Evaluating the Influence of Extreme Rainfall on Urban Surface Water Quality: A Case Study of Hangzhou, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Analysis
2.2.1. Rainfall Extreme Indices (REIs)
2.2.2. Trend Analysis
2.2.3. Correlation Analysis
3. Results and Discussion
3.1. Changes in Rainfall Characteristics
3.1.1. Climatology of REIs
3.1.2. Magnitude of Change in REIs in Intra-Decadal Time Series (TSs) Durations
3.2. Changes in Water Quality Characteristics
3.2.1. Water Quality Characteristics and Seasonality for the Region
3.2.2. Temporal Trend Analysis for Water Quality at Different Stations
3.3. The Relationship Between Rainfall Extreme Indices (REIs) and Water Quality
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, X.; Zhang, K.; Gu, P.; Feng, H.; Yin, Y.; Chen, W.; Cheng, B. Changes in precipitation extremes in the Yangtze River Basin during 1960–2019 and the association with global warming, ENSO, and local effects. Sci. Total Environ. 2021, 760, 144244. [Google Scholar] [CrossRef]
- IPCC. Climate Change; The Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2021. [Google Scholar]
- Wang, K.; Zhang, H.; Bao, M.; Li, Z.; Fan, G. Climatic characteristics of centennial and extreme precipitation in Hangzhou, China. Environ. Res. Commun. 2024, 6, 85015. [Google Scholar] [CrossRef]
- Wang, J.; Da, L.; Song, K.; Li, B.L. Temporal variations of surface water quality in urban, suburban and rural areas during rapid urbanization in Shanghai, China. Environ. Pollut. 2008, 152, 387–393. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Wang, X.; Lou, L.; Zhou, Z.; Wu, J. Spatial variation and source apportionment of water pollution in Qiantang River (China) using statistical techniques. Water Res. 2010, 44, 1562–1572. [Google Scholar] [CrossRef] [PubMed]
- Kyei, M.; Appiah-Effah, E.; Akodwaa-Boadi, K. Mechanistic interaction between climate variables rainfall and temperature on surface water quality and water treatment costs at the Barekese Headworks, Ghana: A time series analysis and water quality index modelling approach. Sci. Afr. 2023, 22, e01953. [Google Scholar] [CrossRef]
- Yang, L.; Li, J.; Zhou, K.; Feng, P.; Dong, L. The effects of surface pollution on urban river water quality under rainfall events in Wuqing district, Tianjin, China. J. Clean. Prod. 2021, 293, 126136. [Google Scholar] [CrossRef]
- Fauvel, B.; Cauchie, H.; Gantzer, C.; Ogorzaly, L. Contribution of hydrological data to the understanding of the spatio-temporal dynamics of F-specific RNA bacteriophages in river water during rainfall-runoff events. Water Res. 2016, 94, 328–340. [Google Scholar] [CrossRef]
- Rezaeinejad, S.; Vergara, G.; Woo, C.; Lim, T.; Sobsey, M.; Gin, K. Surveillance of enteric viruses and coliphages in a tropical urban catchment. Water Res. 2014, 58, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.; Vergara, G.; Goh, S.; Ang, C.; Gu, X.; Gin, K. Effect of Rainfall on the Microbial Water Quality of a Tropical Urban Catchment. J. Environ. Qual. 2018, 47, 1242–1248. [Google Scholar] [CrossRef] [PubMed]
- Diwyanjalee, G.; Premarathne, W. Impact of rainfall on the water quality of a tropical river: Based on the Nilwala River in the southern province of Sri Lanka between March and October 2019. Water Pract. Technol. 2024, 19, 2352–2363. [Google Scholar] [CrossRef]
- Wang, R.; Cai, C.; Zhang, J.; Sun, S.; Zhang, H. Study on phosphorus loss and influencing factors in the water source area. Int. Soil Water Conserv. Res. 2022, 10, 324–334. [Google Scholar] [CrossRef]
- Li, H.; Chen, S.; Ma, T.; Ruan, X. The quantification of the influencing factors for spatial and temporal variations in surface water quality in recent ten years of the Huaihe River Basin, China. Environ. Sci. Pollut. Res. Int. 2022, 29, 44490–44503. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Huang, T.; Ma, W.; Sun, X.; Zhang, H. Effects of rainfall patterns on water quality in a stratified reservoir subject to eutrophication: Implications for management. Sci. Total Environ. 2015, 521–522, 27–36. [Google Scholar] [CrossRef]
- Singh, V.; Qin, X. Study of rainfall variabilities in Southeast Asia using long-term gridded rainfall and its substantiation through global climate indices. J. Hydrol. 2020, 585, 124320. [Google Scholar] [CrossRef]
- Wu, H.; Qiu, X.; Wang, Y.; Yu, B. Distributed Simulation of Monthly Mean Temperature in Complex Terrain of Hangzhou. Bull. Sci. Technol. 2019, 35, 59–65. (In Chinese) [Google Scholar]
- Ding, J.; Deng, Y.; Tian, G.; Wang, R. SWAT Model-based Simulation for Soil Erosion in Qiantang River Basin (Hangzhou Section). Zhejiang Hydrotech. 2023, 51, 89–95. (In Chinese) [Google Scholar]
- Cheng, S.; He, P.; Yang, J. Study on the spatiotemporal evolution characteristics of land use types in Hangzhou. Ziyuan Daokan 2024, 4, 31–34. (In Chinese) [Google Scholar]
- Zhu, C.; Yuan, S. Spatio-temporal characteristics and influencing factors of trade-offs/synergies in land use functions in Hangzhou City, China. Trans. Chin. Soc. Agric. Eng. 2022, 38, 264–273. (In Chinese) [Google Scholar]
- Hata, A.; Katayama, H.; Kojima, K.; Sano, S.; Kasuga, I.; Kitajima, M.; Furumai, H. Effects of rainfall events on the occurrence and detection efficiency of viruses in river water impacted by combined sewer overflows. Sci. Total Environ. 2014, 468–469, 757–763. [Google Scholar] [CrossRef] [PubMed]
- Mann, H. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245. [Google Scholar] [CrossRef]
- Kendall, M. Rank Correlation Methods; Charles Griffin: London, UK, 1955. [Google Scholar]
- Mishra, S.; Chauhan, M.S.; Sundaramurthy, S. Assessing groundwater quality dynamics in Madhya Pradesh: Chemical contaminants and their temporal patterns. Environ. Res. 2024, 252, 118887. [Google Scholar] [CrossRef] [PubMed]
- Sandström, S.; Lannergård, E.; Futter, M.; Djodjic, F.; Sveriges, L. Water quality in a large complex catchment: Significant effects of land use and soil type but limited ability to detect trends. J. Environ. Manag. 2024, 349, 119500. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Taloor, A.K.; Bhattacharya, P. A geospatial approach for understanding the spatio-temporal variability and projection of future trend in groundwater availability in the Tawi basin, Jammu, India. Groundw. Sustain. Dev. 2023, 21, 100912. [Google Scholar] [CrossRef]
- Singh, V.; Goyal, M.K. Analysis and trends of precipitation lapse rate and extreme indices over north Sikkim eastern Himalayas under CMIP5ESM-2M RCPs experiments. Atmos. Res. 2016, 167, 34–60. [Google Scholar] [CrossRef]
- Li, M.; Liu, Z.; Yu, Q.; Chen, Y. Exploratory analysis on spatio-seasonal variation patterns of hydro-chemistry in the upper Yangtze River basin. J. Hydrol. 2021, 597, 126217. [Google Scholar] [CrossRef]
- Reichmann, O.; Chen, Y.; Litaor, I.M. The Impact of Rainfall-Runoff Events on the Water Quality of the Upper Catchment of the Jordan River, Israel. In Integrated Water Resources Management: Concept, Research and Implementation; Borchardt, D., Bogardi, J.J., Ibisch, R.B., Eds.; Springer International Publishing: Chem, Switzerland, 2016; pp. 129–146. [Google Scholar]
- Sun, X.; Rosado, D.; Hörmann, G.; Zhang, Z.; Loose, L.; Nambi, I.; Fohrer, N. Assessment of seasonal and spatial water quality variation in a cascading lake system in Chennai, India. Sci. Total Environ. 2023, 858, 159924. [Google Scholar] [CrossRef] [PubMed]
- Nikakhtar, M.; Rahmati, S.; Bavani, A. Impact of climate change on the future quality of surface waters: Case study of the Ardak River, northeast of Iran. J. Water Clim. Chang. 2020, 11, 685–702. [Google Scholar] [CrossRef]
- Masamba, W.; Mazvimavi, D. Impact on water quality of land uses along Thamalakane-Boteti River: An outlet of the Okavango Delta. Phys. Chem. Earth Parts A/B/C 2008, 33, 687–694. [Google Scholar] [CrossRef]
- Shen, Z.; Chen, L.; Ding, X.; Hong, Q.; Liu, R. Long-term variation (1960–2003) and causal factors of non-point-source nitrogen and phosphorus in the upper reach of the Yangtze River. J. Hazard. Mater. 2013, 252–253, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Kanaya, Y.; Tanimoto, H.; Inomata, S.; Wang, Z.; Kudo, S.; Uno, I. Examining the major contributors of ozone pollution in a rural area of the Yangtze River Delta region during harvest season. Atmos. Chem. Phys. 2015, 15, 6101–6111. [Google Scholar] [CrossRef]
- Bouckaert, F.; Wei, Y.; Hussey, K.; Pittock, J.; Ison, R. Improving the role of river basin organisations in sustainable river basin governance by linking social institutional capacity and basin biophysical capacity. Curr. Opin. Environ. Sustain. 2018, 33, 70–79. [Google Scholar] [CrossRef]
- Mustapha, M.K. Assessment of the water quality of oyun reservoir, Offa, Nigeria, using selected physico-chemical parameters. Turk. J. Fish. Aquat. Sci. 2008, 2, 309–319. [Google Scholar]
- Zhou, Z.; Huang, T.; Ma, W.; Li, Y.; Zeng, K. Impacts of water quality variation and rainfall runoff on Jinpen Reservoir, in Northwest China. Water Sci. Eng. 2015, 8, 301–308. [Google Scholar] [CrossRef]
No. | Meteorological Stations | Abbreviation | Elevation (m) | ||
---|---|---|---|---|---|
1 | Chunan | CA | 29.62 | 119.02 | 100 |
2 | Jiande | JD | 29.48 | 119.27 | 167 |
3 | Tonglu | TLU | 29.82 | 119.68 | 34 |
4 | Fuyang | FY | 30.05 | 119.95 | 12 |
5 | Linan | LA | 30.22 | 119.70 | 67 |
6 | Hangzhou | HZ | 30.23 | 120.17 | 22 |
7 | Xiaoshan | XS | 30.18 | 120.28 | 12 |
No. | Water Sampling Sites | Abbreviation | Elevation (m) | ||
---|---|---|---|---|---|
1 | Jiekou | JK | 29.72 | 118.73 | 100 |
2 | Xiaojinshan | XJS | 29.62 | 118.94 | 100 |
3 | Santandao | STD | 29.54 | 118.97 | 100 |
4 | Dabaqian | DBQ | 29.51 | 119.21 | 100 |
5 | Yangxidu | YXD | 29.51 | 119.31 | 26 |
6 | Tonglu | TL | 29.76 | 119.65 | 8 |
7 | Tongjunshan | TJS | 29.82` | 119.67 | 10 |
8 | Puyangjiangchukou | PYJCK | 30.07 | 120.19 | 8 |
9 | Wangjiabu | WJB | 30.26 | 119.86 | 13 |
10 | Zhakou | ZK | 30.20 | 120.14 | 3 |
11 | Gujiaqiao | GJQ | 30.28 | 120.21 | 13 |
12 | Fengkou | FK | 30.44 | 120.06 | 9 |
13 | Wuhangyunhedaqiao | WHYHDQ | 30.50 | 120.27 | 9 |
Index | Indicator Name | Definitions | Units | |
---|---|---|---|---|
Frequency-based | R10 mm | Number of heavy precipitation days | ||
Intensity-based | M1D | Maximum 1-day rainfall depth | Monthly maximum 1-day rainfall | |
PRCPTOT | Monthly total precipitation in wet days | Total monthly precipitation from days with PRCP ≥ 1 mm | ||
SDII | Simple precipitation intensity index | The ratio of monthly total wet day precipitation to the number of wet days | ||
Duration-based | CDD | Consecutive dry days | Maximum number of consecutive days when rainfall < 2 mm in each month | |
CWD | Consecutive wet days | Maximum number of consecutive days when rainfall > 2 mm in each month |
Index | Upper Reach (UR) | Middle Reach (MR) | Lower Reach (LR) |
---|---|---|---|
R10 mm (days) | 3.92 | 3.98 | 4.33 |
M1D (mm) | 33.98 | 34.19 | 35.73 |
PRCPTOT (mm) | 121.08 | 123.49 | 126.29 |
SDII (mm/day) | 12.06 | 11.97 | 11.88 |
CDD (days) | 9.83 | 9.95 | 9.79 |
CWD (days) | 3.78 | 4.00 | 4.01 |
Sampling Sites | WT | pH | DO | TP | TN | Turbidity |
---|---|---|---|---|---|---|
DBQ | −1.50 | −2.41 | 0.76 | −1.27 | 1.40 | −1.48 |
YXD | −2.19 | −0.55 | −0.54 | −0.63 | −2.55 | 1.91 |
STD | −1.75 | 0.66 | 2.00 | −1.52 | 1.91 | 0.61 |
TL | −1.12 | 0.58 | 1.92 | −1.70 | 0.75 | −2.96 |
TJS | −1.22 | −1.38 | 0.01 | −0.55 | 2.29 | −2.81 |
PYJCK | −1.07 | 0.64 | −1.26 | 1.53 | 1.31 | −8.33 |
ZK | −1.65 | 2.36 | −0.35 | −0.44 | −5.80 | −2.50 |
WJB | −0.20 | 1.44 | 0.62 | −0.94 | 2.02 | −3.53 |
XJS | −1.72 | 0.26 | 0.64 | −1.85 | 1.71 | 1.38 |
JK | −1.59 | −0.01 | 1.96 | 0.83 | 0.77 | −1.40 |
GJQ | −1.26 | 0.70 | 1.05 | −0.86 | −3.02 | −4.66 |
FK | −0.89 | −0.08 | 0.51 | −1.34 | 0.93 | 2.11 |
WHYHDQ | −1.14 | −1.39 | 0.02 | −2.60 | −3.79 | −4.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, W.; Zhang, P.; Xu, D.; Hu, J.; Yuan, Y. Evaluating the Influence of Extreme Rainfall on Urban Surface Water Quality: A Case Study of Hangzhou, China. Water 2025, 17, 117. https://doi.org/10.3390/w17010117
Huang W, Zhang P, Xu D, Hu J, Yuan Y. Evaluating the Influence of Extreme Rainfall on Urban Surface Water Quality: A Case Study of Hangzhou, China. Water. 2025; 17(1):117. https://doi.org/10.3390/w17010117
Chicago/Turabian StyleHuang, Wanyi, Peng Zhang, Dong Xu, Jianyong Hu, and Yuan Yuan. 2025. "Evaluating the Influence of Extreme Rainfall on Urban Surface Water Quality: A Case Study of Hangzhou, China" Water 17, no. 1: 117. https://doi.org/10.3390/w17010117
APA StyleHuang, W., Zhang, P., Xu, D., Hu, J., & Yuan, Y. (2025). Evaluating the Influence of Extreme Rainfall on Urban Surface Water Quality: A Case Study of Hangzhou, China. Water, 17(1), 117. https://doi.org/10.3390/w17010117