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Abstract: Accurate medium- and long-term runoff prediction models play crucial guiding roles in
regional water resources planning and management. However, due to the significant variation in
and limited amount of annual runoff sequence samples, it is difficult for the conventional machine
learning models to capture its features, resulting in inadequate prediction accuracy. In response to the
difficulties in leveraging the advantages of machine learning models and limited prediction accuracy
in annual runoff forecasting, firstly, the variational mode decomposition (VMD) method is adopted
to decompose the annual runoff series into multiple intrinsic mode function (IMF) components
and residual sequences, and the spectral clustering (SC) algorithm is applied to classify and recon-
struct each IMF. Secondly, an annual runoff prediction model based on the adaptive particle swarm
optimization–long short-term memory network (APSO-LSTM) model is constructed. Finally, with the
basis of the APSO-LSTM model, the decomposed and clustered IMFs are predicted separately, and the
predicted results are integrated to obtain the ultimate annual runoff forecast results. By decomposing
and clustering the annual runoff series, the non-stationarity and complexity of the series have been
reduced effectively, and the endpoint effect of modal decomposition has been effectively suppressed.
Ultimately, the expected improvement in the prediction accuracy of the annual runoff series based on
machine learning models is achieved. Four hydrological stations along the upper reaches of the Fen
River in Shanxi Province, China, are studied utilizing the method proposed in this paper, and the
results are compared with those obtained from other methods. The results show that the method
proposed in this article is significantly superior to other methods. Compared with the APSO-LSTM
model and the APSO-LSTM model based on processed annual runoff sequences by single VMD
or Wavelet Packet Decomposition (WPD), the method proposed in this paper reduces the RMSE
by 40.95–80.28%, 25.26–57.04%, and 15.49–40.14%, and the MAE by 24.46–80.53%, 16.50–59.30%,
and 16.58–41.80%, in annual runoff prediction, respectively. The research has important reference
significance for annual runoff prediction and hydrological prediction in areas with data scarcity.

Keywords: annual runoff prediction; variational mode decomposition; spectral clustering; APSO-
LSTM; boundary effect

1. Introduction

In recent years, the frequent occurrence of extreme climate events has exerted a pro-
found influence on the global water cycle [1]. Extreme precipitation [2], extreme drought [3],
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and extreme flooding [4] pose a great threat to human lives, property, and safety. An ac-
curate runoff forecast plays a vital role in water resource management. By predicting
the runoff for the next year, it can help decision makers better plan the utilization and
distribution of water resources, thereby coping with possible extreme climate events such
as droughts or floods, preventing and mitigating the corresponding disasters. Therefore,
an increasing number of scholars [5,6] have conducted detailed studies on the methods
related to runoff prediction. However, due to the extremely complex mechanism of the
non-linear and non-stationary nature of runoff series [7], it is still an untoward task to
forecast medium- and long-term runoff accurately.

Currently, the widely employed models for runoff forecasting include physically based
hydrological models and data-driven hydrological models [8]. The hydrological models de-
riving from a physical process generally combine the processes of meteorological elements,
and utilize the traditional runoff generation as well as confluence theory to achieve the
runoff prediction. The drawbacks of the methods are quite apparent, such as the difficulty
in acquiring meteorological data and the presence of numerous empirical parameters that
need to be determined in traditional hydrological theories [9]. In contrast, there is no need
for the hydrological models based on data-driven, with machine learning, model ideas to
require the explicit hydrological physical process, instead, just simply combine precipita-
tion, evapotranspiration, and runoff data to achieve runoff prediction. The hydrological
models based on data-driven model ideas can be further divided into two types, namely,
those combined with thoughts of mathematical statistics [10] and the machine learning
model ideas [11]. Among them, the performances of machine learning models represented
by the LSTM model [12], support vector machine (SVM) model [13], and extreme gradient
boosting (XGB) model [14] have consistently exceeded the hydrological models based on
physical processes in medium- and long-term runoff forecasting. Therefore, this type of
method has gained favor among numerous scholars.

To further improve the runoff prediction ability built upon machine learning models,
the current studies mainly focus on two aspects, on the one hand, optimizing and improving
various parameters and mechanisms within machine learning models, starting from the
internal mechanisms. Examples are employing optimization algorithms like particle swarm
optimization to fine-tune the sensitive parameters of machine learning models [15], adding
appropriate attention mechanisms [8,16], and incorporating multiple time scales into
machine learning models [17]. On the other hand, starting from reducing the complexity of
data by integrating the “decomposition–prediction–reconstruction” strategy in the field
of time series prediction [18,19], complex sequences are partitioned into multiple intrinsic
mode function (IMF) components with simple characteristics and residual sequences
established on certain mathematical rules. Subsequently, all of the IMFs can be predicted
and reconstructed to obtain the final prediction results. The “decomposition–prediction–
reconstruction” strategy can further explore the data characteristics of runoff series, thereby
effectively improving forecast accuracy [7,20]. Nevertheless, the related research findings
indicated that [21,22] the application of decomposition methods introduced a boundary
effect to the sequences, limiting the further improvement in prediction accuracy to some
extent. Aiming at this issue, periodic extension and quadratic decomposition methods have
been proposed and applied [23–25], achieving relatively favorable results to a certain extent.
However, in regard to annual runoff forecasting, the full potential of the two methods
remains underutilized. The challenge lies in capturing the periodic traits of annual runoff
series, primarily due to the inherent limitation in the length of series. Meanwhile, the
direct extending may result in data distortion after extension. Conversely, making use of
the quadratic decomposition method may exacerbate the endpoint problem. Therefore,
determining the appropriate preprocessing methods for limited-length, complex, and non-
stationary original annual runoff series to effectively extract their features before forecasting
becomes pivotal in further enhancing prediction accuracy based on machine learning
models. As the research deepens, it is found that by combining clustering algorithms, the
finite length time series can be decomposed into IMF components with simple features;
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at the same time, the endpoint effect problem accompanying the decomposition can be
reduced, which aligns well with the requirements of addressing the problem outlined in
this article.

On account of this background, the clustering algorithm is employed to classify and
reconstruct the decomposed annual runoff IMFs in this research, and a new annual runoff
prediction model, termed VMDSC-APSO-LSTM, is constructed based on the basic pre-
diction model APSO-LSTM. On one side, the use of clustering algorithms to process the
annual runoff IMFs can avoid the length requirement of runoff sequences by applying
periodic extension methods. On the other side, the number of reconstructed annual runoff
IMFs is reduced, which is beneficial for mitigating the boundary effects induced by decom-
position algorithms.

In summary, to improve the prediction accuracy of annual runoff series, based on
the APSO-LSTM model, taking advantage of the variational mode decomposition (VMD)
method, and aiming to reduce the endpoint effects, a comprehensive annual runoff predic-
tion model, VMDSC-APSO-LSTM, is proposed in this study, which couples the spectral
clustering (SC) algorithm and VMD method. Taking four hydrological stations in the upper
reaches of the Fenhe River in China as research objects, the annual runoff prediction results
built upon VMDSC-APSO-LSTM are compared and analyzed with the other three models
to examine the effectiveness and applicability of the proposed method.

Considering the aforementioned discussion, the novelty of this study can be sum-
marized in three parts. Firstly, a method for extracting complex time series features by
coupling the SC algorithm and VMD method is proposed. Secondly, a comprehensive
annual runoff prediction model, VMDSC-APSO-LSTM, with the help of the SC algorithm
and VMD method is put forward. Finally, the effectiveness and superiority of the proposed
method is confirmed via a case study. In addition, the research findings can be applied
to annual runoff forecasts for other regions and even to forecasting tasks in other fields
with the time series, which have the characteristics of significant spatial heterogeneity and
limited sequence length.

2. Methodology
2.1. VMD Model

The VMD model is an adaptive, completely non-recursive approach to sequence
decomposition proposed by Dragomiretskiy et al. [26]. This method can effectively re-
duce the phenomenon of “modal confusion” in empirical modal-type algorithms, which
demonstrates the superior performance in non-stationary and non-linear complex signal
sequences [27]. Therefore, in this study, the method is utilized to decompose the annual
runoff series and extract key information from the complex series. The primary principles
of the model are as follows:

1. Establish a variational problem: The marginal spectrum of each modal function ak(t)
is solved by applying the Hilbert transform; subsequently, the exponential term of
each modal center frequency bk is incorporated to complete the modulation of the
fundamental band of ak(t). Finally, the bandwidth of each mode is determined by
using the Gaussian smoothing method, and a variational problem with constraints is
formulated as follows: min

{ak},{bk |
T = ∑k

∥∥∥∂t[(δ(t) +
j

πt ) ∗ ak(t)]e−jbkt
∥∥∥2

2
, k = 1, 2, · · · , L

s.t.∑k ak = f (t)
(1)

where T represents the objective function of the variational problem. ak denotes the k-th
modal function. bk signifies the center frequency of the k-th modal function. δ(t) belongs
to the Dirac distribution. (δ(t) + j

πt ) means a single spectrum, and f (t) is the original
runoff sequence.
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2. Solve the variational problem: The aforementioned constrained problem is converted
to an unconstrained problem by employing penalty factor α and Lagrange multi-
plier λ:

L({ak}, {bk}, λ) = α∑ k

∥∥∥∥∂t[(δ(t) +
j

πt
)*ak(t)]e−jbkt

∥∥∥∥2

2
+ ∥ f (t)− ∑k ak(t)∥2

2

+⟨λ, f (t)− ∑k ak(t)⟩ (2)

The Parseval theorem is a fundamental theorem in signal processing and a Fourier
analysis. According to Parseval’s theorem in a Fourier transform, it can be found that the
energy of the signal is equivalent in both the time and frequency domains. Therefore, the
problem in the time domain can be solved in the frequency domain. For a signal f (t) and its
Fourier transform F(ω), the Parseval theorem can be expressed as∫ ∞

−∞
| f (t)|2dt =

1
2π

∫ ∞

−∞
|F(ω)|2dω (3)

By using the Parseval theorem, the spectral characteristics of a signal can be observed
from a frequency domain perspective. In short, such transformations enable the previously
insignificant features of runoff sequences to be displayed in the complex field in a spectral
manner, making it easier for further mining in deep learning.

The modal function ân+1
k , center frequency b̂n+1

k , and Lagrange multiplier λ̂n+1 in
Equation (2) are iteratively updated through the alternating-direction multiplier method,
and the iterative formulae are as follows:

ân+1
k =

f̂ (b)−∑i>k ân
i (b)+

λ̂n(b)
2

1+2α(b−bn
k )

2

b̂n+1
k =

∫ ∞
0 b|ân+1

k (b)|2db∫ ∞
0 |ân+1

k (b)|2db

λ̂n+1 = λ̂n(b) + τ

(
f̂ (b)− ∑

k
ân+1

k (b)
) (4)

where ˆ is the frequency domain form corresponding to the Fourier transform of the signal.
τ denotes the noise tolerance. n stands for the number of iterations.

The expression for the iteration termination condition is the following:

∑k
k=1

∥∥∥ân+1
k − ân

k

∥∥∥2

2∥∥ân
k

∥∥2
2

< ε (5)

in which ε represents the convergence tolerance error, which is set to 10−7 in this study.

2.2. Spectral Clustering (SC) Model

Although the VMD model is a non-recursive decomposition method, the truncation
of the signal and the use of the Hilbert transform can lead to certain boundary effects [21].
For the sake of suppressing the error accumulation resulting from this effect in the predic-
tion process, it is proposed in this study to classify each IMF after decomposition by the
clustering model, and then integrate the IMFs in groups in order to reduce the prediction
numbers of endpoints for the prediction model, thereby minimizing the error accumula-
tion. Considering the large number of data points in each IMF, the mean and variance are
selected as the eigenvalues of each IMF in the clustering model to form the point set.

The common clustering algorithms can be mainly classified into six categories, namely,
the prototype clustering, density clustering, hierarchical clustering, grid clustering, model
clustering, and spectral clustering. Among them, the SC is a method of clustering without
requiring the clustering object to have a convex sphere or other specific shape. Considering
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the unknown nature of each IMF sample after modal decomposition, the SC algorithm is
adopted to classify the IMFs in this paper.

The SC is a clustering algorithm evolved from the graph theory. The main idea of SC
is to treat all data as points in space initially, where these points can be connected to each
other by edges. The edge weight value between two points that are farther away is lower,
whereas it is higher for closer points. Subsequently, by slicing the graph composed of all
data points, make the sum of edge weights between different subgraphs after slicing as low
as possible, while making the sum of edge weights within subgraphs as high as possible,
and thereby the data point clustering can be achieved. The principle of SC is as follows:

First of all, suppose the weight between two points is ωij; then, for any point, the
corresponding degree di can be defined as the weights’ sum of all edges connected to it,
which can be expressed as

di =
n

∑
j=1

ωij (6)

Define the subset of point set V as A. The sum of the degrees for all vertices in subset
A is denoted by vol(A):

vol(A) = ∑
i∈A

di (7)

The degree matrix D can be constructed according to the definition of each point. Only
the main diagonal has values in the matrix D. The expression of matrix D is

D =


d1

d2
. . .

dn

 (8)

Secondly, through calculating the similarity matrix S formed by these points, the
adjacency matrix W can be obtained. The exact calculation methods of the similarity
matrix S and adjacency matrix W will not be extensively discussed here, and the detailed
procedure can be found in Reference [28]. Consequently, the Laplacian matrix L can be
calculated with the following expression:

L = D − W (9)

Finally, the indicator vector hj is introduced and the NCut is performed, in which hj is
an n-dimensional vector, which can be calculated by transforming it into an optimization
problem:

hj =

 0, vi /∈ Aj
1√

vol(Aj)
, vi ∈ Aj (10)



NCut(A1, A2, . . . , Ak) =
k
∑

i=1
hT

i Lhi =
k
∑

i=1

(
HTLH

)
ii

argmin︸ ︷︷ ︸
H

=
k
∑

i=1

(
HTLH

)
ii

s.t.HTDH = I

(11)

where vi represents the points in the point set V . I is the unit diagonal matrix. H denotes
the optimal indicator vector.

The k-means clustering algorithm is chosen as the base algorithm for SC. The k-means
clustering is performed on the points in vector H to obtain the final result of SC.
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2.3. APSO-LSTM Model

The LSTM model is a recurrent neural network (RNN) that is suitable for capturing
important event dependencies with large intervals in sequential data. The model overcomes
the issues of gradient vanishing and exploding in the hidden layer variables of RNN. The
implicit state of LSTM includes the implicit layer variables and the memory cells. The
memory cells of LSTM are illustrated in Figure 1. In this study, a Dropout layer is set in the
LSTM model to reduce the model’s excessive dependence on training data and decrease
the risk of model overfitting.
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Related studies [29–31] have shown that utilizing heuristic optimization algorithms
to optimize the parameters of the LSTM model can effectively improve their accuracy
in runoff prediction. The particle swarm optimization (PSO) is a population intelligence
optimization algorithm inspired by the study of bird flocking behavior. The basic idea of
the PSO algorithm revolves around finding the optimal solution through collaboration
and information sharing among individuals in a population. The main process is to find
the optimal solution by iteration after generating a series of random particles (random
solutions). In each iteration, the particle updates their positions by constantly approaching
the local and global optima. After obtaining the local and global optima, the particle
updates the velocities and positions by Equations (12) and (13):

vi(t + 1) = ωvi(t) + c1 × r1 ×
(
bpi − xi(t)

)
+ c2 × r2 ×

(
bgi − xi(t)

)
(12)

xi(t + 1) = xi(t) + vi(t + 1) (13)

where i represents the number of particles, i = 1, 2, . . ., N. vi(t) means the velocity of the
ith particle at time t. vi(t + 1) denotes the velocity of the ith particle at time t + 1. c1 and
c2 are learning factors. r1 and r2 symbolize random numbers between 0 and 1. bpi and
bgi signify the local and global optima, respectively. xi(t) is the position of the ith particle
at time t. xi(t + 1) connotes the position of the ith particle at time t + 1. Typically, the
maximum velocity of vi(t) is expressed as vmax. When the velocity reaches its maximum
value, vi(t) = vmax.
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To better obtain optimization results and prevent them from falling into local optima,
some scholars have made improvements to the PSO algorithm [32,33]. For example, an
inertia factor ω, which belongs to (0, 1), is introduced to construct an adaptive weighted
particle swarm optimization algorithm (APSO). Generally, as the weight value increases,
the global optimization ability strengthens while the local optimization ability diminishes.
Conversely, as the weight value decreases, the global optimization ability weakens, and the
local optimization ability strengthens. For optimal minimization function problems, the
update of ω primarily follows the subsequent strategy:

ω =

{
ωmin + (ωmax − ωmin)

f− fmin
f− fmin

, f ≤ f

fmax, f > f
(14)

where ωmin stands for the minimum value of weight, which is set to 0.4. ωmax denotes the
maximum value of weight, and the value is 0.9. f is the fitness value of each particle. f
represents the average fitness value of all particles. fmax is the maximum value of particle
fitness. fmin indicates the minimum value of particle weight.

Due to the sensitivity of certain parameters in the LSTM model during actual training,
the APSO algorithm is utilized for the optimization of sensitive parameters in LSTM, and
the range of each optimization parameter is shown in Table 1.

Table 1. Preferred Range of Parameters.

Name of Parameters Meaning of Parameters Type of
Parameters Range of Values

Learning rate Initial learning rate float [0.001, 0.1]
LSTM layer Number of LSTM neurons int [20, 200]

Max epochs Maximum number of
iterations int [20, 200]

The APSO algorithm can effectively avoid the objective function falling into a local
optimal solution, premature maturity, and convergence during the optimization process.
Using the mean square error (MSE) between predicted and measured values as the objective
function, an APSO-LSTM annual runoff prediction model is constructed. The process is
outlined in Figure 2, and the main steps are as follows:

1. Initialization of model parameters: The initial matrix of each optimization parameter
in the LSTM algorithm is constructed, and the initial values of other insensitive
parameters, population size, population dimension, learning factor, etc., in the APSO
algorithm are determined.

2. The particle populations X (learning rate, LSTM layer, max epochs) are randomly
generated, and the initial velocity and initial position of the particles are defined.

3. The values of LSTM parameters are assigned. The model networks under different
parameters are trained, and each training process is recorded.

4. According to the fitness function, the optimal particle fitness value is selected by
calculating and comparing the fitness value of each particle. The velocity and position
of the particle itself are updated according to Equations (12) and (13), respectively.

5. When the selected maximum number of iterations has been reached, the minimum
value of MSE at this time is picked as the optimization result of the objective function.
The optimal particle population location is the output. The obtained parameters are
assigned to the LSTM model. The trained optimization model is adopted to predict
the runoff volume, and then the prediction results can be achieved.
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2.4. VMDSC-APSO-LSTM Model

Integrating the advantages of various basic methods mentioned above with the pur-
pose of solving the significant boundary effect question of VMD in a small sample sequence,
a new annual runoff prediction model based on decomposition and clustering is proposed
in this paper, namely, the VMDSC-APSO-LSTM model. The VMDSC-APSO-LSTM model
leverages VMD to extract key feature information from the runoff sequence, aggregates
the initial IMFs by SC, and forecasts and integrates the IMFs through APSO-LSTM. The
structure of the VMDSC-APSO-LSTM model is depicted in Figure 3.
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3. Evaluation of the Model

For a comparative analysis of the accuracy for the proposed model, VMDSC-APSO-
LSTM, in this study, three additional models, APSO-LSTM, VMD-APSO-LSTM, and WPD-
APSO-LSTM, are added for comparison, and the models are assigned with numbers S4,
S1, S2, and S3, respectively, as outlined in Table 2. Among them, the APSO-LSTM model
is an improved machine learning model leveraging optimization algorithms, serving
as the foundational model in this study. The VMD-APSO-LSTM model is the focus of
improvement in this work, with the enhanced model being the VMDSC-APSO-LSTM
model proposed in this research. To further examine the effectiveness of the proposed
VMDSC-APSO-LSTM model in solving boundary effects, the WPD-APSO-LSTM model is
introduced as a control.

The Nash efficiency coefficient (NSE), root mean square error (RMSE), and mean
absolute error (MAE) are selected as evaluation indicators for the models, while each
evaluation indicator is calculated as follows:

NSE = 1 − ∑n
t=1

(
Q0(t)− Qp(t)

)2

∑n
t=1

(
Q0(t)− Qo

)2 (15)

RMSE =

√
1
n∑n

t=1

(
Q0(t)− Qp(t)

)2 (16)

MAE =
1
n∑n

t=1

∣∣Q0(t)− Qp(t)
∣∣ (17)

where Q0(t) is the measured annual runoff volume, m3. Qp(t) denotes the predicted annual
runoff volume, m3. n represents the number of years in the test period.
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Table 2. Implication of each model.

Serial Number Model Implication

S1 APSO-LSTM Optimization of long short-term memory network model by adaptive particle
swarm optimization

S2 VMD-APSO-LSTM Optimization of long short-term memory network model by adaptive particle
swarm optimization based on variational mode decomposition and reconstruction

S3 WPD-APSO-LSTM Optimization of long short-term memory network model by adaptive particle
swarm optimization based on wavelet decomposition and reconstruction

S4 VMDSC-APSO-LSTM
Optimization of long short-term memory network model by adaptive particle
swarm optimization based on variational mode decomposition and spectral

clustering.

4. Application and Analysis
4.1. Study Area and Data

Fenhe River, the second largest tributary of the Yellow River, China, is depicted
in Figure 4. The four hydrological stations located in the upper reaches of the Fenhe
River basin, namely, Zhaishang Station, Lancun Station, Fenhe Reservoir Station, and
Shangjingyou Station, are utilized as the subjects of study. The collected annual runoff
series measured at each hydrological station from 1958 to 2000 are divided into a training
set and testing set, with the training set from 1958 to 1994 and the testing set from 1995 to
2000. To prevent the leakage of training set information, the training set is further divided
into a new training set and validation set [34]. The new training set is from 1958 to 1988,
and the validation set is from 1989 to 1994.
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4.2. Decomposition of Annual Runoff Series

It is shown from related work [35] that the sensitive parameters of the VMD model
are mainly the number of the decomposition layers K and the penalty factor α. When K
is chosen appropriately, the components decomposed by the VMD method can reflect the
frequency components contained in the original signal. If the selection of K is not proper,
the under-decomposition or over-decomposition phenomenon will occur. Regarding the
parameter α, as the corresponding value increases, the decomposition convergence speed
of the VMD model tends to initially accelerate and then decelerate. However, the value
of α is not a standard proportional or inverse relationship with the running speed of the
model. At the same time, a higher value of α reduces the likelihood of a modal confounding
occurrence in the results of VMD decomposition.

To sum up, it is necessary for this study to first determine the value of α. The manual
tuning method is used to ensure that the value of α is increased by a certain gradient, when
the number of decomposition layers is constant. The last α value is determined as the
optimal penalty factor while the average absolute error between the reconstructed data
and the original data appears to increase. The optimal α value of each station is shown in
Table 3.

Table 3. Table of values for penalty coefficient α.

Station Zhaishang
Station Lancun Station Fenhe Reservoir

Station
Shangjingyou

Station

α 200 300 900 800

The main methods for determining the number of decomposition layers K are the
empirical value method and the center frequency method [36]. The center frequency
method is adopted in this study and the process to determine the number of decomposition
layers at each station is shown in Figure 5.
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From Figure 5, it can be seen that as the number of decomposition layers increases, the
center frequencies of each IMF are gradually closer to each other. For the Zhaishang Station,
when the number of decomposition layers is set to 5, the center frequency of IMF5 is 0.4634;
as the number of decomposition layers turns to 6, the center frequency of IMF6 equals
to 0.4720. The center frequency of the IMF increases less than 0.01, which indicates that
when the runoff sequence of Zhaishang Station is decomposed to the fifth layer, the feature
information contained in the sequence can be basically extracted, and if the number of
decomposition layers is increased continuously, the phenomenon of “modal mixing” may
appear. Therefore, for the sequence of Zhaishang Station, five is selected as the number of
decomposition layers. Similarly, by analyzing the runoff series of other stations, it is found
that the runoff sequence of each station is optimized when the number of decomposition
layers is five.

Combining the parameters determined above, the annual runoff series for the four
stations are decomposed, respectively, and the results are depicted in Figure 6.
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4.3. Clustering Grouping of IMFs

In this research, the adjacency matrix in the SC algorithm is calculated by employing
the Gaussian kernel function radial basis function (RBF). For the standard deviation of RBF,
the integer value of the average standard deviation of the clustering points is used. After
multiple adjustment experiments, the number of categories for clustering is consistently
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determined to be three. When each parameter is determined, the decomposition results of
each station are analyzed by SC, setting the IMF mean as the horizontal coordinate and the
variance as the vertical coordinate. The results are illustrated in Figure 7.
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It is seen from Figure 7a that, for the Zhaishang Station, IMF1 and IMF3 are the first
category, IMF2 and IMF4 are the second category, and IMF5 is the third category. With
regard to the Lancun station, IMF1 and IMF2 belong to the first category, IMF3 and IMF4
are the second category, and IMF5 enters into the third category, as shown in Figure 7b.
When the Fenhe Reservoir Station is referred, IMF1 occupies the first category, IMF2 and
IMF4 take up the second category, and IMF3 and IMF5 are the third category, as shown
in Figure 7c. With respect to the Shangjinyou Station, IMF1 becomes the first category,
IMF2 and IMF4 turn into the second category, and IMF3 and IMF5 are the third category,
as shown in Figure 7d. Combining the IMFs belonging to the same category results in
new IMFs, which will be utilized in the subsequent prediction process. By clustering and
grouping the IMFs, on the one hand, it is ensured that the impact brought by the endpoint
effect is minimized on the basis of all the information extraction by VMD; on the other
hand, the number of IMFs declines, and the computational scale of the prediction model is
decreased, which in turn shortens the overall prediction duration.

4.4. Prediction Results and Discussion

The prediction results of each model for different hydrological stations are illustrated
in Figure 8. From Figure 8, it can be noticed that the S1 (APSO-LSTM) model can ba-
sically capture the future trend of runoff, but performs poorly in predicting the runoff
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variation process. Compared with S1, the S2 (VMD-APSO-LSTM) model has significantly
improved the prediction effect on the runoff change process, and can more accurately
reflect the trend of the runoff process during the test period. It is indicated that introducing
the decomposition method to process the runoff sequences can obtain better linear data,
thereby reducing the difficulty of model prediction and improving the prediction accuracy.
However, it should be pointed out that, due to the small sample size of the annual runoff
series, the endpoint effect of the S2 model results in significant deviations in predicted
results for the two ends of the test period, namely, 1995 and 2000, for each station. As
for the S3 (WPD-APSO-LSTM) model, although it can also accurately reflect the trend
of runoff process changes during the testing period, and the overall prediction results at
the boundaries are better than that of S2, it still exhibits significant flaws. For example,
the boundary prediction of the Lancun Station in 2000 is negative, as shown in Figure 8b.
Comparing the calculation results of the above three models, the S4 (VMDSC-APSO-LSTM)
model proposed in this study not only grasps the trend of the runoff process more precisely,
but also performs well at the boundaries of the test period, especially at Zhaishang Station,
Lancun Station, and Fenhe Reservoir Station, where the forecasting results are completely
superior to those of S3.
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In order to further clarify the performance of each model at different stations, the
fitting effects between the predicted and measured values of the model during the test
period at each station are analyzed, and the evaluation indexes of each model are calculated.
The results are shown in Figure 9 and Table 4, respectively. It can be seen from Figure 9 that
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the S4 model has the highest degree of scatter compactness, with the adjusted R2 = 0.95,
followed closely by S2, S3, and S1 models, with the corresponding adjusted R2 of 0.93, 0.92,
and 0.66, respectively. The above results indicate that the S4 model proposed in this article
demonstrates the most outstanding performance overall in the annual runoff prediction for
the four stations.
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Table 4. Performance indicators of each model.

Station Indicators S1 S2 S3 S4

Zhaishang
Station

NSE −0.07 0.39 0.75 0.87
RMSE 24,948.33 18,887.16 11,962.67 8722.91
MAE 23,470.33 15,216.65 10,851.92 7229.79

Lancun
Station

NSE −1.49 0.47 0.75 0.90
RMSE 35,011.80 16,075.52 11,043.59 6905.67
MAE 30,257.54 14,475.16 8550.40 5891.22

Fenhe
Reservoir

Station

NSE 0.18 0.49 0.60 0.72
RMSE 17,748.42 14,024.10 12,402.17 10,481.04
MAE 12,186.56 11,023.81 11,035.34 9205.33

Shangjingyou
Station

NSE −2.54 -0.01 0.24 0.73
RMSE 2618.11 1395.83 1212.89 726.03
MAE 2348.73 1360.30 1167.03 679.19

A further observation of Table 4 shows that the overall performance of the four models
in this study is ranked as S4 > S3 > S2 > S1. Specifically, compared to S3, the S4 model
reduces RMSE by 15.49–40.14%, and MAE by 16.58–41.80%. Compared to S2, the S4 model
brings down RMSE and MAE by 25.26–57.04% and 16.50–59.30%, respectively. The above
results illustrate that the S4 model, which combines VMD and SC algorithms, is more
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suitable for annual runoff prediction with relatively few runoff samples. It can effectively
improve the significant endpoint effect of the S2 model when the length of the annual
runoff series is small, and the improved effect is even better than that of the prediction
model using S3. In addition, compared with the basic model S1, the reduction in RMSE
and MAE of the S4 model are cut down by a greater extent, ranging from 40.95–80.28%
and 24.46–80.53%, respectively. It is indicated that the synergistic effect of decomposition,
clustering, and the LSTM model can weaken the inadequacy of the individual LSTM model,
minimize the complexity of annual runoff series, and ameliorate the forecasting accuracy.
Observing the NSE values of each model in Table 4, it is evident that the NSE values of
each station based on the S4 model are all greater than 0.70, especially at Zhaishang Station
and Lancun Station, with the NSE values of 0.87 and 0.90, respectively. According to the
standard for hydrological information and hydrological forecasting [37], the accuracy levels
of the four stations predicted by the S4 model have reached level B (good, NSE ≥ 0.70).

In summary, in the prediction of annual runoff, the VMDSC-APSO-LSTM model
proposed in this paper outperforms the other comparative models. This can be attributed to
several factors: (1) The VMD method can better capture the essential features of the annual
runoff series, such as the trend and period, by decomposing the non-stationary annual
runoff series with spatial heterogeneity into multiple modal components. (2) Integrating the
VMD and SC algorithm enables the recombination of the decomposed modal components,
thus minimizing the number of decomposition layers. The reduction in layers decreases the
loop iteration of the program, boosting the computational speed of the combined model,
which helps mitigate the adverse effects of endpoint effects caused by modal components.
It can be seen that a prediction model combining the decomposition method, the clustering
method, the heuristic optimization algorithm, and the deep learning technology can achieve
a more satisfactory prediction effect in the annual runoff prediction.

5. Conclusions

Based on the characteristics of a small sample size of annual runoff series and a
serious endpoint effect during decomposition, starting from the theoretical VMD, and
with the aim of suppressing the endpoint effects, an annual runoff prediction model called
VMDSC-APSO-LSTM is proposed in this paper, which couples VMD and SC methods on
the basis of an improved machine learning algorithm. The model combines two efficient
signal-processing methods, VMD and SC. By decomposing and clustering the annual runoff
series, it can capture the key feature information of the annual runoff series more accurately
and finally improve the prediction accuracy. The proposed model and three comparative
models are applied to the annual runoff prediction of four hydrological stations in the upper
reaches of Fenhe Basin. The results show that the VMDSC-APSO-LSTM model proposed
in this paper is significantly better than other comparative models in terms of accuracy.
Based on the model proposed in this paper, the methodological barriers encountered in
predicting runoff with limited sample data have been effectively addressed to a certain
extent, providing valuable insights for annual runoff prediction and other short-term
hydrological element prediction.
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