Prediction of the Height of Water-Conducting Fissure Zone for Shallow-Buried Coal Seams Under Fully Mechanized Caving Conditions in Northern Shaanxi Province
Abstract
:1. Introduction
2. Preparation of the Data Set
3. Methodology
3.1. Multivariate Nonlinear Regression Model
- (1)
- Mining thickness
- (2)
- Coal seam depth
- (3)
- Working length
3.2. BP Neural Network Model
- (1)
- High fault tolerance and robustness, maintaining these qualities even with data containing certain noise.
- (2)
- Strong adaptive learning capabilities, allowing them to extract and display statistical patterns from a given set of sample data.
- (3)
- Capable of parallel processing on large-scale data with fast execution speeds [23].
- [p_train, ps_input] = mapminmax (P_train, 0,1);
- p_test = mapminmax (‘apply’, P_test, ps_input);
- [t_train, ps_output] = mapminmax (T_train, 0,1).
- T_sim = mapminmax (‘reverse’, t_sim, ps_output);
- T_sim2 = mapminmax (‘reverse’, t_sim2, ps_output).
3.3. Support Vector Machine Models
- (1)
- Introduction to support vector machine model
- (2)
- Construction of support vector model
3.4. Random Forest Model
4. Results and Analysis
4.1. Multivariate Regression Fitting Method for Observed Results of Shallow-Buried Fracture Heights
4.1.1. Analysis of the Model Results for Typical Shallow-Buried Coal Seams
4.1.2. Analysis of the Results from the Model of Shallow-Buried Coal Seams
4.2. Prediction of Fissure Height by Machine Learning Models
4.2.1. Model Results Evaluation Methods
4.2.2. Analysis of the Model Results for Typical Shallow-Buried Coal Seams
4.2.3. Analysis of Model Results for Near-Shallow-Buried Coal Seams
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fallah-Zazuli, M.; Vafaeinejad, A.; Alesheykh, A.A.; Modiri, M.; Aghamohammadi, H. Mapping landslide susceptibility in the zagros mountains, iran: A comparative study of different data mining models. Earth Sci. Inform. 2019, 12, 615–628. [Google Scholar] [CrossRef]
- Lu, C.J.; Xu, J.P.; Li, Q.; Zhao, H.; He, Y. Research on the development law of water-conducting fracture zone in the combined mining of jurassic and carboniferous coal seams. Appl. Sci. 2022, 12, 11178. [Google Scholar] [CrossRef]
- Zhang, P.D.; Sun, C.S.; Fan, X.; Li, S.T.; Wang, L.J.; Cao, Z.Z. Temporal and spatial evolution mechanisms of the water-conducting fractured zone of overlying strata in the kongzhuang coal mine. Geofluids 2023, 2023, 3790998. [Google Scholar] [CrossRef]
- Dai, S.; Han, B.; Liu, S.L.; Li, N.B.; Geng, F.; Hou, X.Z. Neural network-based prediction methods for height of water-flowing fractured zone caused by underground coal mining. Arab. J. Geosci. 2020, 13, 495. [Google Scholar] [CrossRef]
- Feng, D.; Hou, E.K.; Xie, X.S.; Hou, P.F. Research on water-conducting fractured zone height under the condition of large mining height in Yushen mining area, China. Lithosphere 2023, 2023, 8918348. [Google Scholar] [CrossRef]
- Guo, C.F.; Yang, Z.; Li, S.; Lou, J.F. Predicting the water-conducting fracture zone (WCFZ) height using an MPGA-SVR approach. Sustainability 2020, 12, 1809. [Google Scholar] [CrossRef]
- Gao, Z.Y.; Jin, L.X.; Liu, P.T.; Wei, J.J. Height prediction of water-conducting fracture zone in jurassic coalfield of ordos basin based on improved radial movement optimization algorithm back-propagation neural network. Mathematics 2024, 12, 1602. [Google Scholar] [CrossRef]
- Wang, H.Z.; Zhu, J.Z.; Li, W.P. An improved back propagation neural network based on differential evolution and grey wolf optimizer and its application in the height prediction of water-conducting fracture zone. Appl. Sci. 2024, 14, 4509. [Google Scholar] [CrossRef]
- Xu, C.; Zhou, K.P.; Xiong, X.; Gao, F.; Zhou, J. Research on height prediction of water-conducting fracture zone in coal mining based on intelligent algorithm combined with extreme boosting machine. Expert Syst. Appl. 2024, 249, 123669. [Google Scholar] [CrossRef]
- Zhu, Z.J.; Guan, S.S. Prediction of the height of fractured water-conducting zone based on the improved cuckoo search algorithm-extreme learning machine model. Front. Earth Sci. 2022, 10, 860507. [Google Scholar] [CrossRef]
- Zheng, C.; Yu, L.; Sun, N.; Zhou, H.; He, J. Size effect of water-flowing fracture zone height based on FLAC3D. E3S Web Conf. 2020, 194, 4. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, C.; Wang, Z. The hazard analysis of water inrush of mining of thick coal seam under reservoir based on entropy weight evaluation method. Geotech. Geol. Eng. 2018, 36, 3019–3028. [Google Scholar] [CrossRef]
- Yang, P.; Yang, W.F.; Nie, Y.X.; Saleem, F.H.; Lu, F.; Ma, R.K.; Li, R.P. Predicting the height of the water-conducting fractured zone based on a multiple regression model and information entropy in the northern ordos basin, China. Mine Water Environ. 2022, 41, 225–236. [Google Scholar] [CrossRef]
- Yan, Z.G.; Chang, X.T.; Wang, Y.P. The prediction of water conducted zone in coal mining by internet of things perception. Arab. J. Geosci. 2020, 13, 852. [Google Scholar] [CrossRef]
- Liu, Y.; Yuan, S.C.; Yang, B.B.; Liu, J.W.; Ye, Z.Y. Predicting the height of the water-conducting fractured zone using multiple regression analysis and GIS. Environ. Earth Sci. 2019, 78, 422. [Google Scholar] [CrossRef]
- He, X.; Zhao, Y.X.; Zhang, C.; Han, P.H. A model to estimate the height of the water-conducting fracture zone for longwall panels in western China. Mine Water Environ. 2020, 39, 823–838. [Google Scholar] [CrossRef]
- Yin, H.Y.; Dong, F.Y.; Cheng, W.J.; Zhai, P.H.; Ren, X.Y.; Liu, Z.; Zhai, Y.T.; Zhang, Y.W.; Li, X. Height prediction and 3D visualization of mining-induced water-conducting fracture zone in western ordos basin based on a multi-factor regression analysis. Energies 2022, 15, 3850. [Google Scholar] [CrossRef]
- Gao, X.C.; Liu, S.; Ma, T.F.; Zhao, C.; Zhang, X.C.; Xia, H.; Yin, J.H. A prediction method for height of water flowing fractured zone based on sparrow search algorithm-elman neural network in northwest mining area. Appl. Sci. 2023, 13, 1162. [Google Scholar] [CrossRef]
- Liyang, B.; Changlong, L.; Changxiang, W.; Meng, Z.; Fanbao, M.; Mingjin, F.; Baoliang, Z. Study on height prediction of water flowing fractured zone in deep mines based on weka platform. Sustainability 2022, 15, 737. [Google Scholar] [CrossRef]
- Liu, X.; Tan, Y.; Ning, J.; Tian, C.; Wang, J. The height of water-conducting fractured zones in longwall mining of shallow coal seams. Geotech. Geol. Eng. 2015, 33, 693–700. [Google Scholar] [CrossRef]
- Zheng, Q.S.; Wang, C.F.; Liu, W.T.; Pang, L.F. Evaluation on development height of water-conduted fractures on overburden roof based on nonlinear algorithm. Water 2022, 14, 3853. [Google Scholar] [CrossRef]
- Basheer, I.A.; Hajmeer, M. Artificial neural networks: Fundamentals, computing, design, and application. J. Microbiol. Methods 2000, 43, 3–31. [Google Scholar] [CrossRef] [PubMed]
- Weicai, L.; Hui, H.; Shenshen, C.; Biwu, H. Neural network optimization algorithm for the prediction parameters of probability integral method. Sci. Surv. Mapp. 2019, 44, 7. [Google Scholar]
- Momeni, E.; Armaghani, D.J.; Hajihassani, M.; Amin, M.F.M. Prediction of uniaxial compressive strength of rock samples using hybrid particle swarm optimization-based artificial neural networks. Measurement 2015, 60, 50–63. [Google Scholar] [CrossRef]
- Sun, J.; Mao, H.; Liu, J.; Zhang, B. The research of paddy rice moisture lossless detection based on LM BP neural network. In Proceedings of the International Conference on Computer and Computing Technologies in Agriculture, Beijing, China, 18–20 October 2008; pp. 1181–1188. [Google Scholar]
- Ma, G.W.; Chen, Y.; Dong, W.; Xu, M.; Li, T.; Wang, H.D. Investigation of nuclide migration in complex fractures with filling properties. J. Clean. Prod. 2023, 403, 136781. [Google Scholar] [CrossRef]
- Zhao, D.K.; Wu, Q. An approach to predict the height of fractured water-conducting zone of coal roof strata using random forest regression. Sci. Rep. 2018, 8, 10986. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.J.; Tay, F.H. Support vector machine with adaptive parameters in financial time series forecasting. IEEE Trans. Neural Netw. 2003, 14, 1506–1518. [Google Scholar] [CrossRef] [PubMed]
- Hou, Z.; Lu, W. Comparative study of surrogate models for groundwater contamination source identification at DNAPL-contaminated sites. Hydrogeol. J. 2018, 26, 923–932. [Google Scholar] [CrossRef]
- Du, H.; Chen, W.H.; Zhu, Q.J.; Liu, S.L.; Zhou, J.B. Identification of weak peaks in X-ray fluorescence spectrum analysis based on the hybrid algorithm combining genetic and Levenberg Marquardt algorithm. Appl. Radiat. Isot. 2018, 141, 149–155. [Google Scholar] [CrossRef]
- Hou, E.; Wen, Q.; Ye, Z.; Chen, W.; Wei, J. Height prediction of water-flowing fracture zone with a genetic-algorithm support-vector-machine method. Int. J. Coal Sci. Technol. 2020, 7, 740–751. [Google Scholar] [CrossRef]
- Wang, D.S.; Tan, D.P.; Liu, L. Particle swarm optimization algorithm: An overview. Soft Comput. 2018, 22, 387–408. [Google Scholar] [CrossRef]
- Zhan, Z.-H.; Zhang, J.; Li, Y.; Chung, H.S.-H. Adaptive particle swarm optimization. IEEE Trans. Syst. Man Cybern. Part B 2009, 39, 1362–1381. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Galiano, V.; Mendes, M.P.; Garcia-Soldado, M.J.; Chica-Olmo, M.; Ribeiro, L. Predictive modeling of groundwater nitrate pollution using random forest and multisource variables related to intrinsic and specific vulnerability: A case study in an agricultural setting (Southern Spain). Sci. Total Environ. 2014, 476, 189–206. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Galiano, V.; Sanchez-Castillo, M.; Chica-Olmo, M.; Chica-Rivas, M. Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geol. Rev. 2015, 71, 804–818. [Google Scholar] [CrossRef]
- Smith, P.F.; Ganesh, S.; Liu, P. A comparison of random forest regression and multiple linear regression for prediction in neuroscience. J. Neurosci. Methods 2013, 220, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.L.; Lai, C.G.; Chen, X.H.; Yang, B.; Zhao, S.W.; Bai, X.Y. Flood hazard risk assessment model based on random forest. J. Hydrol. 2015, 527, 1130–1141. [Google Scholar] [CrossRef]
- Lary, D.J.; Alavi, A.H.; Gandomi, A.H.; Walker, A.L. Machine learning in geosciences and remote sensing. Geosci. Front. 2016, 7, 3–10. [Google Scholar] [CrossRef]
Number | Measured HWCFZ | “Three-Under Standard” Formula (1) | “Three-Under Standard” Formula (2) | Fitting Formula (1) | Fitting Formula (3) | Fitting Formula (4) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Predicted Value | Error Value | Predicted Value | Error Value | Predicted Value | Error Value | Predicted Value | Error Value | Predicted Value | Error Value | ||
1 | 26.40 | 38.49 | 0.46 | 41.62 | 0.58 | 36.25 | 0.37 | 21.87 | 0.17 | 21.82 | 0.17 |
2 | 36.52 | 43.21 | 0.18 | 46.88 | 0.28 | 49.92 | 0.37 | 39.59 | 0.08 | 40.03 | 0.10 |
3 | 17.00 | 37.86 | 1.23 | 40.98 | 1.41 | 34.46 | 1.03 | 23.62 | 0.39 | 23.33 | 0.37 |
4 | 49.00 | 46.30 | 0.06 | 50.99 | 0.04 | 58.41 | 0.19 | 50.34 | 0.03 | 51.03 | 0.04 |
5 | 45.00 | 45.60 | 0.01 | 50.00 | 0.11 | 56.61 | 0.26 | 48.62 | 0.08 | 48.22 | 0.07 |
6 | 54.58 | 44.82 | 0.18 | 48.94 | 0.10 | 54.49 | 0.00 | 47.91 | 0.12 | 47.49 | 0.13 |
7 | 58.00 | 51.05 | 0.12 | 58.99 | 0.02 | 64.91 | 0.12 | 56.64 | 0.02 | 55.99 | 0.03 |
8 | 45.00 | 48.15 | 0.07 | 53.82 | 0.20 | 62.52 | 0.39 | 57.73 | 0.28 | 57.66 | 0.28 |
9 | 66.00 | 46.63 | 0.29 | 51.47 | 0.22 | 59.23 | 0.10 | 56.28 | 0.15 | 56.13 | 0.15 |
10 | 45.85 | 43.43 | 0.05 | 47.15 | 0.03 | 50.55 | 0.10 | 48.92 | 0.07 | 48.54 | 0.06 |
11 | 74.00 | 45.60 | 0.38 | 50.00 | 0.32 | 56.61 | 0.23 | 55.97 | 0.24 | 55.68 | 0.25 |
12 | 42.78 | 45.60 | 0.07 | 50.00 | 0.17 | 56.61 | 0.32 | 56.81 | 0.33 | 56.51 | 0.32 |
13 | 69.17 | 51.05 | 0.26 | 58.99 | 0.15 | 64.91 | 0.06 | 62.73 | 0.09 | 63.18 | 0.09 |
14 | 75.60 | 51.05 | 0.32 | 58.99 | 0.22 | 64.91 | 0.14 | 62.73 | 0.17 | 63.18 | 0.16 |
15 | 75.30 | 52.39 | 0.30 | 61.77 | 0.18 | 62.73 | 0.17 | 58.91 | 0.22 | 59.29 | 0.21 |
16 | 75.20 | 51.05 | 0.32 | 58.99 | 0.22 | 64.91 | 0.14 | 63.24 | 0.16 | 63.65 | 0.15 |
17 | 45.78 | 43.21 | 0.06 | 46.88 | 0.02 | 49.92 | 0.09 | 50.85 | 0.11 | 50.48 | 0.10 |
18 | 40.60 | 45.60 | 0.12 | 50.00 | 0.23 | 56.61 | 0.39 | 57.57 | 0.42 | 57.16 | 0.41 |
19 | 42.00 | 41.31 | 0.02 | 44.64 | 0.06 | 44.38 | 0.06 | 45.27 | 0.08 | 44.42 | 0.06 |
20 | 64.18 | 43.43 | 0.32 | 47.15 | 0.27 | 50.55 | 0.21 | 52.26 | 0.19 | 51.63 | 0.20 |
21 | 45.72 | 42.30 | 0.07 | 45.78 | 0.00 | 47.26 | 0.03 | 49.13 | 0.07 | 50.56 | 0.11 |
22 | 45.72 | 41.31 | 0.10 | 44.64 | 0.02 | 44.38 | 0.03 | 46.73 | 0.02 | 48.12 | 0.05 |
23 | 62.78 | 45.42 | 0.28 | 49.75 | 0.21 | 56.13 | 0.11 | 59.14 | 0.06 | 58.64 | 0.07 |
24 | 49.30 | 52.90 | 0.07 | 62.92 | 0.28 | 60.99 | 0.24 | 58.96 | 0.20 | 57.93 | 0.18 |
25 | 45.70 | 52.90 | 0.16 | 62.92 | 0.38 | 60.99 | 0.33 | 58.96 | 0.29 | 57.93 | 0.27 |
26 | 52.40 | 52.73 | 0.01 | 62.54 | 0.19 | 61.62 | 0.18 | 59.91 | 0.14 | 60.06 | 0.15 |
27 | 45.00 | 37.58 | 0.16 | 40.71 | 0.10 | 33.67 | 0.25 | 35.97 | 0.20 | 35.53 | 0.21 |
28 | 53.89 | 45.23 | 0.16 | 49.50 | 0.08 | 55.63 | 0.03 | 59.92 | 0.11 | 60.75 | 0.13 |
29 | 68.09 | 45.23 | 0.34 | 49.50 | 0.27 | 55.63 | 0.18 | 59.92 | 0.12 | 60.75 | 0.11 |
30 | 56.13 | 45.23 | 0.19 | 49.50 | 0.12 | 55.63 | 0.01 | 59.92 | 0.07 | 60.75 | 0.08 |
31 | 61.13 | 45.60 | 0.25 | 50.00 | 0.18 | 56.61 | 0.07 | 60.87 | 0.00 | 60.93 | 0.00 |
32 | 62.80 | 45.60 | 0.27 | 50.00 | 0.20 | 56.61 | 0.10 | 61.41 | 0.02 | 60.02 | 0.04 |
33 | 51.00 | 46.30 | 0.09 | 50.99 | 0.00 | 58.41 | 0.15 | 63.54 | 0.25 | 62.60 | 0.23 |
34 | 62.00 | 49.47 | 0.20 | 56.04 | 0.10 | 64.46 | 0.04 | 68.59 | 0.11 | 67.57 | 0.09 |
35 | 52.60 | 52.39 | 0.00 | 61.77 | 0.17 | 62.73 | 0.19 | 64.09 | 0.22 | 64.08 | 0.22 |
36 | 52.90 | 53.37 | 0.01 | 64.04 | 0.21 | 58.76 | 0.11 | 58.43 | 0.10 | 58.33 | 0.10 |
37 | 60.70 | 50.63 | 0.17 | 58.17 | 0.04 | 65.05 | 0.07 | 68.79 | 0.13 | 69.50 | 0.14 |
38 | 78.32 | 52.90 | 0.32 | 62.92 | 0.20 | 60.99 | 0.22 | 62.09 | 0.21 | 61.74 | 0.21 |
39 | 67.71 | 52.39 | 0.23 | 61.77 | 0.09 | 62.73 | 0.07 | 64.91 | 0.04 | 64.84 | 0.04 |
40 | 35.81 | 36.14 | 0.01 | 39.33 | 0.10 | 29.75 | 0.17 | 35.13 | 0.02 | 35.21 | 0.02 |
41 | 70.00 | 44.06 | 0.37 | 47.95 | 0.32 | 52.37 | 0.25 | 58.94 | 0.16 | 57.47 | 0.18 |
42 | 68.76 | 51.92 | 0.24 | 60.75 | 0.12 | 63.85 | 0.07 | 67.33 | 0.02 | 67.23 | 0.02 |
43 | 34.21 | 36.14 | 0.06 | 39.33 | 0.15 | 29.75 | 0.13 | 35.64 | 0.04 | 35.67 | 0.04 |
44 | 35.07 | 36.14 | 0.03 | 39.33 | 0.12 | 29.75 | 0.15 | 35.69 | 0.02 | 35.73 | 0.02 |
45 | 70.50 | 52.03 | 0.26 | 60.99 | 0.13 | 63.62 | 0.10 | 67.02 | 0.05 | 67.56 | 0.04 |
46 | 75.60 | 51.05 | 0.32 | 58.99 | 0.22 | 64.91 | 0.14 | 69.53 | 0.08 | 69.46 | 0.08 |
Number | Measured Fracture Height | “Three-Under Standard” Formula (1) | “Three-Under Standard” Formula (2) | Fitting Formula (2) | |||
---|---|---|---|---|---|---|---|
Predicted Value | Error | Predicted Value | Error | Predicted Value | Error | ||
1 | 81.00 | 43.64 | 0.46 | 47.42 | 0.41 | 93.41 | 0.15 |
2 | 110.11 | 47.27 | 0.57 | 52.43 | 0.52 | 110.23 | 0.00 |
3 | 125.80 | 48.15 | 0.62 | 53.82 | 0.57 | 115.02 | 0.09 |
4 | 130.60 | 48.15 | 0.63 | 53.82 | 0.59 | 115.02 | 0.12 |
5 | 57.90 | 37.73 | 0.35 | 40.85 | 0.29 | 72.44 | 0.25 |
6 | 81.40 | 37.73 | 0.54 | 40.85 | 0.50 | 72.44 | 0.11 |
7 | 135.00 | 49.47 | 0.63 | 56.04 | 0.58 | 122.78 | 0.09 |
8 | 41.95 | 36.14 | 0.14 | 39.33 | 0.06 | 67.75 | 0.62 |
9 | 137.40 | 47.27 | 0.66 | 52.43 | 0.62 | 110.23 | 0.20 |
10 | 31.30 | 26.74 | 0.15 | 31.45 | 0.00 | 44.86 | 0.43 |
11 | 110.11 | 47.05 | 0.57 | 52.10 | 0.53 | 109.10 | 0.01 |
12 | 147.66 | 50.63 | 0.66 | 58.17 | 0.61 | 130.30 | 0.12 |
13 | 153.46 | 50.63 | 0.67 | 58.17 | 0.62 | 130.30 | 0.15 |
14 | 137.32 | 53.37 | 0.61 | 64.04 | 0.53 | 151.62 | 0.10 |
15 | 101.70 | 43.64 | 0.57 | 47.42 | 0.53 | 93.41 | 0.08 |
16 | 103.60 | 45.60 | 0.56 | 50.00 | 0.52 | 102.00 | 0.02 |
17 | 132.83 | 55.49 | 0.58 | 69.67 | 0.48 | 172.77 | 0.30 |
18 | 151.30 | 48.15 | 0.68 | 53.82 | 0.64 | 115.02 | 0.24 |
19 | 145.23 | 48.15 | 0.67 | 53.82 | 0.63 | 115.02 | 0.21 |
20 | 117.50 | 52.90 | 0.55 | 62.92 | 0.46 | 147.49 | 0.26 |
21 | 149.28 | 49.86 | 0.67 | 56.73 | 0.62 | 125.21 | 0.16 |
22 | 143.82 | 49.86 | 0.65 | 56.73 | 0.61 | 125.21 | 0.13 |
23 | 84.80 | 43.64 | 0.49 | 47.42 | 0.44 | 93.41 | 0.10 |
24 | 145.23 | 49.86 | 0.66 | 56.73 | 0.61 | 125.21 | 0.14 |
25 | 139.77 | 49.86 | 0.64 | 56.73 | 0.59 | 125.21 | 0.10 |
26 | 126.00 | 49.47 | 0.61 | 56.04 | 0.56 | 122.78 | 0.03 |
27 | 75.78 | 45.46 | 0.40 | 49.80 | 0.34 | 101.32 | 0.34 |
28 | 71.66 | 45.46 | 0.37 | 49.80 | 0.31 | 101.32 | 0.41 |
29 | 75.00 | 43.64 | 0.42 | 47.42 | 0.37 | 93.41 | 0.25 |
30 | 78.00 | 38.49 | 0.51 | 41.62 | 0.47 | 74.83 | 0.04 |
31 | 68.30 | 41.31 | 0.40 | 44.64 | 0.35 | 84.38 | 0.24 |
32 | 110.10 | 45.60 | 0.59 | 50.00 | 0.55 | 102.00 | 0.07 |
33 | 99.50 | 48.70 | 0.51 | 54.72 | 0.45 | 118.15 | 0.19 |
34 | 90.00 | 48.70 | 0.46 | 54.72 | 0.39 | 118.15 | 0.31 |
Random Forest Model | BP Neural Network Model | PSO-SVR | GA-SVR | |
---|---|---|---|---|
Mining thickness | 0.60 | 0.43 | 0.44 | 0.45 |
Mining thickness, coal seam depth | 0.81 | 0.65 | 0.71 | 0.63 |
Mining thickness, working length | 0.71 | 0.22 | 0.52 | 0.52 |
Mining thickness, coal seam depth, working length | 0.78 | 0.59 | 0.66 | 0.64 |
Random Forest Model | BP Neural Network Model | PSO-SVR | GA-SVR | |
---|---|---|---|---|
Mining thickness | 0.59 | 0.43 | 0.45 | 0.47 |
Mining thickness, coal seam depth | 0.46 | 0.56 | 0.53 | 0.59 |
Mining thickness, working length | 0.60 | 0.71 | 0.60 | 0.61 |
Mining thickness, coal seam depth, working length | 0.51 | 0.50 | 0.49 | 0.52 |
Random Forest Model | BP Neural Network Model | PSO-SVR | GA-SVR | |
---|---|---|---|---|
Mining thickness | 8.45 | 10.12 | 10.06 | 9.93 |
Mining thickness, coal seam depth | 5.84 | 7.88 | 7.24 | 8.15 |
Mining thickness, working length | 7.16 | 11.83 | 9.33 | 9.31 |
Mining thickness, coal seam depth, working length | 6.25 | 8.56 | 7.81 | 8.04 |
Random Forest Model | BP Neural Network Model | PSO-SVR | GA-SVR | |
---|---|---|---|---|
Mining thickness | 10.15 | 11.94 | 11.75 | 11.50 |
Mining thickness, coal seam depth | 11.61 | 10.46 | 10.87 | 10.19 |
Mining thickness, working length | 9.96 | 8.46 | 10.04 | 9.88 |
Mining thickness, coal seam depth, working length | 11.23 | 11.22 | 11.31 | 10.94 |
Random Forest Model | BP Neural Network Model | PSO-SVR | GA-SVR | |
---|---|---|---|---|
Mining thickness | 0.94 | 0.74 | 0.82 | 0.86 |
Mining thickness, coal seam depth | 0.93 | 0.64 | 0.95 | 0.90 |
Mining thickness, working face | 0.89 | 0.04 | 0.82 | 0.82 |
Mining thickness, coal seam depth, working face | 0.99 | 0.73 | 0.84 | 0.88 |
Random Forest Model | BP Neural Network Model | PSO-SVR | GA-SVR | |
---|---|---|---|---|
Mining thickness | 0.71 | 0.45 | 0.63 | 0. 68 |
Mining thickness, coal seam depth | 0.79 | 0.55 | 0.84 | 0.77 |
Mining thickness, working face | 0.76 | 0.41 | 0.53 | 0.53 |
Mining thickness, coal seam depth, working face | 0.81 | 0.57 | 0.71 | 0.68 |
Random Forest Model | BP Neural Network Model | PSO-SVR | GA-SVR | |
---|---|---|---|---|
Mining thickness | 8.57 | 18.25 | 15.21 | 13.22 |
Mining thickness, coal seam depth | 9.38 | 21.27 | 7.73 | 10.97 |
Mining thickness, working face | 11.73 | 34.79 | 14.95 | 15.04 |
Mining thickness, coal seam depth, working face | 11.93 | 18.64 | 14.13 | 12.19 |
Random Forest Model | BP Neural Network Model | PSO-SVR | GA-SVR | |
---|---|---|---|---|
Mining thickness | 14.56 | 20.09 | 16.52 | 15.32 |
Mining thickness, coal seam depth | 12.32 | 18.26 | 10.83 | 13.06 |
Mining thickness, working face | 13.30 | 20.85 | 18.57 | 18.52 |
Mining thickness, coal seam depth, working face | 11.92 | 17.71 | 14.64 | 15.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.; Geng, S.; Chen, X.; Li, T.; Tsangaratos, P.; Ilia, I. Prediction of the Height of Water-Conducting Fissure Zone for Shallow-Buried Coal Seams Under Fully Mechanized Caving Conditions in Northern Shaanxi Province. Water 2025, 17, 312. https://doi.org/10.3390/w17030312
Chen W, Geng S, Chen X, Li T, Tsangaratos P, Ilia I. Prediction of the Height of Water-Conducting Fissure Zone for Shallow-Buried Coal Seams Under Fully Mechanized Caving Conditions in Northern Shaanxi Province. Water. 2025; 17(3):312. https://doi.org/10.3390/w17030312
Chicago/Turabian StyleChen, Wei, Shujia Geng, Xi Chen, Tao Li, Paraskevas Tsangaratos, and Ioanna Ilia. 2025. "Prediction of the Height of Water-Conducting Fissure Zone for Shallow-Buried Coal Seams Under Fully Mechanized Caving Conditions in Northern Shaanxi Province" Water 17, no. 3: 312. https://doi.org/10.3390/w17030312
APA StyleChen, W., Geng, S., Chen, X., Li, T., Tsangaratos, P., & Ilia, I. (2025). Prediction of the Height of Water-Conducting Fissure Zone for Shallow-Buried Coal Seams Under Fully Mechanized Caving Conditions in Northern Shaanxi Province. Water, 17(3), 312. https://doi.org/10.3390/w17030312