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Abstract: This study aimed to reduce the methane (CH4) emissions originating from dam lake treat-

ment using malt dust-derived biochar, which is an agro-industrial byproduct of the brewery indus-

try. Optimum operating and water quality parameters for CH4 reduction were determined using 

statistical analyses based on the Box–Behnken design method. Also, a Monte Carlo simulation was 

performed to determine the correlation between CH4 emissions and operating parameters. Accord-

ing to the simulation, dissolved oxygen (DO) and the oxidation–reduction potential (ORP) had the 

highest correlation with CH4 emissions, with values of 92.03% and 94.57%, respectively. According 

to the Box–Behnken design methodology, the optimum operating parameters were 4 mg/L of dis-

solved oxygen, −359 mV of ORP, and 7.5 pH for the minimum CH4 emissions. There was a reported 

reduction of up to 19.4% in CH4 emissions for the dam lake treatment using malt dust-derived bio-

char. Finally, a new methane capture index, based on the biochar application (MCI), was developed 

and validated. The largest methane capture capacity was related to the malt dust-derived biochar 

produced at the lowest temperature (M1). 

Keywords: methane; dam lake; reduction; malt dust; biochar; Box–Behnken design; Monte Carlo 

simulation 

 

1. Introduction 

Water resource treatment has been classified as a tertiary group by the European (EU) 

Green Deal, aiming to reduce greenhouse gas (GHG) emissions by 30% by 2030, owing to 

water resource treatment [1,2]. Furthermore, according to the Sixth Assessment Report, 

published by the International Panel on Climate Change (IPCC), water resource treatment 

has been regarded an important origin of GHG emissions [3]. There is a restricted point 

of view and limited methodology for the minimization of GHG emissions resulting from 

water resource treatment. From this point of view, this study presents an innovative meth-

odology in order to reduce the GHG emissions resulting from dam lake treatment. 

There are limited investigations on GHG emissions from dam lake treatment. Owing 

to the water reservoir structure, this resource is considered to have the potential to emit 

GHG emissions among water supplies, especially due to its physicochemical and bio-

chemical processes. Methane (CH4) is one of the major greenhouse gasses released from a 

water reservoir mass [1,3,4]. Furthermore, carbon can be present in water reservoirs as 

methane, which should be disposed of to prevent microbial regrowth during treatment, 

transportation, and potable water distribution [5–8]. Many water reservoirs contain con-

siderable quantities of methane, which mainly form as a result of geological interactions 

[4,8,9]. CH4 can be emitted from reservoirs in various ways, such as ebullition, plant-
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supported transport, diffusion across the water–atmosphere interface, and storage flux 

[10,11]. Methane can be released due to biological, geological, or mixed activities in reser-

voirs [12,13]. In particular, methane can occur as a result of anaerobic biological reactions 

in a reservoir [4]. 

When there is an anoxic condition in a deep reservoir, methanogenesis occurs, which 

produces CH4 [12,14]; both methane and carbon dioxide are generated by the decomposi-

tion of organic matter in a water reservoir. CH4 is also generated by bacteria, which accu-

mulate over years in reservoir ecosystems and thrive in oxygen-free deep water and sed-

iment [10]. Therefore, methane continues to be generated by reservoirs long after they are 

designed. Microbial methane is a biological resource and corresponds with the activity of 

various methanogenic bacteria that consume organic or inorganic substrates for methane 

production [15]. In anoxic deep-water reservoirs, CH4 generally accumulates and can 

reach excessive concentrations [16]. Methane is also available in the abiotic processes of 

inorganic substances at low temperatures and low pressures [4,17]. Also, eutrophication 

of the sediment is the main cause of CH4 production in a water reservoir [18,19]. Several 

processes and technologies have recently been developed to remove methane from a wa-

ter reservoir [20,21]. Sediment flushing and remediation are the main techniques devel-

oped in recent years. This study presents a different water reservoir treatment technique. 

According to this study, biochar can be applied as an alternative methane reduction tool 

for water storage reservoir treatment. 

Biochar is a carbon-rich byproduct of the pyrolysis and/or thermochemical processes 

of various biomass wastes, which can uptake GHG emissions [22,23]. Biochar is a carbo-

naceous solid material that is generated by the pyrolysis of various organic substances 

with no oxygen and is characterized by a well-developed porous structure with abundant 

functional groups [24–27]. Biochar is a significant material, as it can remove pollutants and 

be used as a carbon-negative technology [23]. Biochar is regarded as a carbon-rich material 

that can be generated using different organic and inorganic feedstocks [23]. Biochar has 

gained increasing significance due to its stable nature, higher carbon content, ion ex-

change capacity, larger surface area, and higher uptake capacity [23]. Biochar has gained 

great attention recently because of its significant role in environmental remedies [23]. It is 

cheaper than other treatment techniques and can easily adsorb various pollutants in water 

and wastewater [28,29]. Biochar can also adsorb recalcitrant pollutants and uptake green-

house gasses from water masses. 

This study is novel and unique in the sense that the biochar adsorption process was 

performed in order to reduce CH4 emissions from dam lake treatment in the context of the 

EU Green Deal. In the literature, there is no investigation corresponding to methane re-

moval from a water reservoir using biochar application. Another originality of this work 

is that the biochar adsorption process was investigated as a GHG emission reduction tech-

nique for water resource treatment. There is a gap in the literature on this topic. Therefore, 

this study can be a guide for similar water treatment authorities in terms of reducing GHG 

emissions. Also, this study is original because it involves collecting CH4 emissions after 

treatment, and gas adsorption was performed using malt dust-derived biochar to deter-

mine the uptake capacity. Biochar can be derived from several raw materials, such as do-

mestic, agricultural, and industrial substances. Malt dust is an agro-industrial byproduct 

of the brewery industry, which has been released in large amounts. According to the EU 

Green Deal, waste reduction should be achieved by recycling or reusing. This biochar ap-

plication technique is a waste reduction and recycling technique for all brewery industries. 

An agro-industrial byproduct from the brewery industry was used as the feedstock, which 

can lead to cleaner production policies. The aim of this study is to use agro-industrial 

biochar in order to reduce methane emissions from dam lake treatment. The goal of this 

study was to reduce CH4 emissions using the biochar adsorption process in terms of the 

European Green Deal. The statistical and experimental results are theoretically discussed 

and modeled at the end of this study. 
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This study aimed to decrease the methane emissions originating from dam lake treat-

ment using biochar. This study also statistically investigated the optimum operating and 

water quality parameters for a reduction in CH4 emissions based on the Box–Behnken 

design method. Also, a Monte Carlo simulation was performed to determine the correla-

tion between the CH4 emission and operating parameters. The methane capture index 

(MCI) was developed based on the biochar adsorption process and validated by applying 

sensitivity analysis. 

2. Materials and Methods 

This research was carried out in five stages. The first stage was the biochar production 

process using malt dust, which is an agro-industrial feedstock, and the second stage was 

the biochar application for dam lake treatment and gas adsorption. The third stage was 

the statistical analysis based on the Box–Behnken design method to determine the opti-

mum operating and water quality parameters for a reduction in CH4 emissions. The fourth 

stage was performing a Monte Carlo simulation to calculate the correlation of CH4 emis-

sions and operating parameters. In the final stage, the methane capture index (MCI) was 

developed based on the biochar adsorption process and validated by performing the sen-

sitivity analysis. In Figure 1, the experimental design and planning of the research are 

provided in detail. Figure 2 shows the conceptual framework and flow scheme of the 

study. 
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Figure 1. Experimental design and planning of the research. 

 

Figure 2. Conceptual framework and flow diagram of the research. 

The water samples were ensured from Ataturk Dam Lake (the inlet of Sanliurfa Irri-

gation Tunnels), which is located in southeastern Turkey seasonally. The water sampling 

dates were the 15 January, 15 March, 15 June, and 15 September for winter, spring, sum-

mer, and autumn, respectively. Water analyses were performed according to the standard 

methods [30]. DO, ORP, EC, and pH analyses were conducted. 
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2.1. Biochar Production and Adsorption Process 

Brewery industries have generated large amounts of malt dust to prepare the feed-

stock for the production process. Biochar was derived from malt dust, which was obtained 

from a brewery industry in Türkiye using slow pyrolysis in a fluidized bed reactor under 

the operating conditions of 250 (M1), 300 (M2), and 500 °C (M3), respectively. From this 

perspective, renewable waste was used as the biochar’s feedstock, which could lead to 

cleaner production for brewery industries. X-ray diffraction (XRD), scanning electron mi-

croscope (SEM), Fourier transform infrared spectrometry (FTIR), and BET (Brunauer, Em-

mett, and Teller) (surface area analysis) analyses were performed to determine the char-

acterization and the main properties of the adsorbents at the Harran University 

Application and Research Center for Science and Technology in Turkey. Microstructures 

of biochar were examined using the scanning electron microscope (SEM) Zeiss Evo 50 

(Carl-Zeiss Gmbh, Oberkochen, Germany). Prior to analysis, the biochar was degassed in 

a vacuum at 120 °C for 6 h. Specific surface areas and pore size distributions were esti-

mated using Brunauer–Emmett–Teller (BET). XRD analyses were performed using the 

Rigaku Ultima III to record crystalline structures in an X-ray diffractometer (Rigaku Hold-

ings, Tokyo, Japan). The FTIR analyses were ensured by the IRTracer-100shimadzo. The 

characterization analyses were performed at 25 °C. Malt dust is a large byproduct of the 

brewery industries and is used as feedstock to produce biochar. It is a solid waste at the 

end of the production step. An approximately 1-liter glass adsorption column was de-

signed and operated for the water adsorption. A total of 10 g of biochar was added to the 

adsorption column to determine the CH4 removal from the water storage reservoir. Three 

types of biochar (M1, M2, M3) were used for the dam lake treatment, separately and sea-

sonally. Also, CH4 was collected, and a gas adsorption process was applied using M (1–3) 

to determine the CH4 uptake capacity of the biochar after the water treatment. An adsorp-

tion column with a volume of 0.75 L was used, and 10 g of biochar was separately added 

to the column for collected gas adsorption. 

In this process, the adsorbents were malt dust-derived biochar, and the pollutant was 

CH4. The adapted gas adsorption calculation term is given in Equation (1) based on the 

main adsorption theory [31]. 

qe = 
 (Co−Ce)V

M
 (1) 

where 

Co: CH4 concentration (mM) in the water sample before treatment using biochar; 

Ce: CH4 concentration (mM) in the water sample after treatment using biochar; 

V: Dam lake sample volume (L); 

M: Biochar (adsorbent) dose (g); 

qe: The amount of substance adsorbed on the adsorbent (mmol/g) (the estimated ad-

sorption amount). 

 

In this study, Dubinin–Radushkevich, Langmuir, and Freundlich isotherm models 

were performed to determine the experimental results (for the collected CH4 adsorption 

using biochar). The Langmuir isotherm model assumes that adsorption occurs on a ho-

mogeneous biochar surface area and monolayer. The Freundlich model accepts the ad-

sorbing surface (biochar) is heterogeneous. The equilibrium isotherms of the Langmuir 

and Freundlich isotherm models are given in Equations (2) and (3) [31]. The Dubinin–

Radushkevich isotherm model containing a pore-filling mechanism was used for the ad-

sorption process. It can be used for the adsorption process on both homogeneous and 

heterogeneous surfaces. The linear form was given by Dubinin in Equation (4). 

qe = 
 qm KL P

(1+KL P)
 (2) 
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qe = KF P (1/n) (3) 

lnqe = lnqm − Ke2 (4) 

where qe and qm (mmol/g) are the equilibrium and the maximum monolayer adsorption 

capacity, respectively, KL (1/atm) is the Langmuir constant related to the free energy of 

adsorption, and P is the partial pressure of CH4 (atm). In Equation (3), KF is the Freundlich 

constant, and n is the Freundlich equation constant related to the adsorption density. Ke 

is the Dubinin–Radushkevich model constant. The Dubinin–Radushkevich, Langmuir, 

and Freundlich isotherm parameters for CH4 adsorption are given in Table 1. The fit of 

each model was determined by the correlation coefficient (R2). Looking at the values of R2, 

the best-fit isotherm for biochar adsorption is the Dubinin–Radushkevich isotherm model, 

with the highest R2. The Dubinin–Radushkevich (Equation (3)) isotherm model was used 

to analyze the equilibrium CH4 uptake of the adsorbents. 

Table 1. Isotherm parameters for CH4 emission. 

Parameters Adsorbents 

CH4 Adsorption  M1 M2 M3 

Langmuir isotherm model 

qm (mmol/g) 5.74 5.62 5.49 

KL (1/atm) 13.69 12.56 10.99 

R2 0.989 0.986 0.984 

Freundlich isotherm model    

KF (mmol/g atm 1/n) 0.67 0.654 0.614 

n 3.21 2.98 2.55 

R2 0.913 0.901 0.899 

Dubinin–Radushkevich iso-

therm model 
   

qm (mmol/g) 5.81 5.71 5.55 

K (mmol2/kJ2) 0.69 0.68 0.675 

E (kJ/mmol) 48.50 47.5 47.1 

R2 0.993 0.991 0.99 

Also, pseudo-first- and second-order kinetic models were applied in order to investi-

gate the kinetics of adsorption of CH4 onto the biochar (Equations (5) and (6)). 

qt = qe (1 − e−k1 t) (5) 

qt = 
 k2 qe2 t

(1+k2 qe t)
 (6) 

In Equations (5) and (6), qt and qe (mmol/g) are the adsorption capacities at time t (s) 

and at equilibrium, respectively; k1 (1/s) and k2 (g/mmol s) are the kinetic rate constants of 

the pseudo-first-order and pseudo-second-order kinetic models, respectively. 

The error in kinetic modeling (7) shows the standard deviation-based argument be-

tween the experimental and estimated adsorption amounts. The qt (estimated) is based on 

the CH4 measurements according to Equation (1). The first measurement and the last 

measurement were calculated using the CH4 emission difference, while qt (experimental) 

is based on qe in experimental gas adsorption based on the Dubinin–Radushkevich iso-

therm model. 

Error (%) =
√∑(qt(experimental) − qt (estimated))/qt(experimental))2

√N−1
 × 100 (7) 
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2.2. Estimation and Monitoring of CH4 Emissions 

The concentration of CH4 was determined using the gas chromatography (GC) Shi-

madzu 2010 equipped with a thermal conductivity detector (TCD). The chromatographic 

column was a long tube (0.3 cm × 2 m) packed with molecular Sieve 5A, whose material 

was stainless steel. The gas measurement was applied at 25 °C. The duration of the CH4 

measurement was 15 min. After 15 min, the gas concentration was fixed and remained the 

same. Therefore, the optimal gas retention time was 15 min. 

In this study, the CH4 emission calculation methodology was derived based on the 

IPCC approach [3]. The main equation was given in Equation (8) [3]. In Equation (8), GHG 

represents the CH4 emission, CCH4 means the CH4 concentration, and GWP is the global 

warming potential of CH4. The GWP of CH4 is 27.9 [3]. CH4 measurements were per-

formed seasonally before and after the biochar adsorption processes. 

GHG = CCH4 × GWP (8) 

2.3. Development and Validation of Methane Capture Index (MCI) 

The methane capture index (MCI) (Equation (10)) depended on the biochar adsorp-

tion process developed in this study. The removed amount of CH4 emissions (GHGR) 

(kgCO2eLd−1g−1) was developed (Equation (9)) based on the adsorption theory by Metcalf 

and Eddy (2014) [31]. In Equations (9) and (10), GHGR is the removed CH4 emissions (kg 

CO2e/d), GHG0 is the CH4 emissions before treatment (kg CO2e/d), GHGA is the CH4 emis-

sions after biochar adsorption, V is the water storage reservoir sample volume (L), MD is 

the volumetric biochar amount (L), Q is the water flow rate (L/d), and T is the contact time 

(day). The MCI was developed based on these inputs. 

GHGR = 
(GHG0−GHGA)×V

(MD)
 (9) 

MCI = 
GHGR/GHG0

(MD/Q)×T
 (10) 

After the development of the MCI, a Monte Carlo simulation was performed to vali-

date the recommended model. A sensitivity analysis was applied using lognormal distri-

bution. One simulation and 1000 iterations were performed. The simulation tool is given 

in Equation (11). The inputs are MD, Q, and T. The desirable output is CH4 emission re-

duction. 

Degree of Meaningful (DM) = Risk Output (Lognormal) + Risk Lognorm(MCI; MD, Q, T) (11) 

2.4. Statistical Analysis (Box–Behnken Design Methodology) 

Among the variables, ORP, DO, and pH were selected as the independent variables 

due to their strong effects on the anaerobic conditions for CH4 triggering. Optimum oper-

ating and water quality parameters for CH4 reduction were determined using the Box–

Behnken design methodology. The coefficients were also defined using the Box–Behnken 

design methodology. Firstly, the factors were selected for the experiments. ORP(x1), DO 

(x2), and pH (x3) were the main independent variables in this study. The desirable response 

(dependent variable) was the CH4 emissions. According to the sensitivity analysis, the ob-

jective function of the system is shown in Equation (11). It represents the correlation of the 

data. The regression models obtained through multiple linear regression were used as the 

objective function in MATLAB. The optimum responses obtained from the experiments 

proposed by the Box–Behnken design were correlated to the linear, interactive, and quad-

ratic models to detect the regression equations. The empirical interaction between the op-

timum parameters and independent variables was derived by multi-regression analysis 

of the experimental data. The estimated operational parameter (y) can be calculated by 
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the second-order polynomial function in terms of significant factors. A second-order re-

gression formulation was ensured by analysis of variance (ANOVA) in Equation (12): 

y = 2.063x12 − 2.049x2 − 2.027x3 (12) 

The effects of the factors on surface tension were analyzed using ANOVA to deter-

mine the optimized operating parameters. Response surface methodology was performed 

using Statistica version 7.1. This study ensured an experimental matrix of 10 runs, and the 

test results were recorded. A multiple linear regression technique was applied to develop 

a mathematical model for the response. 

2.5. Monte Carlo Simulation (Correlation Test) 

The determination of the correlation between CH4 emissions and the operating pa-

rameters was obtained using Monte Carlo simulation. One simulation and 1000 iterations 

were applied using @RISK software (version 6). The simulation tool derived from the soft-

ware algorithm is given in Equation (13). In Equation (13), C is the correspondence be-

tween CH4 (GHG) (desirable output) and the inputs, which are pH, ORP, DO, M, and T. 

For each parameter, the simulation was repeated to define the correlation. 

C = Riskoutput(Lognormal) +  RiskLognorm (GHG;  pH, ORP, DO, M, T ) (13) 

After simulation, the correlation coefficients (R2) related to the inputs and desirable 

output were determined to obtain the correspondence. If R2 was higher, the input was 

closely related to the desirable output. 

3. Results 

3.1. Results of CH4 Emission Measurements 

This study revealed that malt dust-derived biochar could uptake CH4 emissions from 

dam lake treatments. The CH4 removal capacity of the biochar generated at 250 °C was 

better than at 300 °C and 500 °C. This result overlapped with the experimental adsorption 

results in terms of gas adsorption. Figure 3 shows the seasonal variations in CH4 emissions 

before and after biochar adsorption. The CH4 emission values related to the biochar ad-

sorption process were the average values (mean values) of the CH4 emissions after the 

biochar adsorption processes using three biochars (M1, M2, and M3) separately (Figure 

3). According to the CH4 emission measurements, the CH4 emissions related to the biochar 

adsorption processes were lower than before treatment. This result confirmed that the bi-

ochar adsorption process could reduce the CH4 emissions resulting from dam lake treat-

ment. The highest CH4 emissions were measured in the summer, with a value of 468.72 kg 

CO2e/d (with no biochar adsorption). This could be a result of the increasing activity of 

methanogenesis in the summer period as well as increasing evaporation. The lowest CH4 

emissions were reported in the winter, which is related to the biochar adsorption process 

(248.31 kg CO2e/d). Temperature was the main factor in the reduction in CH4 emissions 

during the cold period. 
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Figure 3. Seasonal variations in CH4 emissions (a total of 4 water samples and 16 gas samples). 

Table 2 shows the CH4 removal using M1, M2, and M3. This biochar removed the 

methane originating from the dam lake treatment. The highest CH4 removal belonged to 

the malt dust-derived biochar generated at the lowest temperature (250 °C) (M1) (19.4%, 

19%, 18.5%, and 17.3%). The lowest CH4 removal rate corresponded to the malt dust-de-

rived biochar produced at the highest temperature (500 °C) (M3) (14.8%, 16.28%, 18.06%, 

and 18.1%). The control sample was based on a raw water sample before treatment for 

each season. One sample was used for each biochar for each season. A total of four water 

samples were performed for four seasons. One water sample was applied for each season. 

There were no replicates. The results of the biochar analyses overlapped with the removal 

amounts. The biggest surface area and higher porosity corresponded to M1 among the 

three types of biochar. As seen, if the temperature of pyrolysis is increased, the capacity 

of uptake is decreased. 

Table 2. CH4 removal using malt dust-derived biochar (%) (a total of 4 water samples and 16 gas 

samples). 

  Adsorbents     

CH4 removal (%) M1 M2 M3   

Winter 17.3 16.0 14.8   

Spring 19.4 18.87 18.1   

Summer 18.5 17 16.28   

Autumn 19 18.5 18.06   

CH4 emission 

(kgCO2e/d)  

Before Treatment 

(control)  
M1 M2 M3  

Winter 295.74 244.57 248.42 251.97  

Spring 415.71 335.06 337.26 340.47  

Summer 468.72 382.00 389.04 392.41  

Autumn 376.65 305.09 306.97 308.63  

Water Quality  

Parameters 

(sampling 

point) 

T (°C) DO (mg/L) ORP (mV) EC (µS/cm) pH 
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Winter 14.8 3.6 +5 290 7.8 

Spring 20 2 −100 187 7.67 

Summer 41 1.4 −250 154 7.1 

Autumn 29 2.85 −55 200 7.43 

3.2. Results of Biochar Analyses and Adsorption 

The results of the CH4 adsorption onto the biochar are given in Table 3. The highest 

CH4 capacity was related to M1, which was the biochar generated at the lowest pyrolysis 

temperature (250 °C) (5.85 mmol/g). The lowest CH4 adsorption capacity corresponded to 

M3, which was produced at the highest temperature (500 °C) (5.61 mmol/g). This could 

have originated, given that the biochar produced from malt dust contained many func-

tional groups, as observed during the FTIR analyses. It is considered that containing func-

tional groups triggered the CH4 adsorption. 

Table 3. Results of experimental adsorption (Dubinin–Radushkevich isotherm CH4 adsorption) and 

gas adsorption capacity of biochar 

  Adsorbents   

Dubinin–Radushkevich isotherm  

(CH4 adsorption) 
M1 M2 M3 

qe (mmol/g) 5.85 5.79 5.61 

Pseudo-first-order and pseudo-second-order kinetic models were applied to deter-

mine the adsorption kinetics of CH4 onto the biochar (Table 4). According to the R2 values, 

we decided which kinetic model was fitted. Considering the R2 values, the pseudo-first-

order kinetic model was fitted for the adsorption of CH4 onto the biochar. According to 

the models, the results were compatible with the BET analyses for CH4 adsorption. The 

BET analysis results are given in Table 5. According to the BET analyses, the highest sur-

face area corresponded to M1. 

Table 4. Kinetic model parameters for CH4 adsorption by biochar. 

CH4 Adsorption   M1 M2 M3 

Pseudo-first-order kinetic model k1 (1/s) 0.057 0.051 0.049 
 qe (mmol/g) 5.85 5.79 5.61 
 R2 0.996 0.991 0.99 
 Error % 1.9 1.91 1.915 
 qt (mmol/g) 5.845 5.789 5.60 

Pseudo-second-order kinetic model k2 (g/mmol s) 0.077 0.073 0.066 
 qe (mmol/g) 5.885 5.86 5.80 
 R2 0.96 0.951 0.949 
 Error % 4.44 4.49 4.53 
 qt (mmol/g) 5.89 5.875 5.83 

Table 5. Textural properties of malt dust-derived biochar. 

Biochar 
BET Surface Area 

(m2/g) 
Surface Area (m2/g) 

Total Pore Volume 

(cm3/g) 

M1 14.995 26.099 0.359 

M2 13.999 24.28 0.29 

M3 12.999 22.95 0.219 

According to the biochar analyses, there was a decrease in the amount of biochar by 

increasing the pyrolysis temperature. The same amounts of malt dust were pyrolyzed at 
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three different temperatures (250, 300, and 500 °C). As the temperature increased, the spe-

cific surface areas and the amount of biochar produced decreased. When the morphology 

and surface structures of the biochar were examined, porosity was increased by increasing 

the temperature for each biochar. Similarly, the SEM analysis results confirmed this result 

(Figure 4). When surface analysis was performed, the biochar had a flatter structure at the 

highest temperature of 500 °C. It can be said that the biochar produced at 250 °C had a 

morphologically higher number of pores and a fibrous structure. It was estimated that the 

biochar produced at 250 °C would be more efficient in terms of porosity, according to the 

SEM images. When the biochar was examined morphologically, it could be said that they 

showed a biogenic origin compatible with their raw materials. All three biochar types ap-

peared to have fibrous, prismatic, and spherical structures. Additionally, the shapes of the 

pores were irregular. 

 
Figure 4. SEM images of malt dust-derived biochar. 

Figure 5 shows the XRD patterns of each type of biochar. According to the XRD spec-

trum, an amorphous structure was observed in all samples. FTIR analyses (Figure 6) were 

also applied. According to the FTIR analyses, three types of biochar contained alkaline 

functional groups. Malt dust-derived biochar had a higher buffering capacity due to the 

alkaline functional groups. Due to the alkaline functional groups, CH4 could be captured 

by malt dust-derived biochar. Soluble organic and inorganic alkalis can reduce short-term 

shock when the functional groups obtain long-term pH stability. 

M1 

 

M3 

 

M2 
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Figure 5. XRD patterns of malt dust-derived biochar. 
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Figure 6. FTIR spectra results of malt dust-derived biochar. 
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3.3. Results of Statistical Analysis and Correlation Test 

The experimental design matrices for the three factors (ORP, DO, and pH) are given 

in Table 6. The quadratic model was selected as it had a low standard deviation (0.0055), 

high values of R2 (0.997), and an adjusted R2 (0.947). According to the Box–Behnken de-

sign, the optimum operating parameters for the minimum CH4 emissions were 4 mg/L of 

dissolved oxygen, −359 mV of ORP, and 7.5 pH (Table 6). Figure 7 demonstrates the con-

verged plot of the recommended method. Figure 8 shows the empirical interaction be-

tween the optimum operating parameters and independent variables. According to Figure 

7, a convergence of three responses was observed. This outcome carried significant mean-

ing. According to the empirical interaction, DO had the highest optimal parameters for 

three responses. 

Table 6. Experimental design matrices for ORP, DO, and pH. 

Run 

Order 

x1 

(DO, mg/L) 

x2 

(ORP, mV) 

x3 

(pH) 

R2 

(Correlation  

Coefficient) 

Standard 

Deviation 

(STD) 

1 0.9 −345 6.9 0.65 0.009 

2 2.8 −324 7.1 0.73 0.0087 

3 0.6 −319 7.8 0.74 0.0083 

4 1.5 −312 7.25 0.69 0.0086 

5 1.65 −315 7.0 0.85 0.008 

6 1.3 −320 7.2 0.83 0.0072 

7 1.2 −300 7.3 0.69 0.0075 

8 4 −359 7.5 0.997 0.0055 

9 2.15 −328 7.45 0.90 0.0064 

10 2.25 −311 7.29 0.78 0.0092 

 

Figure 7. Normal probability plot for recommended methodology. 
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Figure 8. Response surface (the experimental correlation between the optimum operating parame-

ters and independent variables). 

The significance test was performed. The degree of statistical significance was given 

by the p-value. The ANOVA results for the Box–Behnken regression model, which was 

designed for an optimum ORP, DO, and pH, are shown in Table 7. The statistical ANOVA 

test showed that the correspondence was higher, with an R2 (adjusted) value of 94.70%. 

According to the analysis, the optimum operating parameters were 4 mg/L of DO, −359 

mV of ORP, and 7.5 pH. The developed model had a p-value of 0.015, which showed 

higher significance. Thus, it gained significance, as this model can also be applied to other 

dam lake treatment systems. Also, this p-value validated the correlation between the CH4 

emissions and the DO, ORP, and pH. 

Table 7. ANOVA results for Box–Behnken regression model. 

Resource  
Degree of 

Freedom 
Adj DO Adj ORP Adj pH f-Value p-Value 

Model 5 0.5 −370 6.99 3.44 0.015 

Linear 2 1.16 −317 7.00 1.79 0.200 

x1 1 3.90 −226 7.15 1.51 0.100 

x2 1 3.15 −353 7.35 3.26 0.150 

x3 1 0.45 −320 7.49 3.07 0.140 

Square 1 0.8 −325 7.45 4.01 0.010 

x12 1 2.4 −367 7.22 3.51 0.01 

Error 10 1.1 −325 6.95   

Total 22 1.2 −323 7.15   

A Monte Carlo simulation was performed to determine the correlation between the 

CH4 emissions and operating parameters. According to the Monte Carlo simulation, the 

highest correlation (R2 = 0.99) was observed between the CH4 emissions and DO. The sim-

ulation and correlation results are given in Table 8 in detail. ORP followed the DO in terms 

of a higher correlation. The lowest correlation was observed between the CH4 emission 

and pH. The response surface overlapped with the simulation results. According to the 

empirical correlation, the DO and CH4 emissions had the highest correlation. According 

to the response surface, the pH had the minimum correlation with CH4 emissions accord-

ing to the Monte Carlo simulation. 
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Table 8. Results of Monte Carlo simulation related to the correlation between inputs and desirable 

output. 

Iteration Simulation Inputs Desirable Output R2 

1000 1 DO minGHG 0.99 

1000 1 ORP minGHG 0.987 

1000 1 pH minGHG 0.879 

1000 1 M minGHG 0.88 

1000 1 T minGHG 0.89 

In the literature, a Monte Carlo simulation was performed for the water resources. 

Ballio et al. (2004) investigated the convergence in groundwater hydrology using Monte 

Carlo simulation [32]. They similarly conducted a simulation study [32]. They similarly 

found that the Monte Carlo simulation was the best tool for predicting uncertainty in wa-

ter resources [32]. They performed 200.000 Monte Carlo flow iterations. Another study 

was applied by Schiavo (2024) and related to a Monte Carlo simulation for water resources 

[33]. They similarly used 1000 iterations for their study [33]. They used the hydrogeolog-

ical numerical model for groundwater flow. In this study, this tool was used for the cor-

relation analysis. 

3.4. Results and Validation of MCI Based on Biochar Adsorption Process 

Similarly, with the experimental adsorption and BET results, the most effective bio-

char was the M1, which was generated at the lowest temperature (250 °C) with the highest 

methane capture capacity. This indicator was more effective and was near to 1 (100% of 

the capture capacity). In summer, the values of the methane capture index were calculated 

at the highest value (79, 77.9, and 76%, respectively, for M1, M2, and M3) due to higher 

CH4 emissions (Figure 9). Seasonal changes in temperature affected the capture capacity. 

The average MCI values of M1, M2, and M3 were reported as 77.9, 76.9, and 74.2%, re-

spectively. These values confirmed that agro-industrial biochar could capture CH4 emis-

sions and reduce the activity of methanogenesis in the dam lake. 

 

Figure 9. MCI values based on the biochar adsorption process. 

After the development of MCI, a Monte Carlo simulation was performed to validate 

the recommended models. A sensitivity analysis was applied to validate the indicator. The 

simulation results are given in Figure 10. The indicator was meaningful in the range of 
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93.97 and 95.07%. The standard deviation was 0.03. This result validated that this indicator 

could be applied to all methane-emitter water resources. One of these resources was dam 

lakes. 

 

Figure 10. Validation of recommended model (MCI) (simulation results). 

4. Discussion 

In the literature, there were limited studies related to this topic. Also, there was lim-

ited information related to the emissions and concentration of methane from water reser-

voir treatment. Gruca-Rokosz and Cieśla (2021) reported that the diffusive CH4 emission 

water–air interface in reservoirs varied in the range of 0.02 and 2500 mmol/m2d [18]. They 

only focused on reservoirs. They reported the effect of biogenic materials (expressed as 

phosphorus and nitrogen) on CH4 flux. Oppositely, Chaudhary et al. (2017) and Berberich 

et al. (2019) showed no correlation between the abundance of methanogens and CH4 pro-

duction in reservoirs [34,35]. In this study, the highest CH4 emission was observed in sum-

mer at higher temperatures over 45 °C. Therefore, it could be said that thermophilic con-

ditions triggered the CH4 emissions and the activity of methanogenic microorganisms. 

Similarly to this study, Beaulieu et al. (2016) reported the highest CH4 emissions in the 

summer season, with values of 4.8 (±2.1), 33.0 (±10.7), and 8.3 (±2.2) mg CH4 m−2 h−1 for a 

water reservoir [20]. Apart from these studies, this study concentrated on mitigating the 

CH4 emissions. In contrast with this study, biochar enhanced CH4 generation for the an-

aerobic configurations in many studies. The boosting impact could result in biochar easily 

adsorbing CO2 in the biogas in higher amounts. Indirectly, a reduction in CO2 could lead 

to an increase in CH4 in the biogas content. Lim et al. (2020) increased CH4 generation by 

18% using wood chip-derived biochar [36]. A reduction in CO2 could trigger an increase 

in CH4 content and production in biogas formation. Yu et al. (2021) investigated the effects 

of rice husk-derived biochar on CH4 production [37]. They reported that the volumetric 

CH4 production rate enhanced in the range of 27.8–96.4% [37]. In this study, CH4 uptake 

capacity was investigated using malt dust-derived biochar. In comparison to the study by 

Lim et al. (2020), malt dust-derived biochar had a higher CH4 adsorption capacity than 

wood chip-derived biochar [36]. There were limited studies and restricted focus related to 

CH4 emissions reduction from drinking water treatment. Maksimavicius and Roslev 

(2020) investigated the amount of CH4 and the formation of methane-oxidizing bacteria 

in groundwater treatment plant removal [4]. 
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5. Conclusions 

Biochar derived from malt dust was evidenced to reduce the CH4 emissions resulting 

from dam lake treatment by reducing microbial activity and promoting buffering capac-

ity. Due to its characterization, biochar has gained much attention in capturing and re-

moving greenhouse gas emissions. A new methane capture index was developed and val-

idated in this study. This study represented an experimental calculation methodology re-

lated to biochar application in order to reduce the CH4 emissions from water reservoir 

treatment. This study confirmed that agro-industrial biochar is a cost-effective and envi-

ronmentally friendly application that can reduce CH4 emissions. DO, ORP, and pH were 

the most important operating parameters that affected the CH4 emissions. Therefore, case 

studies based on the practical application of biochar in full-scale water treatment systems 

should be increased in future research. Also, this study recommends cleaner production 

and waste reduction for brewery industries. Malt dust could be used as feedstock to pro-

duce biochar for various applications.  
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