Geochemical Characteristics and Genesis of Brine Chemical Composition in Cambrian Carbonate-Dominated Succession in the Northeastern Region of Chongqing, Southwestern China
Abstract
:1. Introduction
2. Description of the Area Adjacent to the Studied Brine
2.1. Location and Geographical Settings
2.2. Geological Settings
3. Methodology and Materials
3.1. Field Sampling
3.2. Measurement
4. Result and Discussion
4.1. Hydrochemistry
4.2. Stages of Brine Evolution
4.3. Potential Mechanisms Underlying the Ionic Enrichment or Depletion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Person, M.; McIntosh, J.; Kim, J.-H.; Noyes, C.; Bailey, L.; Lingrey, S.; Krantz, R.; Lucero, D.; Reiners, P.; Ferguson, G. Hydrologic windows into the crystalline basement and their controls on groundwater flow patterns across the Paradox Basin, western USA. Geol. Soc. Am. Bull. 2024, 136, 3156–3168. [Google Scholar] [CrossRef]
- Ngombe, O.G.; Walter, J.; Chesnaux, R.; Molson, J. Application of hierarchical cluster analysis and principal component analysis to identify compositional trends of brine in crystalline basements and sedimentary basins. Appl. Geochem. 2024, 169, 106030. [Google Scholar] [CrossRef]
- Marza, M.; Ferguson, G.; Thorson, J.; Barton, I.; Kim, J.-H.; Ma, L.; McIntosh, J. Geological controls on lithium production from basinal brines across North America. J. Geochem. Explor. 2024, 257, 107383. [Google Scholar] [CrossRef]
- Yu, X.C.; Wang, C.L.; Huang, H.; Yan, K. Origin of lithium in oilfield brines in continental petroliferous basin: Insights from Li and Sr isotopes in the Jianghan Basin, central China. Mar. Pet. Geol. 2024, 160, 106576. [Google Scholar] [CrossRef]
- Yoshimura, S. Controls on the Salinity of Sedimentary Basinal Fluids Under Constant Chemogravitational Potential Conditions. Geochem. Geophys. Geosyst. 2023, 24, e2022GC010628. [Google Scholar] [CrossRef]
- Hanor, J.S. Origin of Saline Fluids in Sedimentary Basins; Special Publication; The Geological Society of London: London, UK, 1994. [Google Scholar]
- Johnson, K.S. Evaporite-karst problems and studies in the USA. Environ. Geol. 2008, 53, 937–943. [Google Scholar] [CrossRef]
- Michael, K.; Machel, H.G.; Bachu, S. New insights into the origin and migration of brines in deep Devonian aquifers, Alberta, Canada. J. Geochem. Explor. 2003, 80, 193–219. [Google Scholar] [CrossRef]
- Ferguson, G.; McIntosh, J.C.; Grasby, S.E.; Hendry, M.J.; Jasechko, S.; Lindsay, M.B.J.; Luijendijk, E. The Persistence of Brines in Sedimentary Basins. Geophys. Res. Lett. 2018, 45, 4851–4858. [Google Scholar] [CrossRef]
- Carreira, P.M.; Marques, J.M.; Nunes, D. Source of groundwater salinity in coastline aquifers based on environmental isotopes (Portugal): Natural vs. human interference. A review and reinterpretation. Appl. Geochem. 2014, 41, 163–175. [Google Scholar] [CrossRef]
- Labotka, D.M.; Panno, S.V.; Locke, R.A.; Freiburg, J.T. Isotopic and geochemical characterization of fossil brines of the Cambrian Mt. Simon Sandstone and Ironton-Galesville Formation from the Illinois Basin, USA. Geochim. Cosmochim. Acta 2015, 165, 342–360. [Google Scholar] [CrossRef]
- Kazemihokmabad, P.; Khamehchi, E.; Kalatehno, J.M.; Ebadi, R. A comparative study of brine solutions as completion fluids for oil and gas fields. Sci. Rep. 2024, 14, 12628. [Google Scholar] [CrossRef] [PubMed]
- Bute, S.I.; Zhou, J.-X.; Luo, K.; Girei, M.B.; Peter, R.T. Pb-Zn-Ba deposits in the Nigerian Benue Trough: A synthesis on deposits classification and genetic model. Ore Geol. Rev. 2024, 166, 105947. [Google Scholar] [CrossRef]
- Stueber, A.M.; Walter, L.M. Origin and chemical evolution of formation waters from Silurian-Devonian strata in the Illinois Basin, USA. Geochim. Cosmochim. Acta 1991, 55, 309–325. [Google Scholar] [CrossRef]
- Billings, G.K.; Hitchon, B.; Shaw, D. Geochemistry and origin of formation waters in the Western Canada Sedimentary. Chem. Geol. 1969, 4, 211–223. [Google Scholar] [CrossRef]
- Graf, D.L. Chemical osmosis, reverse chemical osmosis, and the origin of subsurface brines. Geochim. Cosmochim. Acta 1982, 46, 1431–1448. [Google Scholar] [CrossRef]
- Gianfriddo, C.; Bull, S. Brine reflux as a possible first order control on the alkali geochemistry of baseline sedimentary rocks in the Proterozoic North Australian Zinc Belt. Precambrian Res. 2023, 390, 107044. [Google Scholar] [CrossRef]
- Dugamin, E.J.; Cathelineau, M.; Boiron, M.-C.; Richard, A.; Despinois, F. Lithium enrichment processes in sedimentary formation waters. Chem. Geol. 2023, 635, 121626. [Google Scholar] [CrossRef]
- Warr, O.; Giunta, T.; Onstott, T.C.; Kieft, T.L.; Harris, R.L.; Nisson, D.M.; Lollar, B.S. The role of low-temperature 18O exchange in the isotopic evolution of deep subsurface fluids. Chem. Geol. 2021, 561, 120027. [Google Scholar] [CrossRef]
- Engle, M.A.; Reyes, F.R.; Varonka, M.S.; Orem, W.H.; Ma, L.; Ianno, A.J.; Schell, T.M.; Xu, P.; Carroll, K.C. Geochemistry of formation waters from the Wolfcamp and “Cline” shales: Insights into brine origin, reservoir connectivity, and fluid flow in the Permian Basin, USA. Chem. Geol. 2016, 425, 76–92. [Google Scholar] [CrossRef]
- Saleh, A.; Gad, A.; Ahmed, A.; Arman, H.; Farhat, H.I. Groundwater hydrochemical characteristics and water quality in Egypt’s central eastern desert. Water 2023, 15, 971. [Google Scholar] [CrossRef]
- Carpenter, A.B. Origin And Chemical Evolution Of Brines In Sedimentary Basins. In Proceedings of the SPE Annual Fall Technical Conference and Exhibition, Houston, TX, USA, 1–3 October 1978. [Google Scholar]
- Mccaffrey, M.A.; Lazar, B.; Holland, H.D. The Evaporation Path of Seawater and the Coprecipitation of Br− and K+ with Halite. J. Sediment. Petrol. 1987, 57, 928–937. [Google Scholar] [PubMed]
- Freeman, J.T. The use of bromide and chloride mass ratios to differentiate salt-dissolution and formation brines in shallow groundwaters of the Western Canadian Sedimentary Basin. Hydrogeol. J. 2007, 15, 1377–1385. [Google Scholar] [CrossRef]
- Davisson, M.L.; Criss, R.E. Na-Ca-CI relations in basinal fluids. Geochim. Cosmochim. Acta 1996, 60, 2743–2752. [Google Scholar] [CrossRef]
- Mirnejad, H.; Sisakht, V.; Mohammadzadeh, H.; Amini, A.H.; Rostron, B.J.; Haghparast, G. Major, minor element chemistry and oxygen and hydrogen isotopic compositions of Marun oil-field brines, SW Iran: Source history and economic potential. Geol. J. 2011, 46, 1–9. [Google Scholar] [CrossRef]
- Darvari, R.; Nicot, J.P.; Scanlon, B.R.; Kyle, J.R.; Elliott, B.A.; Uhlman, K. Controls on lithium content of oilfield waters in Texas and neighboring states (USA). J. Geochem. Explor. 2024, 257, 107363. [Google Scholar] [CrossRef]
- Yan, K.; Wang, C.L.; Chen, R.Y.; Liu, C.L.; Wang, J.Y.; Yu, X.C.; Shen, L.J.; Li, R.Q.; Zhou, Y.; Zhou, Q. Origin and evolution of deep lithium-rich brines in the southwest Jianghan Basin, central China: Evidence from hydrochemistry and stable isotopes. J. Hydrol. 2023, 626, 130163. [Google Scholar] [CrossRef]
- Hu, G.; Teng, J.; Ruan, X.; Wang, Q.; Yan, Y.; Wang, P.; Xiong, S. Magnetic anomaly characteristics and crystalline basement variation of the Qinling orogenic belt and its adjacent areas. Chin. J. Geophys. 2014, 57, 556–571, (In Chinese with English Abstract). [Google Scholar]
- Wang, S.; Zheng, M. Cambrian salt-forming environment in northeastern Sichuan basin and Its significance for finding potash. Sci. Technol. Rev. 2014, 32, 41–49, (In Chinese with English Abstract). [Google Scholar]
- Zhang, J.; Yang, P.; Groves, C.; Luo, X.; Wang, Y. Influence of geological structure on the physicochemical properties and occurrence of middle-deep groundwater in Chongqing, Southwest China. J. Hydrol. 2022, 610, 127782. [Google Scholar] [CrossRef]
- Yang, P.; Cheng, Q.; Xie, S.; Wang, J.; Chang, L.; Yu, Q.; Zhan, Z.; Chen, F. Hydrogeochemistry and geothermometry of deep thermal water in the carbonate formation in the main urban area of Chongqing, China. J. Hydrol. 2017, 549, 50–61. [Google Scholar] [CrossRef]
- Piper, M. A graphic procedure in the geochemical interpretation of water-analyses. Trans. Am. Geophys. Union 1944, 25, 914–928. [Google Scholar]
- Kazakis, N.; Matiatos, L.; Ntona, M.M.; Bannenberg, M.; Kalaitzidou, K.; Kaprara, E.; Mitrakas, M.; Loannidou, A.; Vargemezis, G.; Voudouris, K. Origin, implications and management strategies for nitrate pollution in surface and ground waters of Anthemountas basin based on a δ15N-NO3− and δ18O-NO3− isotope approach. Sci. Total Environ. 2020, 724, 138211. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.H.; Zhou, H.; He, S.; Zhang, Y.X. Comprehensive understanding of groundwater quality for domestic and agricultural purposes in terms of health risks in a coal mine area of the Ordos basin, north of the Chinese Loess Plateau. Environ. Earth Sci. 2019, 78, 446. [Google Scholar] [CrossRef]
- Chenaker, H.; Houha, B.; Vincent, V. Hydrogeochemistry and geothermometry of thermal water from northeastern Algeria. Geothermics 2018, 75, 137–145. [Google Scholar] [CrossRef]
- Liu, F.; Song, X.; Yang, L.; Zhang, Y.; Han, D.; Ma, Y.; Bu, H. Identifying the origin and geochemical evolution of groundwater using hydrochemistry and stable isotopes in the Subei Lake basin, Ordos energy base, Northwestern China. Hydrol. Earth Syst. Sci. 2015, 19, 551–565. [Google Scholar] [CrossRef]
- Gibbs, R.J. Mechanisms Controlling World Water Chemistry. Science 1970, 170, 1088–1090. [Google Scholar] [CrossRef]
- Marandi, A.; Shand, P. Groundwater chemistry and the Gibbs Diagram. Appl. Geochem. 2018, 97, 209–212. [Google Scholar] [CrossRef]
- Smida, H.; Tarki, M.; Dassi, L. Groundwater quality and mineralization process in the Braga shallow aquifer, Central Tunisia: An overview. Carbonates Evaporites 2022, 37, 28. [Google Scholar] [CrossRef]
- Muhammad, S.; Ullah, I. Spatial and seasonal variation of water quality indices in Gomal Zam Dam and its tributaries of south Waziristan District, Pakistan. Environ. Sci. Pollut. Res. 2022, 29, 29141–29151. [Google Scholar] [CrossRef]
- Ez-zaouy, Y.; Bouchaou, L.; Saad, A.; Hssaisoune, M.; Brouziyne, Y.; Dhiba, D.; Chehbouni, A. Morocco’s coastal aquifers: Recent observations, evolution and perspectives towards sustainability. Environ. Pollut. 2022, 293, 118498. [Google Scholar] [CrossRef]
- Shen, B.B.; Wu, J.L.; Zhan, S.; Jin, M.; Saparov, A.S.; Abuduwaili, J. Spatial variations and controls on the hydrochemistry of surface waters across the Ili-Balkhash Basin, arid Central Asia. J. Hydrol. 2021, 600, 126565. [Google Scholar] [CrossRef]
- Chen, Y. Sequence of salt separation and regularity of some trace elements distribution during isothermal evaporation (25 °C) of the Huanghai Sea water. Acta Geol. Sin. 1983, 379–390, (In Chinese with English Abstract). [Google Scholar]
- Gavrieli, I.; Stein, M. On the origin and fate of the brines in the Dead Sea basin. In New Frontiers in Dead Sea Pale-Oenvironmental Research; Enzel, Y., Agnon, A., Stein, M., Eds.; Geological Society of America Special Paper 401; Geological Society of America: Boulder, CO, USA, 2006; pp. 183–194. [Google Scholar]
- Parnell, J.; Armstrong, J.G.T. Surface expression of Late Caledonian magmatic lithium concentration, in the Rhynie Chert, UK. Geochem. Explor. Environ. Anal. 2023, 23, geochem2023-028. [Google Scholar] [CrossRef]
- You, C.F.; Chan, L.H. Precise determination of lithium isotopic composition in low concentration natural samples. Geochim. Cosmochim. Acta 1996, 60, 909–915. [Google Scholar] [CrossRef]
- Herrera, C.; Godfrey, L.; Urrutia, J.; Custodio, E.; Gamboa, C.; Jódar, J.; Lam, E.; Fuentes, J. Origin of old saline groundwater in the deep coastal formations of the Atacama Desert region: Consideration of lithium, boron, strontium and uranium isotopes contents. J. Hydrol. 2023, 624, 129919. [Google Scholar] [CrossRef]
- Yu, F.; Yu, Y.; Wang, D.; Gao, J.; Wang, C.; Guo, W. Application of Li isotope in geothermal fluid-rock interaction: A case study of modern Li-rich geothermal water in western Sichuan. Acta Petrol. Sin. 2022, 38, 472–482, (In Chinese with English Abstract). [Google Scholar]
- Yang, N.; Su, C.L.; Liu, W.B.; Zhao, L. Occurrences and mechanisms of strontium-rich groundwater in Xinglong County, northern China: Insight from hydrogeological and hydrogeochemical evidence. Hydrogeol. J. 2022, 30, 2043–2057. [Google Scholar] [CrossRef]
- Trudinger, P.A.; Chambers, L.A.; Smith, J.W. Low-temperature sulphate reduction: Biological versus abiological. Can. J. Earth Sci. 1985, 22, 1910–1918. [Google Scholar] [CrossRef]
- Yang, P.H.; Yuan, D.X.; Ye, X.C.; Xie, S.Y.; Chen, X.B.; Liu, Z.Q. Sources and migration path of chemical compositions in a karst groundwater system during rainfall events. Chin. Sci. Bull. 2013, 58, 2488–2496. [Google Scholar] [CrossRef]
- Yang, P.H.; Luo, D.; Hong, A.H.; Ham, B.; Xie, S.Y.; Ming, X.X.; Wang, Z.X.; Pang, Z.H. Hydrogeochemistry and geothermometry of the carbonate-evaporite aquifers controlled by deep-seated faults using major ions and environmental isotopes. J. Hydrol. 2019, 579, 124116. [Google Scholar] [CrossRef]
- Blasco, M.; Auque, L.F.; Gimeno, M.J. Geochemical evolution of thermal waters in carbonate—Evaporitic systems: The triggering effect of halite dissolution in the dedolomitisation and albitisation processes. J. Hydrol. 2019, 570, 623–636. [Google Scholar] [CrossRef]
- Gil-Marquez, J.M.; Barbera, J.A.; Andreo, B.; Mudarra, M. Hydrological and geochemical processes constraining groundwater salinity in wetland areas related to evaporitic (karst) systems. A case study from Southern Spain. J. Hydrol. 2017, 544, 538–554. [Google Scholar] [CrossRef]
Elapsed Time | K+ | Na+ | Ca2+ | Mg2+ | Li+ | Sr2+ | Br− | CO32− | HCO3 | Cl− | SO42− | pH | TDS | Na+: Cl− | TMMC | TMMA | Balance Test |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 2992 | 72,159 | 6562 | 1028 | 89 | 226 | 357 | 78.09 | 154 | 128,196 | 1223 | 7.88 | 211 | 0.87 | 3650 | 3631 | 0.25 |
2 | 2645 | 73,010 | 5657 | 972 | 79 | 183 | 279 | 20.13 | 196 | 124,732 | 4780 | 7.70 | 210 | 0.90 | 3625 | 3571 | 0.75 |
4 | 3410 | 82,816 | 7243 | 1205 | 101 | 249 | 384 | <0.43 | 148 | 146,290 | 1905 | 7.33 | 241 | 0.87 | 4175 | 4149 | 0.32 |
6 | 3366 | 81,077 | 7027 | 1195 | 99 | 244 | 354 | <0.43 | 66 | 142,966 | 2147 | 7.33 | 236 | 0.87 | 4086 | 4056 | 0.37 |
10 | 3500 | 85,051 | 7186 | 1244 | 103 | 249 | 402 | <0.43 | 150 | 149,126 | 2875 | 7.08 | 247 | 0.88 | 4275 | 4238 | 0.44 |
14 | 3455 | 84,655 | 7380 | 1243 | 103 | 247 | 375 | <0.43 | 150 | 148,864 | 2808 | 7.10 | 247 | 0.88 | 4266 | 4230 | 0.43 |
18 | 3533 | 84,726 | 7252 | 1264 | 101 | 246 | 364 | <0.43 | 151 | 148,963 | 2675 | 7.02 | 247 | 0.88 | 4266 | 4232 | 0.41 |
22 | 3481 | 83,501 | 7113 | 1241 | 101 | 243 | 363 | <0.43 | 152 | 146,152 | 3440 | 7.03 | 245 | 0.88 | 4203 | 4160 | 0.51 |
26 | 3523 | 84,664 | 7404 | 1298 | 104 | 253 | 382 | <0.43 | 153 | 148,574 | 3584 | 7.05 | 249 | 0.88 | 4275 | 4230 | 0.51 |
30 | 3571 | 83,368 | 7228 | 1255 | 103 | 250 | 387 | <0.43 | 156 | 146,176 | 3587 | 7.28 | 247 | 0.88 | 4207 | 4163 | 0.53 |
34 | 3573 | 83,425 | 7215 | 1285 | 102 | 249 | 371 | <0.43 | 152 | 146,631 | 3167 | 7.33 | 247 | 0.88 | 4211 | 4171 | 0.47 |
38 | 3475 | 82,861 | 7047 | 1266 | 102 | 249 | 363 | <0.43 | 156 | 145,470 | 2965 | 7.34 | 243 | 0.88 | 4174 | 4136 | 0.45 |
42 | 3532 | 84,076 | 7153 | 1257 | 102 | 246 | 358 | <0.43 | 164 | 146,211 | 4789 | 7.31 | 249 | 0.89 | 4233 | 4176 | 0.67 |
46 | 3507 | 83,765 | 7252 | 1272 | 101 | 249 | 364 | <0.43 | 153 | 146,754 | 3663 | 7.28 | 247 | 0.88 | 4225 | 4180 | 0.53 |
50 | 3470 | 83,340 | 7092 | 1278 | 102 | 249 | 391 | <0.43 | 152 | 145,950 | 3465 | 7.33 | 244 | 0.88 | 4198 | 4155 | 0.52 |
54 | 3531 | 84,822 | 7166 | 1251 | 103 | 244 | 383 | <0.43 | 149 | 148,133 | 3752 | 7.30 | 249 | 0.88 | 4265 | 4219 | 0.54 |
58 | 3567 | 83,197 | 7157 | 1279 | 103 | 247 | 370 | <0.43 | 152 | 146,173 | 3154 | 7.27 | 246 | 0.88 | 4198 | 4158 | 0.47 |
62 | 3508 | 84,283 | 7054 | 1245 | 103 | 246 | 397 | <0.43 | 156 | 147,365 | 3351 | 7.27 | 247 | 0.88 | 4236 | 4194 | 0.50 |
66 | 3535 | 84,153 | 7270 | 1260 | 103 | 246 | 395 | <0.43 | 156 | 147,021 | 4152 | 7.34 | 248 | 0.88 | 4243 | 4192 | 0.60 |
3430 * | 825,76 * | 7077 * | 1228 * | 100 * | 243 * | 370 * | 151 * | 144,724 * | 3236 * | 7.29 * | 242 * | 0.88 * | 4158 * | 4118 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Z.-l.; Xie, B.; Wu, C.-m.; Zhou, L.; Zhang, K.; Zhang, B.-c.; Yang, P.-h. Geochemical Characteristics and Genesis of Brine Chemical Composition in Cambrian Carbonate-Dominated Succession in the Northeastern Region of Chongqing, Southwestern China. Water 2024, 16, 2859. https://doi.org/10.3390/w16192859
Zheng Z-l, Xie B, Wu C-m, Zhou L, Zhang K, Zhang B-c, Yang P-h. Geochemical Characteristics and Genesis of Brine Chemical Composition in Cambrian Carbonate-Dominated Succession in the Northeastern Region of Chongqing, Southwestern China. Water. 2024; 16(19):2859. https://doi.org/10.3390/w16192859
Chicago/Turabian StyleZheng, Zhi-lin, Bin Xie, Chun-mei Wu, Lei Zhou, Ke Zhang, Bin-chen Zhang, and Ping-heng Yang. 2024. "Geochemical Characteristics and Genesis of Brine Chemical Composition in Cambrian Carbonate-Dominated Succession in the Northeastern Region of Chongqing, Southwestern China" Water 16, no. 19: 2859. https://doi.org/10.3390/w16192859