Comprehensive Assessment of Environmental Behavior of Mine Tailings for Sustainable Waste Management and Mitigation of Pollution Risks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bleïda Mine Site
2.2. Sampling and Sampling Method
2.3. Chemical and Physical Characterization
2.4. Mineralogical Characterization
2.5. Geochemical Behavior Assessment
2.5.1. Static Tests
pH Paste Test
Acid–Base Accounting
2.5.2. Kinetic Test
2.5.3. Toxicity Characteristic Leachate Procedure (TCLP)
3. Results
3.1. Physical and Chemical Characteristics
3.2. Mineralogical Characteristics
3.3. Geochemical Behavior of Tailings
3.3.1. Acid Generation Potential Assessment
3.3.2. Weathering Cell Test Results
3.3.3. Toxicity Characteristic Leching Procedure (TCLP) Results
4. Discussion and Future Works
4.1. Environmental Statue and Geochemical Behavior of the Tailings
4.2. Investigating Sustainable Tailings Management Options
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marín, O.A.; Kraslawski, A.; Cisternas, L.A. Design for Sustainability: An Integrated Pumped Hydro Reverse Osmosis System to Supply Water and Energy for Mining Operations. Energy Convers. Manag. 2024, 322, 119159. [Google Scholar] [CrossRef]
- Li, Z.; Sun, F.; Jiang, W.; Li, X.; Jiang, J.; Jin, F.; Lu, J.; Yang, F. Bibliometric Analysis of Trends and Research Progress. in Acid. Mine Drainage Remediation from 1990 to 2023. Water 2024, 16, 1826. [Google Scholar] [CrossRef]
- Srivastava, N.; Kumar, A. Critical Minerals for Energy Transition: The Emerging Regime Complex. Extr. Ind. Soc. 2024, 20, 101536. [Google Scholar] [CrossRef]
- Kalisz, S.; Kibort, K.; Mioduska, J.; Lieder, M.; Małachowska, A. Waste Management in the Mining Industry of Metals Ores, Coal, Oil and Natural Gas—A Review. J. Environ. Manage 2022, 304, 114239. [Google Scholar] [CrossRef] [PubMed]
- Khalil, A.; Ait-khouia, Y.; Beniddar, H.; El Ghorfi, M.; Hakkou, R.; Taha, Y.; Benzaazoua, M. Sustainable Reprocessing of Pb–Zn Mine Tailings through Froth Flotation for Resource Recovery and Environmental Remediation in Abandoned Mining Regions. Miner. Eng. 2025, 222, 109132. [Google Scholar] [CrossRef]
- Allard, O.; Lopez, M.; Demers, I.; Coudert, L. Gold Recovery from Sulfide Concentrates Produced by Environmental Desulfurization of Mine Tailings. Minerals 2022, 12, 1011. [Google Scholar] [CrossRef]
- Adrianto, L.R.; Ciacci, L.; Pfister, S.; Hellweg, S. Toward Sustainable Reprocessing and Valorization of Sulfidic Copper Tailings: Scenarios and Prospective LCA. Sci. Total Environ. 2023, 871, 162038. [Google Scholar] [CrossRef]
- Mudd, G.M.; Boger, D.V. The Ever-Growing Case for Paste and Thickened Tailings-Towards More Sustainable Mine Waste Management. 2013. Available online: https://www.researchgate.net/publication/288595659 (accessed on 24 December 2024).
- Alcalde, J.; Kelm, U.; Vergara, D. Historical Assessment of Metal Recovery Potential from Old Mine Tailings: A Study Case for Porphyry Copper Tailings, Chile. Miner. Eng. 2018, 127, 334–338. [Google Scholar] [CrossRef]
- Argane, R.; Benzaazoua, M.; Hakkou, R.; Bouamrane, A. Reuse of Base-Metal Tailings as Aggregates for Rendering Mortars: Assessment of Immobilization Performances and Environmental Behavior. Constr. Build. Mater. 2015, 96, 296–306. [Google Scholar] [CrossRef]
- Gray, N.F. Environmental Impact and Remediation of Acid Mine Drainage: A Management Problem. Environ. Geol. 1997, 30, 62–71. [Google Scholar] [CrossRef]
- Akcil, A.; Koldas, S. Acid Mine Drainage (AMD): Causes, Treatment and Case Studies. J. Clean. Prod. 2006, 14, 1139–1145. [Google Scholar] [CrossRef]
- Tayebi-Khorami, M.; Edraki, M.; Corder, G.; Golev, A. Re-Thinking Mining Waste through an Integrative Approach Led by Circular Economy Aspirations. Minerals 2019, 9, 286. [Google Scholar] [CrossRef]
- Khalil, A.; Taha, Y.; Benzaazoua, M.; Hakkou, R. Applied Methodological Approach for the Assessment of Soil Contamination by Trace Elements around Abandoned Coal Mines—A Case Study of the Jerada Coal Mine, Morocco. Minerals 2023, 13, 181. [Google Scholar] [CrossRef]
- Parbhakar-Fox, A.; Lottermoser, B.G. A Critical Review of Acid Rock Drainage Prediction Methods and Practices. Miner. Eng. 2015, 82, 107–124. [Google Scholar] [CrossRef]
- Simate, G.S.; Ndlovu, S. Acid Mine Drainage: Challenges and Opportunities. J. Environ. Chem. Eng. 2014, 2, 1785–1803. [Google Scholar] [CrossRef]
- Dong, Y.; Gao, Z.; Di, J.; Wang, D.; Yang, Z.; Guo, X.; Li, Y.; Zhu, X.; Wang, G. Remediation of Acid Mine Drainage in the Haizhou Open-Pit Mine through Coal-Gangue-Loaded SRB Experiments. Sustainability 2023, 15, 9375. [Google Scholar] [CrossRef]
- Goumih, A.; El Adnani, M.; Hakkou, R.; Benzaazoua, M. Geochimical Behaviour of Mine Tailings and Waste Rock at the Abandoned Cu-Mo-W Azegour Mine (Occidental High Atlas, Morocc). Mine Water Environ. 2013, 32, 121–132. [Google Scholar] [CrossRef]
- Fan, L.; Han, T.; Huang, X.; Yang, Y.; Zhu, T.; Zhai, W.; Zhang, D.; Pan, X. A Novel Surface Passivation Method of Pyrite within Rocks in Underwater Environments to Mitigate Acid Mine Drainage at Its Source. Minerals 2024, 14, 973. [Google Scholar] [CrossRef]
- Plante, B.; Bussière, B.; Benzaazoua, M. Static Tests Response on 5 Canadian Hard Rock Mine Tailings with Low Net Acid-Generating Potentials. J. Geochem. Explor. 2012, 114, 57–69. [Google Scholar] [CrossRef]
- Goumih, A.; El Adnani, M.; Hakkou, R.; Benzaazoua, M.; Ouhamdouch, S.; Boumehdi, M.A. Evaluation of the Long-Term Contaminated Neutral Drainage CND Generation Potential of Waste Rock Piles at the Abandoned Zn-Pb Erdouz Mine (Occidental High Atlas, Morocco). Min. Metall. Explor. 2022, 39, 643–654. [Google Scholar] [CrossRef]
- Ait-khouia, Y.; Benzaazoua, M.; Elghali, A.; Chopard, A.; Demers, I. Feasibility of Reprocessing Gold Tailings: Integrated Management Approach for the Control of Contaminated Neutral Mine Drainage. Miner. Eng. 2022, 187, 107821. [Google Scholar] [CrossRef]
- Demers, I.; Molson, J.; Bussière, B.; Laflamme, D. Numerical Modeling of Contaminated Neutral Drainage from a Waste-Rock Field Test Cell. Appl. Geochem. 2013, 33, 346–356. [Google Scholar] [CrossRef]
- Pettit, C.M.; Scharer, J.M.; Chambers, D.B.; Halbert, B.E.; Kirkaldy, J.L.; Bolduc, L. Neutral Mine Drainage. In Proceedings of the Sudbury ’99: Mining and the Environment II, Conference Proceedings, Sudbury, ON, Canada, 13–17 September 1999; pp. 829–838. Available online: https://www.researchgate.net/publication/291035609_Neutral_mine_drainage (accessed on 24 December 2024).
- Paktunc, A.D. Characterization of Mine Wastes for Prediction of Acid Mine Drainage. In Environmental Impacts of Mining Activities; Springer: Berlin, Heidelberg, Germany, 1999; pp. 19–40. [Google Scholar] [CrossRef]
- Nordstrom, D.K. Advances in the Hydrogeochemistry and Microbiology of Acid Mine Waters. Int. Geol. Rev. 2000, 42, 499–515. [Google Scholar] [CrossRef]
- Amos, R.T.; Blowes, D.W.; Bailey, B.L.; Sego, D.C.; Smith, L.; Ritchie, A.I.M. Waste-Rock Hydrogeology and Geochemistry. Appl. Geochem. 2015, 57, 140–156. [Google Scholar] [CrossRef]
- Forstner, U.; Wittmann, G.T. Metal Pollution in the Aquatic Environment; Spring Nature: Berlin/Heidelberg, Germany, 2012. [Google Scholar] [CrossRef]
- Vriens, B.; Plante, B.; Seigneur, N.; Jamieson, H. Mine Waste Rock: Insights for Sustainable Hydrogeochemical Management. Minerals 2020, 10, 728. [Google Scholar] [CrossRef]
- Elyaziji, A.; Khalil, A.; Hakkou, R.; Benzaazoua, M.; Alansari, A. Assessment of Trace Elements in Soils and Mine Water Surrounding a Closed Manganese Mine (Anti Atlas, Morocco). Mine Water Environ. 2016, 35, 486–496. [Google Scholar] [CrossRef]
- Castro Huaman, K.; Vasquez Olivera, Y.; Aramburu Rojas, V.; Arauzo, L.; Raymundo Ibañez, C.; Dominguez, F. Minimally Active Neutralization of Acid Mine Drainage through the Monte Carlo Method. Water 2023, 15, 3496. [Google Scholar] [CrossRef]
- Bravo-Toledo, L.; Virú-Vásquez, P.; Rodriguez-Flores, R.; Sierra-Flores, L.; Flores-Salinas, J.; Tineo-Cordova, F.; Palomino-Vildoso, R.; Madueño-Sulca, C.; Rios-Varillas de Oscanoa, C.; Pilco-Nuñez, A. Sustainability Prediction by Evaluating the Emergy of a Co-Treatment System for Municipal Wastewater and Acidic Water Using Intermittent Electrocoagulation. Water 2024, 16, 3081. [Google Scholar] [CrossRef]
- Skousen, J.; Zipper, C.E.; Rose, A.; Ziemkiewicz, P.F.; Nairn, R.; McDonald, L.M.; Kleinmann, R.L. Review of Passive Systems for Acid Mine Drainage Treatment. Mine Water Environ. 2017, 36, 133–153. [Google Scholar] [CrossRef]
- Alvarenga, P.; Guerreiro, N.; Simões, I.; Imaginário, M.J.; Palma, P. Assessment of the Environmental Impact of Acid Mine Drainage on Surface Water, Stream Sediments, and Macrophytes Using a Battery of Chemical and Ecotoxicological Indicators. Water 2021, 13, 1436. [Google Scholar] [CrossRef]
- Gan, Z.; Jiang, Y.; Wei, C.; Wu, X.; Huang, H. The Stress Effect and Biomineralization of High Phosphorus Concentration on Acid Mine Drainage Treatment Mediated by Acidithiobacillus Ferrooxidans. Water 2024, 16, 2245. [Google Scholar] [CrossRef]
- Fonseka, C.; Ryu, S.; Devaisy, S.; Kandasamy, J.; McLod, L.; Ratnaweera, H.; Vigneswaran, S. Application of Low-Pressure Nanofiltration Membranes NF90 and NTR-729HF for Treating Diverse Wastewater Streams for Irrigation Use. Water 2024, 16, 1971. [Google Scholar] [CrossRef]
- Khalil, A.; Hanich, L.; Bannari, A.; Zouhri, L.; Pourret, O.; Hakkou, R. Assessment of Soil Contamination around an Abandoned Mine in a Semi-Arid Environment Using Geochemistry and Geostatistics: Pre-Work of Geochemical Process Modeling with Numerical Models. J. Geochem. Explor. 2013, 125, 117–129. [Google Scholar] [CrossRef]
- Nordstrom, D.K. Hydrogeochemical Processes Governing the Origin, Transport and Fate of Major and Trace Elements from Mine Wastes and Mineralized Rock to Surface Waters. Appl. Geochem. 2011, 26, 1777–1791. [Google Scholar] [CrossRef]
- Hammarstrom, J.M.; Seal, R.R.; Meier, A.L.; Jackson, J.C. Weathering of Sulfidic Shale and Copper Mine Waste: Secondary Minerals and Metal Cycling in Great Smoky Mountains National Park, Tennessee, and North Carolina, USA. Environ. Geol. 2003, 45, 35–57. [Google Scholar] [CrossRef]
- Jiao, Y.; Liu, Y.; Wang, W.; Li, Y.; Chang, W.; Zhou, A.; Mu, R. Heavy Metal Distribution Characteristics, Water Quality Evaluation, and Health Risk Evaluation of Surface Water in Abandoned Multi-Year Pyrite Mine Area. Water 2023, 15, 3138. [Google Scholar] [CrossRef]
- Abdel Rahman, R.O.; El-Kamash, A.M.; Hung, Y.-T. Permeable Concrete Barriers to Control Water Pollution: A Review. Water 2023, 15, 3867. [Google Scholar] [CrossRef]
- Baloyi, J.; Ramdhani, N.; Mbhele, R.; Ramutshatsha-Makhwedzha, D. Recent Progress on Acid Mine Drainage Technological Trends in South Africa: Prevention, Treatment, and Resource Recovery. Water 2023, 15, 3453. [Google Scholar] [CrossRef]
- Zhang, J.; Li, X.; Guo, L.; Deng, Z.; Wang, D.; Liu, L. Assessment of Heavy Metal Pollution and Water Quality Characteristics of the Reservoir Control Reaches in the Middle Han River, China. Sci. Total Environ. 2021, 799, 149472. [Google Scholar] [CrossRef]
- Mafra, C.; Bouzahzah, H.; Stamenov, L.; Gaydardzhiev, S. An Integrated Management Strategy for Acid Mine Drainage Control of Sulfidic Tailings. Miner. Eng. 2022, 185, 107709. [Google Scholar] [CrossRef]
- Lessard, F.; Bussière, B.; Côté, J.; Benzaazoua, M.; Boulanger-Martel, V.; Marcoux, L. Integrated Environmental Management of Pyrrhotite Tailings at Raglan Mine: Part 2 Desulphurized Tailings as Cover Material. J. Clean. Prod. 2018, 186, 883–893. [Google Scholar] [CrossRef]
- Hamraoui, L.; Bergani, A.; Ettoumi, M.; Aboulaich, A.; Taha, Y.; Khalil, A.; Neculita, C.M.; Benzaazoua, M. Towards a Circular Economy in the Mining Industry: Possible Solutions for Water Recovery through Advanced Mineral Tailings Dewatering. Minerals 2024, 14, 319. [Google Scholar] [CrossRef]
- El-bouazzaoui, A.; Ait-khouia, Y.; Chopard, A.; Demers, I.; Benzaazoua, M. Environmental Desulfurization of Mine Tailings Using Froth Flotation: The Case of Amaruq Mine (Nunavut, Canada). Miner. Eng. 2022, 187, 107762. [Google Scholar] [CrossRef]
- Ait-Khouia, Y.; Benzaazoua, M.; Demers, I. Environmental Desulfurization of Mine Wastes Using Various Mineral Processing Techniques: Recent Advances and Opportunities. Miner. Eng. 2021, 174, 107225. [Google Scholar] [CrossRef]
- Cacciuttolo, C.; Atencio, E. In-Pit Disposal of Mine Tailings for a Sustainable Mine Closure: A Responsible Alternative to Develop Long-Term Green Mining Solutions. Sustainability 2023, 15, 6481. [Google Scholar] [CrossRef]
- Suppes, R.; Heuss-Aßbichler, S. Resource Potential of Mine Wastes: A Conventional and Sustainable Perspective on a Case Study Tailings Mining Project. J. Clean. Prod. 2021, 297, 126446. [Google Scholar] [CrossRef]
- Roy, V.; Demers, I.; Plante, B.; Thériault, M. Kinetic Testing for Oxidation Acceleration and Passivation of Sulfides in Waste Rock Piles to Reduce Contaminated Neutral Drainage Generation Potential. Mine Water Environ. 2020, 39, 242–255. [Google Scholar] [CrossRef]
- El Ghorfi, M.; Inabi, O.; Amar, H.; Taha, Y.; Elghali, A.; Hakkou, R.; Benzaazoua, M. Design and Implementation of Sampling Wells in Phosphate Mine Waste Rock Piles: Towards an Enhanced Composition Understanding and Sustainable Reclamation. Minerals 2024, 14, 286. [Google Scholar] [CrossRef]
- Pizarro Barraza, F.; Thiyagarajan, D.; Ramadoss, A.; Manikandan, V.S.; Dhanabalan, S.S.; Abarzúa, C.V.; Sotomayor Soloaga, P.; Campos Nazer, J.; Morel, M.J.; Thirumurugan, A. Unlocking the Potential: Mining Tailings as a Source of Sustainable Nanomaterials. Renew. Sustain. Energy Rev. 2024, 202, 114665. [Google Scholar] [CrossRef]
- Morin, K.A.; Hutt, N.M. Environmental Geochemistry of Minesite Drainage Practical Theory and Case Studies; MDAG Publisher: Stetklich, PA, USA, 1997. [Google Scholar]
- Lapakko, K.A. Evaluation of Neutralization Potential Determinations for Metal Mine Waste and a Proposed Alternative. J. Am. Soc. Min. Reclam. 1994, 1994, 129–137. [Google Scholar] [CrossRef]
- Steffen, R.; Kirsten, B.C. Draft Acid Rock Drainage Technical Guide: Volume 1: British Columbia Acid Mine Drainage Task Force Report; Province of British Columbia, Ministry of Energy Mines and Petroleum Resources: Amsterdam, The Netherlands, 1989.
- Blowes, D.W.; Ptacek, C.J.; Jambor, J.L.; Weisener, C.G. The Geochemistry of Acid Mine Drainage. In Treatise on Geochemistry; Elsevier: Amsterdam, The Netherlands, 2003; Volume 9, pp. 149–204. [Google Scholar] [CrossRef]
- Kandji, E.H.B.; Plante, B.; Bussière, B.; Beaudoin, G.; Dupont, P.P. Kinetic Testing to Evaluate the Mineral Carbonation and Metal Leaching Potential of Ultramafic Tailings: Case Study of the Dumont Nickel Project, Amos, Québec. Appl. Geochem. 2017, 84, 262–276. [Google Scholar] [CrossRef]
- Kargbo, D.M.; Jiren, H. A Simple Accelerated Rock Weathering Method to Predict Acid Generation Kinetics. Environ. Geol. 2004, 46, 775–783. [Google Scholar] [CrossRef]
- Skousen, J.; Simmons, J.; McDonald, L.M.; Ziemkiewicz, P. Acid–Base Accounting to Predict Post-Mining Drainage Quality on Surface Mines. J. Environ. Qual. 2002, 31, 2034–2044. [Google Scholar] [CrossRef] [PubMed]
- Sobek, A.A.; Schuller, W.A.; Freeman, J.R.; Smith, R.M. Field and Laboratory Methods Applicable to Overburdens and Minesoils; National Service Center for Environmental Publications: New York, NY, USA, 1978.
- Bruynesteyn, A.; Duncan, D.W. Determination of acid production potential of waste materials. In Proceedings of the AIME Annual Meeting, Paper (A-79-29), New Orleans, Louisiana, 19–21 February 1979. [Google Scholar]
- Smart, R.; Skinner, W.; Levay, G.; Gerson, A.; Thomas, J.; Sobieraj, H.; Schumann, R.; Weisener, C.; Weber, P.; Miller, S. Prediction and Kinetic Control of Acid Mine Drainage; AMIRA, International Ltd., Ian Wark Research Institute: Melbourne, Australia, 2002. [Google Scholar]
- Stewart, W.A.; Miller, S.D.; Smart, R. Advances in Acid Rock Drainage (ARD) Characterisation of Mine Wastes. In Proceedings of the 7th International Conference on Acid Rock Drainage 2006, ICARD—Also Serves as the 23rd Annual Meetings of the American Society of Mining and Reclamation, St. Louis, MO, USA, 26–30 March 2006. [Google Scholar] [CrossRef]
- Hakkou, R.; Benzaazoua, M.; Bussière, B. Acid Mine Drainage at the Abandoned Kettara Mine (Morocco): 2. Mine Waste Geochemical Behavior. Mine Water Environ. 2008, 27, 160–170. [Google Scholar] [CrossRef]
- Charuseiam, Y.; Chotpantarat, S.; Sutthirat, C. Acid Mine Drainage Potential of Waste Rocks in a Gold Mine (Thailand): Application of a Weathering Cell Test and Multivariate Statistical Analysis. Environ. Geochem. Health 2022, 44, 1049–1079. [Google Scholar] [CrossRef]
- Maacha, L. Etudes Métallogéniques Et Géophysiques Des Minéralisations Cobaltifères et Cuprifères de Bou-Azzer El Graara Anti-Atlas Maroc: Les Minéralisations de Cuivre de La Plateforme de Bleïda; Thesis, Marrakech, Morocco, 2013. Available online: https://www.researchgate.net/publication/260283937_Etude_metallogenique_et_geophysique_des_mineralisations_cobaltiferes_et_cupriferes_de_la_boutonniere_de_Bou_Azzer_Anti-Atlas_Maroc (accessed on 24 December 2024).
- Plante, B.; Bussière, B.; Bouzahzah, H.; Benzaazoua, M.; Demers, I.; Kandji, E.-H.B. Revue de Littérature En Vue de La Mise à Jour Du Guide de Caractérisation Des Résidus Miniers Et Du Minerai; Technical Report, -PU-2013-05-806—Rapport; URSTM: Québec, QC, Canada, 2015. [Google Scholar]
- Lawrence, R.W.; Wang, Y. Determination of Neutralizing Potential for Acid Rock Drainage Prediction; MEND/NEDEM: Ottawa, ON, Canada, 1996. [Google Scholar]
- Lawrence, R.W.; Poling, G.W.; Marchant, P.B. Investigation of Predictive Techniques for Acid Mine Drainage; MEND/NEDEM: Ottawa, ON, Canada, 1998. [Google Scholar]
- Lawrence, R.W.; Marchant, P.M. Acid Rock Drainage Prediction Manual; MEND/NEDEM Report 1.16.1b; MEND: Ottawa, ON, Canada, 1991. [Google Scholar]
- Bouzahzah, H.; Benzaazoua, M.; Plante, B.; Bussiere, B. A Quantitative Approach for the Estimation of the “Fizz Rating” Parameter in the Acid-Base Accounting Tests: A New Adaptations of the Sobek Test. J. Geochem. Explor. 2015, 153, 53–65. [Google Scholar] [CrossRef]
- Adam, K.; Kourtis, A.; Gazea, B.; Kontopoulos, A. Evaluation of Static Tests Used to Predict the Potential for Acid Drainage Generation at Sulphide Mine Sites. Institution of Mining and Metallurgy. Trans. Sect. A Min. Ind. 1997, 106, A1–A8. [Google Scholar]
- Jambor, J.L.; Dutrizac, J.E.; Groat, L.A.; Raudsepp, M. Static Tests of Neutralization Potentials of Silicate and Aluminosilicate Minerals. Environ. Geol. 2002, 43, 1–17. [Google Scholar] [CrossRef]
- Miller, S.D.; Jeffery, J.J.; Wong, J.W.C. Use and Misuse of the Acid Base Account for “AMD” Prediction. In Proceedings of the 2nd International Conference on the Abatement of Acidic Drainage, Montréal, QC, Canada, 16–18 September 1991; pp. 16–18. [Google Scholar]
- Benzaazoua, M.; Bouzahzah, H.; Taha, Y.; Kormos, L.; Kabombo, D.; Lessard, F.; Bussière, B.; Demers, I.; Kongolo, M. Integrated Environmental Management of Pyrrhotite Tailings at Raglan Mine: Part 1 Challenges of Desulphurization Process and Reactivity Prediction. J. Clean. Prod. 2017, 162, 86–95. [Google Scholar] [CrossRef]
- Benzaazoua, M.; Bussière, B.; Dagenais, A.-M.; Archambault, M. Kinetic Tests Comparison and Interpretation for Prediction of the Joutel Tailings Acid Generation Potential. Environ. Geol. 2004, 46, 1086–1101. [Google Scholar] [CrossRef]
- Elghali, A.; Benzaazoua, M.; Bouzahzah, H.; Bussière, B.; Villarraga-Gómez, H. Determination of the Available Acid-Generating Potential of Waste Rock, Part I: Mineralogical Approach. Appl. Geochem. 2018, 99, 31–41. [Google Scholar] [CrossRef]
- Bouzahzah, H.; Benzaazoua, M.; Boussière, B. A Modified Protocol of the ASTM Normalized Humidity Cell Test as Laboratory Weathering Method of Concentrator Tailings. Mine Water Innov. Think. 2010, 567–570. Available online: https://www.academia.edu/720570/A_modified_protocol_of_the_ASTM_normalized_humidity_cell_test_as_laboratory_weathering_method_of_concentrator_tailings?auto=download (accessed on 24 December 2024).
- Bouzahzah, H. Modification et Amélioration Des Tests Statiques et Cinétiques Pour Une Prédiction Fiable Du Drainage Minier Acide. Ph.D. Thesis, Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, QC, Canada, 2013. [Google Scholar]
- Cruz, R.; Bertrand, V.; Monroy, M.; González, I. Effect of Sulfide Impurities on the Reactivity of Pyrite and Pyritic Concentrates: A Multi-Tool Approach. Appl. Geochem. 2001, 16, 803–819. [Google Scholar] [CrossRef]
- El Adnani, M.; Plante, B.; Benzaazoua, M.; Hakkou, R.; Bouzahzah, H. Tailings Weathering and Arsenic Mobility at the Abandoned Zgounder Silver Mine, Morocco. Mine Water Environ. 2016, 35, 508–524. [Google Scholar] [CrossRef]
- USEPA. Method 1311 Toxicity Characteristic Leaching Procedure. SW-846 Test Methods for Evaluating Solid Waste, Physical/Chemical Methods; USEPA: Washington, DC, USA, 1992.
- USDA. Soil Survey Manual Soil Science Division Staff Agriculture Handbook No. 18; USDA: Washington, DC, USA, 2017.
- Paktunc, A.; Davé, N. Mineralogy of Pyritic Waste Rock Leached by Column Experiments and Prediction of Acid Mine Drainage. Paper Presented at the Applied Mineralogy in Research, Economy, Technology, Ecology and Culture, Proceedings of the 6th International Congress on Applied Mineralogy; ICAM: Rouyn-Noranda, QC, Canada, 2000. [Google Scholar]
- Wills, B.A.; Finch, J. Mineral Processing Technology: An Introduction to the Practical Aspects of Ore Treatment and Mineral Recovery; Butterworth-Heinemann: Cambridge, UK, 2015. [Google Scholar]
- Sverdrup, H.U. The Kinetics of Base Cation Release Due to Chemical Weathering; Lund University Press: Lund, Sweden, 1990. [Google Scholar]
- Chopard, A.; Benzaazoua, M.; Plante, B.; Bouzahzah, H.; Marion, P. Kinetic Tests to Evaluate the Relative Oxidation Rates of Various Sulfides and Sulfosalts. In Proceedings of the ICARDS 2015 Proceedings Santiago du Chile, Santiago, Chile, 21–24 April 2015. [Google Scholar]
- Lemos, M.; Valente, T.; Reis, P.M.; Fonseca, R.; Delbem, I.; Ventura, J.; Magalhães, M. Mineralogical and Geochemical Characterization of Gold Mining Tailings and Their Potential to Generate Acid Mine Drainage (Minas Gerais, Brazil). Minerals 2020, 11, 39. [Google Scholar] [CrossRef]
- Elghali, A.; Benzaazoua, M.; Bouzahzah, H.; Abdelmoula, M.; Dynes, J.J.; Jamieson, H.E. Role of Secondary Minerals in the Acid Generating Potential of Weathered Mine Tailings: Crystal-Chemistry Characterization and Closed Mine Site Management Involvement. Sci. Total Environ. 2021, 784, 147105. [Google Scholar] [CrossRef] [PubMed]
- Manaviparast, H.R.; Miranda, T.; Pereira, E.; Cristelo, N. A Comprehensive Review on Mine Tailings as a Raw Material in the Alkali Activation Process. Appl. Sci. 2024, 14, 5127. [Google Scholar] [CrossRef]
- Inabi, O.; Khalil, A.; Zouine, A.; Hakkou, R.; Benzaazoua, M.; Taha, Y. Investigation of the Innovative Combined Reuse of Phosphate Mine Waste Rock and Phosphate Washing Sludge to Produce Eco-Friendly Bricks. Buildings 2024, 14, 2600. [Google Scholar] [CrossRef]
- Koucham, M.; Ait-Khouia, Y.; Soulaimani, S.; El Adnani, M.; Khalil, A. 3D Geostatistical Modeling and Metallurgical Investigation of Cu in Tailings Deposit: Characterization and Assessment of Potential Resources. Minerals 2024, 14, 893. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, Q.; Feng, Y.; Chen, Q.; Guo, L. Mechanical and Microstructural Analysis of Cemented Tailings Backfill by Copper Slag through Alkaline Activation Emphasizing Red Mud. Constr. Build. Mater. 2024, 428, 136341. [Google Scholar] [CrossRef]
- Zhou, H.; Basarir, H.; Poulet, T.; Li, W.; Kleiv, R.A.; Karrech, A. Life Cycle Assessment of Recycling Copper Slags as Cement Replacement Material in Mine Backfill. Resour. Conserv. Recycl. 2024, 205, 107591. [Google Scholar] [CrossRef]
- Ahmari, S.; Zhang, L. Production of Eco-Friendly Bricks from Copper Mine Tailings through Geopolymerization. Constr. Build. Mater. 2012, 29, 323–331. [Google Scholar] [CrossRef]
- Segui, P.; Safhi, A.E.M.; Amrani, M.; Benzaazoua, M. Mining Wastes as Road Construction Material: A Review. Minerals 2023, 13, 90. [Google Scholar] [CrossRef]
- Esmaeili, J.; Oudah AL-Mwanes, A. Production of Eco-Friendly UHPC with High Durability and Resistance to Harsh Environmental Conditions Using Copper Mine Tailings. J. Build. Eng. 2023, 76, 107297. [Google Scholar] [CrossRef]
- Ince, C.; Derogar, S.; Gurkaya, K.; Ball, R.J. Properties, Durability and Cost Efficiency of Cement and Hydrated Lime Mortars Reusing Copper Mine Tailings of Lefke-Xeros in Cyprus. Constr. Build. Mater. 2021, 268, 121070. [Google Scholar] [CrossRef]
- Chlahbi, S.; Belem, T.; Elghali, A.; Rochdane, S.; Zerouali, E.; Inabi, O.; Benzaazoua, M. Geological and Geomechanical Characterization of Phosphate Mine Waste Rock in View of Their Potential Civil Applications: A Case Study of the Benguerir Mine Site, Morocco. Minerals 2023, 13, 1291. [Google Scholar] [CrossRef]
- Lemougna, P.N.; Yliniemi, J.; Adesanya, E.; Tanskanen, P.; Kinnunen, P.; Roning, J.; Illikainen, M. Reuse of Copper Slag in High-Strength Building Ceramics Containing Spodumene Tailings as Fluxing Agent. Miner. Eng. 2020, 155, 106448. [Google Scholar] [CrossRef]
- Machi, E.; El Berdai, A.; El Machi, A.; El Berdai, Y.; Mabroum, S.; El, A.; Safhi, M.; Taha, Y.; Benzaazoua, M.; Hakkou, R. Citation: Recycling of Mine Wastes in the Concrete Industry: A Review. Buildings 2024, 14, 1508. [Google Scholar] [CrossRef]
- Onuaguluchi, O.; Eren, Ö. Recycling of Copper Tailings as an Additive in Cement Mortars. Constr. Build. Mater. 2012, 37, 723–727. [Google Scholar] [CrossRef]
- Gitari, M.W.; Akinyemi, S.A.; Thobakgale, R.; Ngoejana, P.C.; Ramugondo, L.; Matidza, M.; Mhlongo, S.E.; Dacosta, F.A.; Nemapate, N. Physicochemical and Mineralogical Characterization of Musina Mine Copper and New Union Gold Mine Tailings: Implications for Fabrication of Beneficial Geopolymeric Construction Materials. J. Afr. Earth Sci. 2018, 137, 218–228. [Google Scholar] [CrossRef]
- Mabroum, S.; Moukannaa, S.; El Machi, A.; Taha, Y.; Benzaazoua, M.; Hakkou, R. Mine Wastes Based Geopolymers: A Critical Review. Cleaner Engineering and Technology; Elsevier Ltd.: Amsterdam, The Netherlands, 2020. [Google Scholar] [CrossRef]
- Krishna, R.S.; Shaikh, F.; Mishra, J.; Lazorenko, G.; Kasprzhitskii, A. Mine Tailings-Based Geopolymers: Properties, Applications and Industrial Prospects. Ceramics International; Elsevier Ltd.: Amsterdam, The Netherlands, 2021; pp. 17826–17843. [Google Scholar] [CrossRef]
- Taha, Y. Valorisation Des Rejets Miniers Dans La Fabrication de Briques Cuites: Évaluations Technique et Environnementale, l’Université du Québec en Abitibi-Témiscamingue (UQAT, Québec). 2017. Available online: https://depositum.uqat.ca/id/eprint/697/ (accessed on 13 July 2024).
- Arunachalam, K.P.; Avudaiappan, S.; Maureira, N.; Da Costa Garcia Filho, F.; Monteiro, S.N.; Batista, I.D.; de Azevedo, A.R.G. Innovative Use of Copper Mine Tailing as an Additive in Cement Mortar. J. Mater. Res. Technol. 2023, 25, 2261–2274. [Google Scholar] [CrossRef]
- Thomas, B.S.; Damare, A.; Gupta, R.C. Strength and Durability Characteristics of Copper Tailing Concrete. Constr. Build. Mater. 2013, 48, 894–900. [Google Scholar] [CrossRef]
- Barzegar Ghazi, A.; Jamshidi-Zanjani, A.; Nejati, H. Utilization of Copper Mine Tailings as a Partial Substitute for Cement in Concrete Construction. Constr. Build. Mater. 2022, 317, 125921. [Google Scholar] [CrossRef]
- Taha, Y.; Benzaazoua, M.; Mansori, M.; Yvon, J.; Kanari, N.; Hakkou, R. Manufacturing of Ceramic Products Using Calamine Hydrometallurgical Processing Wastes. J. Clean. Prod. 2016, 127, 500–510. [Google Scholar] [CrossRef]
Characterization | Parameter | Unit | Average | Value min | Value max |
---|---|---|---|---|---|
Chemical properties | Si | % | 19.89 | 16.42 | 25.49 |
Al | 4.72 | 3.22 | 5.46 | ||
Fe | 1.35 | 0.8 | 1.8 | ||
Ca | 8.19 | 7.06 | 10.81 | ||
Mg | 5.27 | 4.10 | 6.21 | ||
K | 1 | 0.75 | 1.17 | ||
C | 3.21 | 4.54 | 0.41 | ||
S | 0.14 | 0.23 | 0.11 | ||
Ba | 0.21 | 0.55 | 1.2 | ||
Cu | 0.22 | 0.13 | 0.5 | ||
Zn | 0.01 | 0.003 | 0.05 | ||
Physical properties | D10 | µm | 4.57 | ||
D30 | 11.83 | ||||
D50 | 27.12 | ||||
D60 | 41.95 | ||||
D80 | 92.87 | ||||
D90 | 134.21 | ||||
Coefficient of uniformity | 9.17 | ||||
Coefficient of curvature | 0.73 | ||||
Sand sized > 63 µm | % | 29.43 | |||
Silt sized 2–63 µm | 69.8 | ||||
Clay sized < 2 µm | 0.77 | ||||
Specific Surface Area | m²/g | 0.48 | |||
Apparent density | g/cm³ | 1.3 |
Minerals | Chemical Formula | Weight% (wt.%) | |
---|---|---|---|
Mineralogical composition by AQM analysis (wt.%) | Chalcopyrite | CuFeS2 | <0.1 |
Bornite | Cu5FeS4 | <0.1 | |
Pyrite | FeS2 | <0.1 | |
Chalcocite | Cu2S | 0.2 | |
Covellite | CuS | <0.1 | |
Barite | BaSO4 | <0.1 | |
Dolomite | CaMg (CO3)2 | 27.4 | |
Calcite | CaCO3 | 2.4 | |
Malachite | Cu2CO3(OH)2 | 0.2 | |
Orthoclase | KAlSi3O8 | 3.6 | |
Kaolinite | Al2Si2O5(OH)4 | 2.1 | |
Rutile | TiO2 | 0.2 | |
Hematite | Fe2O3 | 0.2 | |
Ilmenite | FeTiO3 | <0.1 | |
Chlorite | (Mg,Fe)3(Si,Al)4O10(OH)2 | 12.4 | |
Titanite | CaTiSiO5 | 0.5 | |
Quartz | SiO2 | 28.4 | |
Biotite | K(Fe,Mg)3AlSi3O10(OH)2 | 9.5 | |
Muscovite | KAl2(AlSi3O10) (OH)2 | 11.5 | |
Albite | NaAlSi3O8 | 0.1 | |
Ca Feldspar | (Ca,Na)(Si,Al)4O8 | 0.2 | |
Tenorite | CuO | <0.1 | |
Cuprite | Cu2O | 0.1 | |
Cu, Mn Oxide | CuO, MnO | 0.1 | |
Chrysocolla | (Cu,Al)2H2Si2O5(OH)4·n (H2O) | <0.1 | |
Fe Oxide | Fe2O3 | 0.1 |
Characterization | Parameter | Unit | Value min | Value max |
---|---|---|---|---|
ABA test results | S(total) | % | 0.11 | 0.23 |
S(Sulfates) | 0.001 | 0.18 | ||
S(sulfide) | 0.1 | 0.19 | ||
C(total) | 0.41 | 4.54 | ||
NP | CaCO3/t | 34.15 | 378.18 | |
AP | 0.31 | 5.94 | ||
NNP | 33.84 | 372.24 | ||
NPR | 63.69 | 109.29 |
Metals | As | Ba | Cd | Cr | Pb | Se | Be |
---|---|---|---|---|---|---|---|
The concentrations of metals (mg/L) | 0.008 | 1.7 | 0.002 | 0.1 | 0.027 | 0.04 | 0.00056 |
US EPA regulation limits (mg/L) | 5 | 100 | 1 | 5 | 5 | 1 | 0.75 |
Chemical Element | Compounds Probably Precipitate |
---|---|
Al | Al (OH)₃ |
Al₂O₃ | |
Al₄(OH)₁₀SO₄ | |
Diaspore | |
Gibbsite | |
Cu | Cu(OH)₂ |
Antlerite | |
Tenorite | |
SO₄²⁻ | Langite |
Brochantite | |
Others | Greenalite |
Hercynite |
Elements | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | K2O | MnO | TiO2 | P2O5 | Na2O | SO3 |
---|---|---|---|---|---|---|---|---|---|---|---|
Concentration (%) | 42.54 | 8.90 | 3.87 | 11.46 | 8.74 | 2.40 | 0.17 | 0.58 | 0.13 | 0.57 | 0.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koucham, M.; Khalil, A.; Mouhagir, L.; Zouhri, L.; El Adnani, M. Comprehensive Assessment of Environmental Behavior of Mine Tailings for Sustainable Waste Management and Mitigation of Pollution Risks. Water 2025, 17, 43. https://doi.org/10.3390/w17010043
Koucham M, Khalil A, Mouhagir L, Zouhri L, El Adnani M. Comprehensive Assessment of Environmental Behavior of Mine Tailings for Sustainable Waste Management and Mitigation of Pollution Risks. Water. 2025; 17(1):43. https://doi.org/10.3390/w17010043
Chicago/Turabian StyleKoucham, M’hamed, Abdessamad Khalil, Lahcen Mouhagir, Lahcen Zouhri, and Mariam El Adnani. 2025. "Comprehensive Assessment of Environmental Behavior of Mine Tailings for Sustainable Waste Management and Mitigation of Pollution Risks" Water 17, no. 1: 43. https://doi.org/10.3390/w17010043
APA StyleKoucham, M., Khalil, A., Mouhagir, L., Zouhri, L., & El Adnani, M. (2025). Comprehensive Assessment of Environmental Behavior of Mine Tailings for Sustainable Waste Management and Mitigation of Pollution Risks. Water, 17(1), 43. https://doi.org/10.3390/w17010043