Google Scholar] [CrossRef]
- Boisramé, G.; Thompson, S.; Collins, B.; Stephens, S. Managed wildfire effects on forest resilience and water in the Sierra Nevada. Ecosystems 2017, 20, 717–732. [Google Scholar] [CrossRef]
- Johnstone, J.F.; Hollingsworth, T.N.; Chapin, F.S., III; Mack, M.C. Changes in fire regime break the legacy lock on successional trajectories in Alaskan boreal forest. Glob. Change Biol. 2010, 16, 1281–1295. [Google Scholar] [CrossRef]
- Parks, S.A.; Holsinger, L.M.; Voss, M.A.; Loehman, R.A.; Robinson, N.P. Mean composite fire severity metrics computed with Google Earth Engine offer improved accuracy and expanded mapping potential. Remote Sens. 2018, 10, 879. [Google Scholar] [CrossRef]
- Wing, M.G.; Burnett, J.D.; Sessions, J. Remote sensing and unmanned aerial system technology for monitoring and quantifying forest fire impacts. Int. J. Remote Sens. Appl. 2014, 4, 18–35. [Google Scholar] [CrossRef]
- Lentile, L.B.; Smith, A.M.; Hudak, A.T.; Morgan, P.; Bobbitt, M.J.; Lewis, S.A.; Robichaud, P.R. Remote sensing for prediction of 1-year post-fire ecosystem condition. Int. J. Wildland Fire 2009, 18, 594–608. [Google Scholar] [CrossRef]
- Hall, R.J.; Freeburn, J.; De Groot, W.; Pritchard, J.; Lynham, T.; Landry, R. Remote sensing of burn severity: Experience from western Canada boreal fires. Int. J. Wildland Fire 2008, 17, 476–489. [Google Scholar] [CrossRef]
- Planet. Mapping and GIS Imagery with Planet. Available online: https://www.planet.com/ (accessed on 15 February 2020).
- Ibrahim, S.a.; Kose, M.; Adamu, B.; Jega, I.M. Remote sensing for assessing the impact of forest fire severity on ecological and socio-economic activities in Kozan District, Turkey. J. Environ. Stud. Sci. 2024, 1–13. [Google Scholar] [CrossRef]
- Schag, G.M.; Stow, D.A.; Riggan, P.J.; Tissell, R.G.; Coen, J.L. Examining landscape-scale fuel and terrain controls of wildfire spread rates using repetitive airborne thermal infrared (ATIR) imagery. Fire 2021, 4, 6. [Google Scholar] [CrossRef]
- San-Miguel, I.; Andison, D.W.; Coops, N.C. Characterizing historical fire patterns as a guide for harvesting planning using landscape metrics derived from long term satellite imagery. For. Ecol. Manag. 2017, 399, 155–165. [Google Scholar] [CrossRef]
- Stow, D.; Riggan, P.; Schag, G.; Brewer, W.; Tissell, R.; Coen, J.; Storey, E. Assessing uncertainty and demonstrating potential for estimating fire rate of spread at landscape scales based on time sequential airborne thermal infrared imaging. Int. J. Remote Sens. 2019, 40, 4876–4897. [Google Scholar] [CrossRef]
- Schag, G.M.; Stow, D.A.; Riggan, P.J.; Nara, A. Spatial-statistical analysis of landscape-level wildfire rate of spread. Remote Sens. 2022, 14, 3980. [Google Scholar] [CrossRef]
- Bureau of Meteorology. Climate Data. Available online: http://www.bom.gov.au/climate/data/ (accessed on 18 May 2023).
- EcoTech. Tensiomark. Available online: https://www.ecotech.de/produkt/tensiomark/ (accessed on 23 February 2019).
- Sentek Pty Ltd. Calibration Manual for Sentek Soil Moisture Sensors. Available online: https://sentektechnologies.com/products/soil-data-probes/ (accessed on 16 September 2019).
- Ozyavuz, M.; Bilgili, B.; Salici, A. Determination of vegetation changes with NDVI method. J. Environ. Prot. Ecol. 2015, 16, 264–273. [Google Scholar]
- Carlson, T.N.; Gillies, R.R.; Perry, E.M. A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover. Remote Sens. Rev. 1994, 9, 161–173. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec. Publ. 1974, 351, 309. [Google Scholar]
- Gibson, R.; Danaher, T.; Hehir, W.; Collins, L. A remote sensing approach to mapping fire severity in south-eastern Australia using sentinel 2 and random forest. Remote Sens. Environ. 2020, 240, 111702. [Google Scholar] [CrossRef]
- Khan, A.; Chatterjee, S.; Weng, Y. Characterizing thermal fields and evaluating UHI effects. In Urban Heat Island Modeling for Tropical Climates; Elsevier: Amsterdam, The Netherlands, 2021; pp. 37–67. [Google Scholar]
- Ermida, S.L.; Soares, P.; Mantas, V.; Göttsche, F.-M.; Trigo, I.F. Google earth engine open-source code for land surface temperature estimation from the landsat series. Remote Sens. 2020, 12, 1471. [Google Scholar] [CrossRef]
- Hulley, G.C.; Hook, S.J.; Abbott, E.; Malakar, N.; Islam, T.; Abrams, M. The ASTER Global Emissivity Dataset (ASTER GED): Mapping Earth’s emissivity at 100-meter spatial scale. Geophys. Res. Lett. 2015, 42, 7966–7976. [Google Scholar] [CrossRef]
- Carlson, T.N.; Ripley, D.A. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens. Environ. 1997, 62, 241–252. [Google Scholar] [CrossRef]
- Saha, A.; Patil, M.; Goyal, V.C.; Rathore, D.S. Assessment and impact of soil moisture index in agricultural drought estimation using remote sensing and GIS techniques. Proceedings 2019, 7, 2. [Google Scholar] [CrossRef]
- Sun, J.; Wang, X.; Chen, A.; Ma, Y.; Cui, M.; Piao, S. NDVI indicated characteristics of vegetation cover change in China’s metropolises over the last three decades. Environ. Monit. Assess. 2011, 179, 1–14. [Google Scholar] [CrossRef]
- Aburas, M.M.; Abdullah, S.H.; Ramli, M.F.; Ash’aari, Z.H. Measuring land cover change in Seremban, Malaysia using NDVI index. Procedia Environ. Sci. 2015, 30, 238–243. [Google Scholar] [CrossRef]
- Lukenbach, M.C.; Devito, K.J.; Kettridge, N.; Petrone, R.M.; Waddington, J.M. Hydrogeological controls on post-fire moss recovery in peatlands. J. Hydrol. 2015, 530, 405–418. [Google Scholar] [CrossRef]
- Lukenbach, M.C.; Hokanson, K.J.; Moore, P.A.; Devito, K.J.; Kettridge, N.; Thompson, D.K.; Wotton, B.M.; Petrone, R.M.; Waddington, J.M. Hydrological controls on deep burning in a northern forested peatland. Hydrol. Process. 2015, 29, 4114–4124. [Google Scholar] [CrossRef]
- Lukenbach, M.C.; Hokanson, K.J.; Devito, K.J.; Kettridge, N.; Petrone, R.M.; Mendoza, C.A.; Granath, G.; Waddington, J.M. Post-fire ecohydrological conditions at peatland margins in different hydrogeological settings of the Boreal Plain. J. Hydrol. 2017, 548, 741–753. [Google Scholar] [CrossRef]
- Lukenbach, M.C.; Devito, K.J.; Kettridge, N.; Petrone, R.M.; Waddington, J.M. Burn severity alters peatland moss water availability: Implications for post-fire recovery. Ecohydrology 2016, 9, 341–353. [Google Scholar] [CrossRef]
- Lacouture, D.L.; Broadbent, E.N.; Crandall, R.M. Detecting vegetation recovery after fire in a fire-frequented habitat using normalized difference vegetation index (NDVI). Forests 2020, 11, 749. [Google Scholar] [CrossRef]
- Alcañiz, M.; Outeiro, L.; Francos, M.; Úbeda, X. Effects of prescribed fires on soil properties: A review. Sci. Total Environ. 2018, 613, 944–957. [Google Scholar] [CrossRef] [PubMed]
- Moody, J.A.; Ebel, B.A.; Nyman, P.; Martin, D.A.; Stoof, C.; McKinley, R. Relations between soil hydraulic properties and burn severity. Int. J. Wildland Fire 2016, 25, 279–293. [Google Scholar] [CrossRef]
- McKenna, P.; Phinn, S.; Erskine, P.D. Fire severity and vegetation recovery on mine site rehabilitation using WorldView-3 imagery. Fire 2018, 1, 22. [Google Scholar] [CrossRef]
- Wilson, N.R.; Norman, L.M. Analysis of vegetation recovery surrounding a restored wetland using the normalized difference infrared index (NDII) and normalized difference vegetation index (NDVI). Int. J. Remote Sens. 2018, 39, 3243–3274. [Google Scholar] [CrossRef]
- Veraverbeke, S.; Gitas, I.; Katagis, T.; Polychronaki, A.; Somers, B.; Goossens, R. Assessing post-fire vegetation recovery using red–near infrared vegetation indices: Accounting for background and vegetation variability. ISPRS J. Photogramm. Remote Sens. 2012, 68, 28–39. [Google Scholar] [CrossRef]
- Hernandez-Santin, L.; Rudge, M.L.; Bartolo, R.E.; Erskine, P.D. Identifying species and monitoring understorey from UAS-derived data: A literature review and future directions. Drones 2019, 3, 9. [Google Scholar] [CrossRef]
- Fletcher, A.T.; Erskine, P.D. Mapping of a rare plant species (Boronia deanei) using hyper-resolution remote sensing and concurrent ground observation. Ecol. Manag. Restor. 2012, 13, 195–198. [Google Scholar] [CrossRef]
- Carrão, H.; Russo, S.; Sepulcre-Canto, G.; Barbosa, P. An empirical standardized soil moisture index for agricultural drought assessment from remotely sensed data. Int. J. Appl. Earth Obs. Geoinf. 2016, 48, 74–84. [Google Scholar] [CrossRef]
- BOM. Annual and Zmonthly Potential Frost Days; BOM: Melbourne, Australia, 2023. [Google Scholar]
Source | Purpose | Spatial Resolution | Temporal |
---|---|---|---|
Planet | Fire severity mapping using NDVI, dNDVI | 3 m | Daily |
Aerial imagery | Validation of fire severity maps | 0.05 m | On request |
Landsat8 OLI | NDVI, SMI, LST | 30 m (thermal) | 16 days |
ASTER | Emissivity for LST | 30 m | On request |
Severity Ranking | Description | % of Vegetation |
---|---|---|
Severely burnt or bare | No vegetation | <25% presence of vegetation cover |
Burnt | Almost no vegetation | <40% presence of vegetation |
Low cover | Partial presence of vegetation | 50–70% of vegetation |
Moderate cover | Moderate coverage of vegetation | >10% burnt understory >90% green canopy |
High cover | Unburnt surface with green canopy, full coverage of vegetation | 0% canopy and understory burnt, 100% coverage of vegetation |
Severity Ranking | Description | Interpretation Cues (False Color Infra-Red Aerial Photos) Severity | % Foliage Fire Affected |
---|---|---|---|
Extreme | Full canopy consumption | Mostly black and dark gray, largely no canopy cover | >50% canopy biomass consumed |
High | Full canopy scorch (±partial canopy consumption) | No green or orange, but an even brown color in tree canopies | >90% canopy scorched < 50% canopy biomass consumed |
Moderate | Partial canopy scorch | A mixture of green, orange, and brown colors in tree canopies | 20–90% canopy scorch |
Low | Burnt surface with unburnt canopy | Dark gray (burnt understory) between the dark red tree crowns | >10% burnt understory >90% green canopy |
Unburnt | Unburnt surface with green canopy | Dark red (live understory) between the dark red tree crowns | 0% canopy and understory burnt |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anzooman, M.; McKenna, P.B.; Ufer, N.; Baumgartl, T.; McIntyre, N.; Shaygan, M. Assessing the Post-Fire Recovery of Mined-Under Temperate Highland Peat Swamps on Sandstone. Land 2024, 13, 2253. https://doi.org/10.3390/land13122253
Anzooman M, McKenna PB, Ufer N, Baumgartl T, McIntyre N, Shaygan M. Assessing the Post-Fire Recovery of Mined-Under Temperate Highland Peat Swamps on Sandstone. Land. 2024; 13(12):2253. https://doi.org/10.3390/land13122253
Chicago/Turabian StyleAnzooman, Monia, Phill B. McKenna, Natasha Ufer, Thomas Baumgartl, Neil McIntyre, and Mandana Shaygan. 2024. "Assessing the Post-Fire Recovery of Mined-Under Temperate Highland Peat Swamps on Sandstone" Land 13, no. 12: 2253. https://doi.org/10.3390/land13122253
APA StyleAnzooman, M., McKenna, P. B., Ufer, N., Baumgartl, T., McIntyre, N., & Shaygan, M. (2024). Assessing the Post-Fire Recovery of Mined-Under Temperate Highland Peat Swamps on Sandstone. Land, 13(12), 2253. https://doi.org/10.3390/land13122253