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Abstract: The accuracy of water quality prediction and assessment has always been the focus of
environmental departments. However, due to the high complexity of water systems, existing methods
struggle to capture the future internal dynamic changes in water quality based on current data. In
view of this, this paper proposes a data-driven approach to combine an improved deep belief
network (DBN) and long short-term memory (LSTM) network model for water quality prediction
and assessment, avoiding the complexity of constructing a model of the internal mechanism of water
quality. Firstly, using Gaussian Restricted Boltzmann Machines (GRBMs) to construct a DBN, the
model has a better ability to extract continuous data features compared to classical DBN. Secondly, the
extracted time-series data features are input into the LSTM network to improve predicting accuracy.
Finally, due to prediction errors, noise that randomly follows the Gaussian distribution is added to
the assessment results based on the predicted values, and the probability of being at the current water
quality level in the future is calculated through multiple evolutionary computations to complete the
water quality assessment. Numerical experiments have shown that our proposed algorithm has a
greater accuracy compared to classical algorithms in challenging scenarios.

Keywords: deep belief network; long short-term memory; water quality prediction and evaluation

1. Introduction

The recent development of society and the economy has brought an improvement in
the quality of life, a constantly increasing degree of industrialization, and the pursuit of
various benefits while ignoring the natural ecological environment, species diversity, and
other ecological issues, which has led to the problems of ecological imbalance, high water
pollution, water resource shortage, species reduction, and other adverse consequences.
At present, multiple regions of the world are in a state of water shortage. For example,
the per capita water consumption in China is only 2300 cubic meters, less than a quarter
of the global average level [1–3]. Water pollution will further exacerbate the shortage
of water sources. Simultaneously, drinking contaminated water can endanger human
lives, and it is estimated that about 190 million people fall ill every year as a result, and
nearly 6 million of them die from some kind of disease. In addition, the phenomenon
of water blooming could eventually cause the disappearance of many animal and plant
species in the water ecosystem and destroy the ecological balance [4]. Evidently, the loss
of personal safety caused by water pollution is immeasurable. Therefore, the analysis
of the factors causing water pollution and the prediction of the trend of water quality
change will provide an effective basis for the prevention and control of water pollution,
which will be of great significance for the protection of species diversity and human life
activities. Water quality prediction represents the prediction of the evolution of elements
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that affect water quality over a certain period in the future using water quality models and
data obtained using water quality measurements. At present, the existing water quality
prediction methods can mainly be divided into two categories: water quality prediction
methods based on mechanism models and water quality prediction methods based on
data-driven models [5,6].

(1) Water quality prediction methods based on mechanism models

The water quality prediction methods based on mechanistic models mainly determine
water quality using a mathematical model of the assessment of various elements in the
water. The advantage of these methods is that their parameters are easy to tune and express,
and they have a very clear physical meaning; also, the prediction model is robust and
adaptable. Commonly used mechanism models generally include the MIKE model, CE-
QUAL-W2 model, EFDC model, and WASP model [7–10]. However, due to the complex
internal mechanism of some water bodies, it is difficult and time-consuming to directly
describe the evolution process of water quality with mathematical expressions. Besides
that, it is difficult to determine the value of some structural variables directly, which limits
the practical application of these methods. Namely, if the parameters of the mathematical
model are not well tuned or there are large errors, the accuracy of the model will be
seriously affected.

(2) Water quality prediction methods based on data-driven models

Data-driven models are constructed using a large amount of data for model devel-
opment and training. The main advantage of methods based on data-driven models is
that they can accurately predict the “black box” events and are suitable for systems whose
internal mechanisms are too complex to be described using mathematical expressions.
Data-driven models have been widely used in many fields since they can learn data rela-
tionships using various types of neural network models [11]. In [12], the long short-term
memory (LSTM) neural network model was used for time-series prediction, accurately
revealing the future development trend of water quality and indicating the application
potential of the LSTM model in drinking-water quality prediction. In [13], a data-driven
method for water quality prediction and real-time warning was developed by combining an
improved genetic algorithm (IGA) and a backpropagation neural network (BPNN) model.
In [14], a task-oriented adaptive radial basis function (ATO-RBF) network was proposed to
design the prediction model, which can obtain the effluent biochemical oxygen demand
(BOD) and effluent total nitrogen (TN) accurately and timely. The above studies can quickly
and accurately establish water quality prediction models by mining potential connections
between data without any prior knowledge. In all, data-driven water quality models have
been widely used and are not influenced by geographical and environmental factors of
water bodies but require extensive and high-quality actual water quality measurement data
to train the models. If the quality of the obtained data is low, the accuracy of the model will
be seriously affected.

Water quality assessment refers to the selection of the corresponding water quality
parameters, water quality content standards, and other related parameters according to the
required evaluation objectives in the field of water quality. Currently, the existing water
quality assessment methods can be roughly divided into three main categories. The first
category evaluates water quality by measuring biochemical elements in the water [15].
In this category, model evaluation processes are performed by analyzing the ecological
conditions of water quality and the relationships between pollutants and organisms in
the water. The second category is based on the nutritional status index, which is used to
evaluate the water quality indicators, and commonly used indicators include the trophic
status index (TSI), trophic level index (TLI), and water quality index (WQI). In [16–21], the
WQI was used to evaluate water quality. The WQI was defined by the National Foundation
of Health (NSF). The initial WQI values range from 0 to 100 and are calculated based on
nine variables: dissolved oxygen (DO), BOD, nitrate, phosphate, fecal coliform, pH value,
temperature, turbidity, and total solids. In [16], an extensive review of water quality index
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models is provided, covering a variety of models and their use in surface water quality
assessment. In [17], the use of the WQI method to assess the overall quality of the water,
using various parameters to assess Poyang Lake, helps to understand the current state of
Poyang Lake’s water quality and can provide insights on potential environmental impacts
and human health issues. In [18], the water quality of lakes is assessed using the WQI
method, and the multivariate analysis technique is used to gain an in-depth understanding
of the water quality status and the possible influencing factors. In [19], this paper proposes a
dynamic water quality index model based on a functional data analysis to better understand
water quality change and its influencing factors. In [20], this paper aims to investigate the
overall water quality of Skardu spring water using the WQI method. In [21], the study
used a composite WQI and a self-organizing map (SOM) to assess water quality in river
catchments. In general, the WQI combines several water quality parameters to provide
an assessment of the overall picture of water quality. However, the weight setting and
parameter selection may be affected by subjective factors, resulting in the deviation of
results. Another important index method for assessing water quality is TSI. In [22–24],
the authors adopted the TSI based on transparency and combined it with the content
of total phosphorus (TP) and chlorophyll (Chl-a) to calculate and classify the lake water
quality into four basic types: lean nutrient type, medium nutrient type, eutrophic type, and
excessive eutrophic type. In the future, an improved TSI index could be defined to evaluate
the nutritional status of water quality more accurately. To sum up, TSI addresses specific
problems: it is used to assess the degree of eutrophication of water bodies and provides
specific indicators for water ecosystems. In contrast to WQI, TSI focuses on eutrophication
and cannot provide a comprehensive assessment of overall water quality. The third category
uses neural networks to process data, learn informative features, construct non-linear
relationships between various pieces of information, and evaluate water quality. Based on
the Monte Carlo method, a two-dimensional hydrodynamic uncertainty eutrophication
model was constructed [25] to reproduce the observed water temperature, nutrients, and
algae conditions accurately. This method has shown a reasonable numerical representation
ability of the actual hydrodynamic and eutrophication dynamics of a lake. It should be
noted that the internal mechanism of water quality is relatively complex, so the criteria
used in evaluation methods can vary. Namely, each of the evaluation methods has its own
advantages, and an appropriate method should be determined in a comprehensive way by
jointly considering the climatic environment, geographical location, biological status, and
human factors.

Most of the existing water quality modeling or time-series predicting methods are
based on the mechanism or the LSTM model [7–10,26]. This paper not only avoids the
complexity of constructing a mechanistic model but also extracts data features to reduce the
dependence on data quality, which proposes an improved deep belief network (DBN) and
LSTM fusion method to construct a water quality prediction model based on a data-driven
approach, and constructs a DBN with Gaussian Restricted Boltzmann Machines (GRBMs)
stacking to improve the algorithm, noted as GDBN, which solves the problem of data loss
in the feature extraction of the classical DBN neuron binary problem. Firstly, the DBN is
constructed using GRBMs to extract data features; secondly, the extracted time-series data
features are input into the LSTM network, and the prediction accuracy is improved using
the ability of LSTM to store time-series information; finally, due to the prediction error,
assessment results based on the predicted values are added to the random noise obeying
Gaussian distribution, and the probability of being at the current water quality level in the
future is calculated through multiple evolutionary calculations to achieve water quality
health assessment and risk management. Numerical experimental results show that the
algorithm proposed in this paper has good accuracy in challenging scenarios.

The rest of this paper is organized as follows. In Section 2, the basic principles of the
LSTM and DBN networks used to design the proposed improved DBN-LSTM prediction
model are introduced. In Section 3, the GDBN-based modeling approach is proposed,
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and the prediction method based on the GDBN-LSTM model is described in detail. Two
experiments are shown in Section 4 and the main conclusions are presented in Section 5.

2. LSTM and DBN Networks
2.1. LSTM Network

LSTM is a temporal recurrent neural network, a variant recurrent neural network
(RNN) designed to solve the problem of RNNs being unable to handle long-term mem-
ory. The LSTM is suitable for handling and predicting time-based problems. The main
advantage of LSTM is that it can ensure long-term memory so that the problems of gradient
disappearance and explosion in classical RNNs can be solved [26]. The structure of LSTM
is shown in Figure 1.
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Figure 1. The LSTM structure.

In Figure 1, xt denotes the network input of the current moment, ht−1, is the external
state of the memory unit at the previous moment, and ct is the internal state of the memory
unit at the previous moment. The LSTM adds a new memory unit to store long-term
memory, but this increases the complexity of the LSTM structure [27]. The LSTM has three
gate units, namely the forget gate, input gate, and output gate, which are, respectively,
defined as follows:

(1) Forget gate: In this gate, it is decided with a certain probability whether to forget
the previous layer of the hidden neuron cell state or not, and the corresponding
mathematical expression is given by

f (t) = σ(w f ht−1 + U f xt + b f ) (1)

(2) Input gate: This gate handles the input for the current sequence position, and it is
defined as follows:

i(t) = σ(wiht−1 + Uixt + bi) (2)

(3) Output gate: The output at moment t− 1 depends on the implicit state ht−1 and the
current input xt, which can be expressed as follows:

O(t) = σ(w0ht−1 + U0xt + b0) (3)

The candidate state can be calculated by

C′(t) = tanh(wcht−1 + Ucxt + bc) (4)
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The updated cell state is calculated by

C(t) = C(t− 1)� f (t) + i(t)� C′(t) (5)

The current external state is given by

h(t) = O(t)� tanh(C(t)) (6)

2.2. DBN Network

A deep confidence network represents a deep probabilistic digraph model whose
structure is composed of multiple layers composed of a different number of neurons. There
is no connection between the nodes in the same layer, and they are independent of each
other. The neurons of two adjacent layers are fully connected; the lowest layer of this neural
network is a visible layer, which is used to input data features, and the other layers denote
hidden layers. The connection between the layers is from top to bottom [28]; a simplified
structure of a deep confidence network is shown in Figure 2.
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Figure 2. The simplified structure of a deep confidence network consisting of three layers.

For a DBN with m layers, the bottom layer is considered the visible layer and is used
to input sample features. The connection of the top two layers of neurons is bidirectional
and can be regarded as two layers in the RBM structure, which are used to generate the
probability of the previous layer of neurons. In addition to the interconnection of neurons
at the top two layers of the DBN structure, the probability of variables at each layer being
opened depends on variables at the upper layer. Each layer of the deep confidence network
can be regarded as a sigmoid confidence block. During sample generation, a restricted
Boltzmann machine on the top layer is run first several times during the Gibbs sampling
until the heat is balanced [29]. The expression of the energy function to reach thermal
equilibrium is as follows:

E(v, h) = −aTv− bTv− vTwh (7)

where v is visible units, h is hidden units, w is the weight between v and h, and a and b are
the bias of the visible units and hidden units, respectively.

When equilibrium is reached, the probability value of the next hidden layer is gen-
erated, and the conditional distribution sampling of variables in each layer is performed
successively. The formula for the joint probability distribution of the visible and hidden
layers is as follows:

p(v, h) =
e−E(v,h)

∑
v

∑
h

e−E(v,h)
(8)

When the value of the upper-layer neuron is given, the value of the lower-layer neuron
is conditionally independent of it, so it can be independently sampled. The sampling
process is as follows.
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The probability of hidden-layer neurons being activated is calculated by

p(hj|v) = σ(bj + ∑j wijvi) (9)

The probability that the visible-layer neuron is activated via the hidden-layer neuron
is given by

p(vi|h) = σ(ai + ∑j wijhj) (10)

where σ is the sigmoid activation function, but other logistic functions could also be used
as an activation function. The same-layer neurons are independent of each other, so the
probability density also has the characteristic of independence. The training process is
shown in Figure 3.
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DBN layer-by-layer pre-training method: First, define the training set, learning rate,
network layer number, weights, and biases; the weights and biases are initialized, where
the bias initialization is set to zero and the weights are initialized to generate random
numbers that conform to a normal distribution with a zero mean and a variance of 0.1.
Next, sample the hidden variables from the training set, calculate the probability and value
of the hidden variables at the next layer based on the hidden variables at the current layer,
and repeat this process until the last layer is reached. After that, the implicit variable of the
penultimate layer is taken as a training sample, and the last layer is trained with a restricted
Boltzmann machine to obtain the training weight and bias values [30].

To make the model converge to a local optimum faster, the DBN performs the fine
adjustment of weights, and the connection weight between every two layers can be ex-
pressed as a combination of the downward generation matrix and the upward cognitive
matrix. The fine-tuning process is presented in Figure 4. The main goal is to calculate the
probability of the upper layer of the upward cognitive weight matrix for sampling and
modify the generated weight matrix to make its probability reach the maximum. When
the RBM of the top layer reaches the thermal equilibrium, by generating the weight matrix
and calculating the cognitive weight matrix in turn, the upward conditional probability is
maximized [31].
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3. Proposed GDBN-LSTM Model
3.1. GDBN Model

When ordinary DBN trains RBM layer by layer, the hidden-layer RBM is binary, which
can extract data features but is prone to information loss. So, the DBN with Gaussian RBM
is proposed to train the network, noted as GDBN. First, the DBN with Gaussian RBM
stacking is more suitable for continuous variables because GRBM is a restricted Boltzmann
machine that can be used to process real-valued features. In practical applications, much
of the data is of a continuous type, such as pixel values in images and sample values in
audio. Therefore, using a GRBM instead of the traditional binary RBM can better handle
these continuous variables. The second is a more accurate feature representation: because a
GRBM can better model real distributions, the implicit feature representations it generates
are typically more accurate than a binary RBM. This can help improve performance, for
example, in tasks such as classification, clustering, or data dimensionality reduction; it
can also effectively suppress overfitting. Compared with the traditional binary RBM,
the probability density function of a GRBM has more degrees of freedom and can better
represent the complex structure of the data. This can make the model more flexible and
help suppress the overfitting phenomenon.

The expression of the energy function of a GRBM is as follows:

E(v, h) = −
nv

∑
i=1

(vi − ai)
2

2σ2
i

−
nh

∑
j=1

(hj − bj)
2

2σ2
j

−
nv

∑
i=1

nh

∑
j=1

(vi − ai)(hj − bj)

σiσj
wij (11)

where v is the visible-layer neuron state vector; h is the hidden-layer neuron state vector;
ai and bj are the bias parameters of the i and j neurons in v and h, respectively; nv and nh
are the number of neurons in the visible and hidden layers, respectively; σ2

i and σ2
j are the

noise variances of the i and j neurons in the visible and hidden layers, respectively; and wij
is the weight of the neuron connecting the i visible layer and the j hidden layer.

The improvement process of DBN is to choose the positive-etheric distribution function
at the time of sampling, which is calculated as follows:

p(xi = x|x/i) =
1√

2πσ2
exp(

−(x− µ)

2σ2 ) (12)

where µ is the parameter learned from the GRBM network, which can be calculated from
the current state xi and σ is 1.

The conditional probability formula for the explicit layer to the hidden layer in GRBM
is as follows:

p(vi|h) = N(ai + ∑j wijhj, 1) (13)
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The conditional probability formula of the hidden layer to the explicit layer in GRBM
is as follows:

p(hj|v) = N(bj + ∑i wjivi, 1) (14)

3.2. GDBN-LSTM Design

The proposed prediction model uses the GDBN model to mine the essential char-
acteristics of water quality time-series data and inputs them into the LSTM network for
prediction. First, the DBN model is used for pre-training, and the contrastive divergence
(CD) algorithm was used to train RBM in a layer-by-layer manner using Gibbs sampling to
obtain the weights between layers and extract the basic information reflecting the change in
water quality characteristics. After that, the features are input into the LSTM to predict the
next time sequence according to the hidden units and memory units in the neural network.
The network model is shown in Figure 5.
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The specific steps are as follows:
Step 1: Methods for determining hyperparameters: The values of different hyperpa-

rameters are selected, and the mesh search method and K-fold cross-validation are used to
determine the most hyperparameter combinations.

Step 2: GDBN model construction: The weights and thresholds of the GDBN
layer are initialized and the data are pre-trained using the CD algorithm with one-step
Gibbs sampling.

Step 3: LSTM model construction: The input layer of the LSTM is used to receive
the characteristics of the pre-trained GDBN model’s output. The last LSTM layer is a full
connection layer, and it outputs the final desired dimension.
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Step 4: GDBN-LSTM model construction: Because the GDBN model adopts a greedy
algorithm, the weight of each layer converges to a local optimum rather than to the global
optimal value, so the backpropagation algorithm is adopted to calculate the gradient
layer by layer for the overall fine-tuning of the model and parameter update; this process
represents supervised learning.

Here are the specific steps for the training process:
Step 4.1: Initialization parameters: Using the pre-training method of GDBN, the

weight matrix and bias vector are trained and used to initialize the hidden layer separation
unit of the LSTM.

Step 4.2: Forward propagation: The input sequence X is forward propagated to the
LSTM layer, to obtain the corresponding output feature vector with the recurrent neuron
hidden state; the feature representation vector extracted using the DBN model is obtained.

Step 4.3: Present the fused features: For example, splice the hidden state of the LSTM
layer with the DBN-extracted feature vector into a brand-new tensor and go to the next step.

Step 4.4: Fine-tune the model parameters: Take the paper’s own parameters that need
to be optimized, define the loss function with the desired values, and update the paranoia
terms and weight matrix using standard backpropagation techniques.

Step 4.5: Calculate the error and update: The gradient of the selected loss function is
calculated and then all adjustable parameters are updated iteratively inside the network
using a learning algorithm.

The flowchart of the proposed algorithm is shown in Figure 6.

3.3. Water Quality Assessment Method
3.3.1. Single-Factor Index Evaluation Method

Due to the condition of water quality collection equipment and the problem of a
variable water quality environment, it is challenging to achieve accurate and comprehensive
water quality data collection, and, thus, it is difficult to apply the comprehensive evaluation
index in general. This problem can be addressed using the single-factor index evaluation,
which evaluates each pollution factor separately and obtains the results of reaching the
standard rate, exceeding the standard rate, and exceeding the standard rate by multiple
statistics. This approach can objectively reflect the degree of water pollution, clearly judge
the main pollution factors, periods, and pollution areas of the water, provide the spatial–
temporal pollution changes, and reflect the pollution history [32]. The single-factor index
evaluation formula is as follows:

Ii =
Ci
Si

(15)

where Ci is the measured concentration of the water quality parameter i at point j and Si is
the evaluation standard of the water quality parameter i. The higher the value of Ii is, the
greater the pollution degree of the water quality parameter at point i is and the worse the
water quality is.

The DO value is a basis for studying the self-purification ability of water. Namely,
when the DO in the water body is consumed, the time to recover to the initial state is short,
the water body has a strong self-purification capacity, and water pollution is not severe;
otherwise, water pollution is severe, and the self-purification ability of the water body is
weak, and it can even lose its self-purification ability. Therefore, the larger the amount of
DO in the water is, the better the water quality and the stronger the self-purification capacity
of the water body will be. The standard environmental index for DO is expressed by

IDO =


|DO f−DOj|
DO f−DOs

(DO ≥ DOs)

10− 9
DOj
DOs

(DO < DOs)
(16)

where DO f represents the saturated DO concentration at the corresponding temperature,
and DO f = 468/(31.6 + T); DOj represents the detected value of DO concentration; and
DOs represents the evaluation standard of DO concentration.
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The water quality evaluation standard based on the DO content is given in Table 1.

Table 1. Water quality evaluation criteria based on the DO content.

Water Quality Category DO Content (mg/L)

I 7.5
II 6
III 5
IV 3
V 2

3.3.2. Trophic Status Index

Carlson proposed to measure the nutritional status of water bodies using the TSI
value and divided water quality into four basic categories: hypertrophic, mesotrophic,
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eutrophic, and hypereutrophic [33]. Carlson’s TSI model, developed for lakes with a small
amount of rooted aquatic plants and non-algal turbidity, can be used to compare lakes in
an area and assess changes in the trophic status over time. The progression of a lake from
eutrophication to eutrophication can be determined by measuring TP, the sediment depth
(SD), and Chl-a values. Carlson’s index has the advantages of a simple application and a
small data requirement. In addition, Kratzer and Brezonik included the TN concentration
in the TSI index based on the TN concentration as an improvement in the TSI index [34].
The TSI value is calculated based on transparency. Every 10 units in the system represents
a reduction in transparency by half, an increase in Chl-a concentration by one-third, and a
doubling of TP. The TSI value can be calculated from these four parameters, as shown in
Table 2.

Table 2. The TSI classification.

TSI SD
(m)

TP
(µg P/L)

Chl-a
(µg/L)

TN
(mg N/L)

Ultraoligotrophic 0 64 0.75 0.04 0.02
Ultraoligotrophic 10 32 1.5 0.12 0.05
Ultraoligotrophic 20 16 3 0.34 0.09

Oligotrophic 30 8 6 0.94 0.18
Oligotrophic 40 4 12 2.6 0.37
Mesotrophic 45 2.8 17 5 0.52
Mesotrophic 50 2 24 6.4 0.74

Eutrophic 53 1.6 30 10 0.92
Eutrophic 60 1 48 20 1.47

Hypereutrophic 70 0.5 96 56 2.94
Hypereutrophic 80 0.25 192 154 5.89
Hypereutrophic 90 0.12 384 427 11.7
Hypereutrophic 100 0.062 768 1183 23.6

The TSI calculation formula is as follows:

TSI(Chl − a,
µg
L
) = 10× [6− 2.04− 0.68 ln(Chl − a)

ln 2
] (17)

TSI(TP,
µg
L
) = 10× [6− ln(

48
TP

)÷ ln 2] (18)

TSI(SD, m) = 10× [6− ln(SD)

ln 2
] (19)

TSI(TN,
mg
L

) = 10× [6− ln(
1.47
TP

)÷ ln 2] (20)

TSI = (TSI(Chl − a,
µg
L
) + TSI(TP,

µg
L
) + TSI(SD, m) + TSI(TN,

mg
L

))÷ 4 (21)

SD by turbidity is calculated by

log(SD) = −0.61× log(TUR) + 0.51 (22)

where 1NTU = 1TUR.

3.4. Performance Evaluation

In this study, the prediction performance of the two networks is evaluated using four
evaluation indices: symmetric mean absolute percentage error (SMAPE), root mean square
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error (RMSE), mean absolute error (MAE), and the coefficient of determination (R2), which
are calculated as follows:

SMAPE =
100%

n
·∑n

i=1
|ŷi − yi|

(|ŷi|+ |yi|)/2
(23)

RMSE =

√
1
n∑n

i=1 (ŷi − yi)
2 (24)

MAE =
1
n∑n

i=1|ŷi − yi| (25)

R2 = 1− ∑n
i=1 (yi − ŷi)

2

∑n
i=1 (yi − yi)

2 (26)

4. Experimental Verification
4.1. Multivariable Timing Prediction and Evaluation
4.1.1. Data Selection and Preprocessing

The data were collected at the same time every day from June 2009 to March 2013. The
eight variables were DO, Chl-a, oxygen consumption (OC), ammonia nitrogen (NH3-N), TP,
total nitro-ammonia nitrogen (TN-NH3-N), TN, and turbidity. Since the dimensions of the
eight variables were different, and their orders of magnitude differed significantly, when
the order of magnitude of data in different columns was too large, the changes in large
numbers would cover the changes in decimals during calculation; therefore, the collected
data were normalized, aiming to make the data dimensionless and map all data to the
interval of (0, 1) [35].

In addition, timing prediction was used. The prediction method was that eight
variables of the previous three days were used to predict eight variables of the next day
and then the pane slide.

4.1.2. Experimental Parameter Settings

In the experiment, eight variables measured in the first three days, including a total
of 24 water quality characteristics, were taken as model input, and eight variables on the
next day were taken as model output. There were 1355 sets of input and output data. The
input–output diagram of the proposed model is shown in Figure 7.
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The first 80% of the data were used as training data, and the remaining 20% of the
data were used as test data. Among them, the training set is divided into four parts for
cross-verification to obtain the optimal hyperparameters. First, the training data were input
into the GDBN network for pre-training. Networks with two, three, and four layers were
set up. Finally, the GDBN network had three hidden layers throughout the experiment,
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which performed best on verification sets; the three hidden layers were regarded as three
RBMSs for Gibbs sampling. The bottom layer denoted the visible layer, and the top layer
was the hidden layer. Unsupervised training was performed to obtain the weights between
the GDBN layers. Other hyperparameter settings that perform best on the validation set are
obtained through experiments, too. The resulting parameters for the best performance of
the revalidation set are as follows: The first layer had 48 neurons, the second layer consisted
of 96 neurons, and the third layer had 24 neurons. The number of training epochs was 200.
The activation function of the hidden layer was the ReLU function. The LSTM network had
64 neurons, which was defined using the output data dimension, and used the dropout
layer to prevent overfitting with a drop probability of 0.2. The training set was constructed
using the small batch gradient descent method, and the batch size was 32. Then, the
gradient of each group was evaluated, and the model parameters were updated. The loss
function was the mean square error (MSE). The number of iterations of the GDBN-LSTM
network was 100.

To verify the feasibility and prediction effect of the proposed GDBN-LSTM model, the
LSTM model, DBN model, DBN-LSTM model, and Convolutional Neural Network (CNN)
model were used as comparison models in the experiment to predict the contents of DO,
Chl-a, OC, NH3-N, TP, TN-NH3-N, TN, and turbidity. In these networks, the grid search
method and cross-validation method are used to determine hyperparameters. Among
them, the CNN convolutional layer contains 32 convolution kernels with the size of 3 × 3,
which are filled with zero, and the activation function uses the ReLU function. The size of
the pooled layer kernels is 2 × 2, and the step size is 2, to realize subsampling. The LSTM
has three layers, the first with 100 neurons, the second with 50 neurons, and the third with
25 neurons, each with dropout layers that drop neurons with a probability of 0.2. The DBN
has three layers, the first layer has 48 neurons, the second layer has 96 neurons, and the
third layer has 24 neurons. The parameters of the DBN-LSTM network are the same as
those of the GDBN-LSTM network.

4.1.3. Experimental Results Analysis

The comparison results of the five models on the test set are shown in Figure 8, where
the dark-blue line represents the true value, the yellow line represents the predicted value
of DBN-LSTM, the green line represents the predicted value of CNN, the light-blue line
represents the predicted value of LSTM, the purple line represents the predicted value of
DBN, and the red dashed line represents the predicted value of GDBN-LSTM.

As can be seen from Figure 8, the predicted results of the five models indicated that
these models achieved a good fit between the real and predicted values. Furthermore,
the prediction results of the DBN-LSTM model and GDBN-LSTM model were evidently
better than those of the single LSTM model and DBN model in all water quality parameters,
which indicated that DBN has the ability to extract data features, and can gradually abstract
data features through multi-layer learning, and each layer can learn higher-level abstract
features from the original data, thus helping to better characterize the data and lay the
foundation for further processing. In order to better analyze the conclusion, the statistical
results of the five models regarding different evaluation indicators are presented in Table 3.

As shown in Table 3, it is clear that the proposed algorithm GDBN-LSTM performed
best in all variables. GDBN-LSTM results are superior to DBN-LSTM because GDBN has
some advantages over DBN in processing continuous numerical data. DBN uses binary
random variables, while GDBN uses Gaussian distribution to model data, so it is more
suitable for continuous numerical data. This feature can better capture the correlation and
distribution between continuous data, which makes for a better performance in prediction
problems. GDBN-LSTM is also superior to the CNN network, because, on the basis
of extracting data features, LSTM has advantages in processing time-series data, can
more accurately capture the relationship between the past and the future, and has a good
advantage in such prediction problems. Although the proposed algorithm has more
advantages than other network results, some values are still low in multivariate water
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quality parameter prediction, such as Chl-a, OC, and TP. This is because in multivariate
prediction, there may be different degrees of correlation between different variables. Some
variables may have a stronger association with the target variable, making it easier to make
accurate predictions, while others may have a lower correlation with the target variable,
leading to less accurate predictions. The data quality of different variables may vary. Some
variables may have more complete and accurate data, while others may have missing
values, outliers, or noise, all of which can affect the predicted results. In a machine learning
model, some variables may have a greater impact on the output of the model, which is
called different feature importance. The model is more inclined to predict some features,
while the prediction ability of other features is relatively weak.

Table 3. The statistical results of the different network indicators of the five models.

SMAPE RMSE MAE R2

DO (mg/L)

LSTM 0.0429 0.9105 0.6716 0.8102
DBN 0.0550 1.1395 0.8816 0.7028

DBN-LSTM 0.0415 0.8523 0.6720 0.8337
CNN 0.0605 1.1687 0.9943 0.6874

GDBN-LSTM 0.0329 0.7196 0.5105 0.8815

Chl-a (mg/L)

LSTM 0.1826 2.9331 1.6166 0.4254
DBN 0.1939 2.9282 1.6808 0.4273

DBN-LSTM 0.1570 2.8669 1.5746 0.4511
CNN 0.1451 2.8392 1.4729 0.4589

GDBN-LSTM 0.1319 2.7544 1.3509 0.4958

OC (mg/L)

LSTM 0.0932 0.5020 0.3810 0.1979
DBN 0.0839 0.4632 0.3455 0.1652

DBN-LSTM 0.0931 0.5006 0.3792 0.1919
CNN 0.0972 0.5204 0.3996 0.1599

GDBN-LSTM 0.0791 0.4403 0.3212 0.3554

NH3-N
(mg/L)

LSTM 0.4857 0.0641 0.0517 0.6455
DBN 0.4516 0.0571 0.0455 0.7191

DBN-LSTM 0.3828 0.0546 0.0389 0.7429
CNN 0.3694 0.0543 0.0390 0.7454

GDBN-LSTM 0.3578 0.0539 0.0381 0.7491

TP (mg/L)

LSTM 0.4077 0.0263 0.0198 0.2924
DBN 0.4480 0.0303 0.0205 0.2078

DBN-LSTM 0.3389 0.0240 0.0163 0.2475
CNN 0.3013 0.0230 0.0185 0.3073

GDBN-LSTM 0.2886 0.0202 0.0145 0.4702

TN-NH3-N
(mg/L)

LSTM 0.2250 0.4793 0.3358 0.8228
DBN 0.1976 0.5598 0.3610 0.7581

DBN-LSTM 0.2200 0.4796 0.3578 0.8225
CNN 0.1471 0.4378 0.2610 0.8521

GDBN-LSTM 0.1297 0.4164 0.2278 0.8662

TN (mg/L)

LSTM 0.2243 0.4949 0.3581 0.8283
DBN 0.1869 0.4560 0.3087 0.8542

DBN-LSTM 0.2094 0.4808 0.3634 0.8379
CNN 0.1389 0.4266 0.2508 0.8783

GDBN-LSTM 0.1218 0.4127 0.2328 0.8747

Turbidity
(NTU)

LSTM 0.2178 11.0218 7.7475 0.4289
DBN 0.2894 12.5788 10.1933 0.2561

DBN-LSTM 0.1375 9.2058 5.3354 0.6016
CNN 0.1465 9.9364 5.3282 0.6245

GDBN-LSTM 0.1391 9.2617 5.2647 0.6967
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4.1.4. Water Quality Evaluation Experiment

In this experiment, the TSI method was used to evaluate the water quality. Four
indices, including Chl-a, TP, TN, and SD, were used to evaluate the water quality predicted
via the LSTM, DBN, DBN-LSTM, GDBN-LSTM, and CNN models according to the above
formulas (27)–(32). The box diagram of the TSI value distribution is shown in Figure 9.

The red line in the middle of the boxplot represents the median of the data, and the
boxes at both ends of the boxplot represent the upper and lower quartiles of the data. They
can show the distribution of the data. The length of the box can be used to measure the
variation of the data. The boxplot in Figure 9 shows that compared to the four models, the
GDBN-LSTM model could predict the water quality better, and its value range of digit and
TSI were closer to the real values. The SMAPE, MAE, RMSE, and R2 were used to evaluate
the TSI calculated using the predicted values of the five networks. The statistical results are
shown in Table 4:
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Table 4. Evaluation indices of the TSI accuracy of the five models.

SMAPE MAE R2 RMSE

TSI value

LSTM 2.3279 1.7207 0.8950 2.1064
DBN 2.3012 1.6994 0.8935 2.1211

DBN-LSTM 1.4260 1.0678 0.9490 1.4685
CNN 3.3654 1.9339 0.7764 3.4011

GDBN-LSTM 1.3391 1.0012 0.9543 1.3902

As shown in Table 4, the SMAPE, MAE, and RMSE values of the GDBN-LSTM model
were all lower than those of other models, while the R2 value of the GDBN-LSTM model
was higher than that of other models; thus, the error rate and fitting degree of the GDBN-
LSTM were better than those of other networks. Therefore, the water quality prediction
result of the DBN-LSTM model was closer to the real value than that of other models.
Among them, the fitting degree of GDBN-LSTM is as high as 0.9. Compared with the fitting
degree predicted using other water quality parameters in Table 3, the calculated TSI has a
better fitting degree, which indicates the processing ability of the proposed network for
important data.

Since the TSI calculated using the predicted value is a single-value water quality
assessment, if the prediction is inaccurate, the result will be greatly affected. To better
evaluate the future water quality based on the predicted values, random noise was added
to the predicted values according to GDBN-LSTM and fitted 100 times, where MSE is the
standard deviation. This can predict the probability of a certain level of water quality in
the future. As shown in Figure 10, it indicated that the true value is basically within the
predicted range, and the probability of future water quality grade was calculated based
on the data fitted 100 times. The red line represents the true value, the blue dashed line
represents the predicted value, and the gray interval represents the range between 100 fits.
It indicated that the true value was basically within the predicted range, and the probability
of future water quality grade is calculated based on the data fitted 100 times. As shown
in Figures 11 and 12, which clearly demonstrate the probability of future water quality
occurring at that level where the blue line represents eutrophication level 1, the red line
represents eutrophication level 2, the yellow line represents eutrophication level 3, the
purple line represents eutrophication level 4, and the green line represents eutrophication
level 5. Figure 12 shows the probability of water quality being at each eutrophication level
in the future over time. The water quality grade is basically in the range of 4~5, where the
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water quality is the most serious around July, followed by a period of decline in August,
and a rise to serious levels again.
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Water 2024, 16, x FOR PEER REVIEW 19 of 25 
 

 

Figure 10. TSI predicted value range compared with the true values. 

 
Figure 11. Probability 3D map of future water quality grade. 

 
Figure 12. Probability 2D map of future water quality grade. 

4.2. Univariable Timing Prediction and Evaluation 
4.2.1. Data Selection and Preprocessing 

The water quality data of three stores in Beijing were predicted using the DO value 
for a one-step time series, and its content on the next day was predicted using the histori-
cal data on DO collected on the previous three days. The same normalization method was 
adopted as in Section 4.1. 

4.2.2. Experimental Parameter Settings 
The experimental configuration was the same as that in Section 4.1 through cross-

validation, and the only difference was that the number of neurons in the first, second, 
and third GDBN layers in this experiment was 10, 20, and 3, respectively. The input and 
output of the proposed model are shown in Figure 13. 

50 100 150 200 250
Time(unit:day)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
ob

ab
ilit

y

Eutrophication level 1
Eutrophication level 2
Eutrophication level 3
Eutrophication level 4
Eutrophication level 5

Figure 11. Probability 3D map of future water quality grade.

Water 2024, 16, x FOR PEER REVIEW 19 of 25 
 

 

Figure 10. TSI predicted value range compared with the true values. 

 
Figure 11. Probability 3D map of future water quality grade. 

 
Figure 12. Probability 2D map of future water quality grade. 

4.2. Univariable Timing Prediction and Evaluation 
4.2.1. Data Selection and Preprocessing 

The water quality data of three stores in Beijing were predicted using the DO value 
for a one-step time series, and its content on the next day was predicted using the histori-
cal data on DO collected on the previous three days. The same normalization method was 
adopted as in Section 4.1. 

4.2.2. Experimental Parameter Settings 
The experimental configuration was the same as that in Section 4.1 through cross-

validation, and the only difference was that the number of neurons in the first, second, 
and third GDBN layers in this experiment was 10, 20, and 3, respectively. The input and 
output of the proposed model are shown in Figure 13. 

50 100 150 200 250
Time(unit:day)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
ob

ab
ilit

y

Eutrophication level 1
Eutrophication level 2
Eutrophication level 3
Eutrophication level 4
Eutrophication level 5

Figure 12. Probability 2D map of future water quality grade.



Water 2024, 16, 1362 18 of 23

4.2. Univariable Timing Prediction and Evaluation
4.2.1. Data Selection and Preprocessing

The water quality data of three stores in Beijing were predicted using the DO value for
a one-step time series, and its content on the next day was predicted using the historical
data on DO collected on the previous three days. The same normalization method was
adopted as in Section 4.1.

4.2.2. Experimental Parameter Settings

The experimental configuration was the same as that in Section 4.1 through cross-
validation, and the only difference was that the number of neurons in the first, second, and
third GDBN layers in this experiment was 10, 20, and 3, respectively. The input and output
of the proposed model are shown in Figure 13.
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The small batch gradient descent method was employed in the experiment, and the
MSE was used as a loss function. The number of iterations of the training process is 100.

To verify the feasibility and prediction effect of the proposed GDBN-LSTM model, the
LSTM model, DBN model, DBN-LSTM model, and Convolutional Neural Network (CNN)
model were used as comparison models in the experiment to predict the content of DO,
Chl-a, OC, NH3-N, TP, TN-NH3-N, TN, and turbidity. In these networks, the grid search
method and cross-validation method were used to determine hyperparameters. Among
them, the CNN convolutional layer contains 32 convolution kernels with the size of 3×1,
which are filled with zero, and the activation function uses the ReLU function. The LSTM
has three layers, the first with 100 neurons, the second with 50 neurons, and the third with
25 neurons, each with dropout layers that drop neurons with a probability of 0.2. The DBN
has three layers, the first layer has 10 neurons, the second layer has 20 neurons, and the
third layer has 3 neurons. The parameters of the DBN-LSTM network are the same as those
of the GDBN-LSTM network.

4.2.3. Experimental Results Analysis

In the experiment, the predicted value of DO obtained using the proposed GDBN-
LSTM model was compared with that predicted using the LSTM model, DBN model
DBN-LSTM model, and CNN model, as shown in Figure 14. It was clear that the DBN-
LSTM model and the GDBN-LSTM model have better predicted results, which indicated
the ability and importance of DBN to extract data features.

To compare the various networks more intuitively, the statistical results of the five
models regarding different evaluation indicators are shown in Table 5; The MAE, RMSE,
and SMAPE of the GDBN-LSTM model were lower than those of the LSTM model, DBN-
LSTM model, DBN model, and CNN model and the R2 were higher than those of the LSTM
model, DBN-LSTM model, DBN model, and CNN model. Combined with Figure 15, it
indicated that GDBN-LSTM had a good ability to predict the amount of mutation, which
indicated that GDBN played a better role than DBN in the feature extraction and denoising
factors affecting water quality. The experimental results demonstrated the high accuracy of
the proposed GDBN-LSTM in water quality prediction.



Water 2024, 16, 1362 19 of 23Water 2024, 16, x FOR PEER REVIEW 21 of 25 
 

 

 

 
Figure 14. The comparison results of the DO prediction by four models. 

To compare the various networks more intuitively, the statistical results of the five 
models regarding different evaluation indicators are shown in Table 5; The MAE, RMSE, 
and SMAPE of the GDBN-LSTM model were lower than those of the LSTM model, DBN-
LSTM model, DBN model, and CNN model and the 2R  were higher than those of the 
LSTM model, DBN-LSTM model, DBN model, and CNN model. Combined with Figure 
15, it indicated that GDBN-LSTM had a good ability to predict the amount of mutation, 
which indicated that GDBN played a better role than DBN in the feature extraction and 
denoising factors affecting water quality. The experimental results demonstrated the high 
accuracy of the proposed GDBN-LSTM in water quality prediction. 

Table 5. Comparison of environmental index prediction results of the five models. 

  SMAPE RMSE MAE 2R  

DO 

LSTM 0.1613 1.4565 0.9234 0.6839 
DBN 0.5514 1.4094 1.0103 0.7040 

DBN-LSTM 0.1563 1.2508 0.9520 0.7669 
CNN 0.1001 1.1228 0.7415 0.8016 

GDBN-LSTM 0.0949 1.1204 0.6962 0.8130 

4.2.4. Water Quality Evaluation Experiment 
Based on the prediction, this experiment adopted the single-factor index evaluation 

method and used the DO data to calculate the environmental index to judge the water 
pollution level. The evaluation standard was the third type of water quality. The evalua-
tion results are shown in Figure 15. 

50 100 150 200 250 300 350
Time(unit:day)

0

5

10

15

m
g/

L

DO（mg/L）

(a) True and predicted values of DO

100 110 120 130 140 150
Time(unit:day)

6

7

8

9

10

11

12

m
g/

L

(b) Partial magnification of (a)

Figure 14. The comparison results of the DO prediction by four models.

Water 2024, 16, x FOR PEER REVIEW 22 of 25 
 

 

 
Figure 15. Box line diagram of five network single-factor evaluation methods. 

As shown in Figure 15, the GDBN-LSTM predicts that the maximum, median, upper, 
and lower quartile values of water quality were close to the real values, once again show-
ing that GDBN had better predictability for mutated data, and its median was also the 
closest to the real value, which again indicated the accuracy of water quality and evalua-
tion based on GDBN-LSTM prediction. The SMAPE, MAE, RMSE, and 2R   indicators 
were used to evaluate the nutritional indices calculated from the predicted values of the 
four networks, and the statistical results are shown in Table 6. 

Table 6. Comparison of the environmental index prediction results of the five methods. 

 SMAPE RMSE MAE 2R  
LSTM 0.2418 1.1983 0.3470 0.6592 
DBN 0.2832 1.4825 0.4528 0.4932 

DBN-LSTM 0.2771 0.8018 0.2527 0.8467 
CNN 0.1902 0.9251 0.2273 0.7936 

GDBN-LSTM 0.1821 0.7929 0.1963 0.8496 

As shown in Table 6, the GDBN-LSTM network had a better fitting rate and accuracy 
than other networks in the single-factor water quality assessment. This result indicated 
that the GDBN-LSTM had more advantages than other networks in water quality assess-
ment. 

Also, for a better evaluation of water quality to make decisions, the same treatment 
was conducted as in Section 4.1. In the GDBN-LSTM predicted data plus random noise, 
evolved 100 times, noise instead of prediction error, it was seen that the true value was 
mostly included in the range, as shown in Figure 16. Then, the probability that the water 
quality is at grade based on the evolved values is calculated, as shown in Figures 17 and 
18, where the blue line represents eutrophication level 1, the red line represents eutroph-
ication level 2, the yellow line represents eutrophication level 3, the purple line represents 
eutrophication level 4, and the green line represents eutrophication level 5. Figure 18 
shows the probability of water quality being at each eutrophication level in the future over 
time. 

Figure 15. Box line diagram of five network single-factor evaluation methods.



Water 2024, 16, 1362 20 of 23

Table 5. Comparison of environmental index prediction results of the five models.

SMAPE RMSE MAE R2

DO

LSTM 0.1613 1.4565 0.9234 0.6839
DBN 0.5514 1.4094 1.0103 0.7040

DBN-LSTM 0.1563 1.2508 0.9520 0.7669
CNN 0.1001 1.1228 0.7415 0.8016

GDBN-LSTM 0.0949 1.1204 0.6962 0.8130

4.2.4. Water Quality Evaluation Experiment

Based on the prediction, this experiment adopted the single-factor index evaluation
method and used the DO data to calculate the environmental index to judge the water
pollution level. The evaluation standard was the third type of water quality. The evaluation
results are shown in Figure 15.

As shown in Figure 15, the GDBN-LSTM predicts that the maximum, median, upper,
and lower quartile values of water quality were close to the real values, once again showing
that GDBN had better predictability for mutated data, and its median was also the closest
to the real value, which again indicated the accuracy of water quality and evaluation based
on GDBN-LSTM prediction. The SMAPE, MAE, RMSE, and R2 indicators were used to
evaluate the nutritional indices calculated from the predicted values of the four networks,
and the statistical results are shown in Table 6.

Table 6. Comparison of the environmental index prediction results of the five methods.

SMAPE RMSE MAE R2

LSTM 0.2418 1.1983 0.3470 0.6592
DBN 0.2832 1.4825 0.4528 0.4932

DBN-LSTM 0.2771 0.8018 0.2527 0.8467
CNN 0.1902 0.9251 0.2273 0.7936

GDBN-LSTM 0.1821 0.7929 0.1963 0.8496

As shown in Table 6, the GDBN-LSTM network had a better fitting rate and accuracy
than other networks in the single-factor water quality assessment. This result indicated that
the GDBN-LSTM had more advantages than other networks in water quality assessment.

Also, for a better evaluation of water quality to make decisions, the same treatment was
conducted as in Section 4.1. In the GDBN-LSTM predicted data plus random noise, evolved
100 times, noise instead of prediction error, it was seen that the true value was mostly
included in the range, as shown in Figure 16. Then, the probability that the water quality is
at grade based on the evolved values is calculated, as shown in Figures 17 and 18, where
the blue line represents eutrophication level 1, the red line represents eutrophication level 2,
the yellow line represents eutrophication level 3, the purple line represents eutrophication
level 4, and the green line represents eutrophication level 5. Figure 18 shows the probability
of water quality being at each eutrophication level in the future over time.

Figures 17 and 18 indicated that the water quality had the highest probability of
being at level 5 in the future period, which requires the relevant departments to introduce
appropriate treatment programs to protect the environment.
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5. Conclusions

The GDBN-LSTM prediction model developed in this paper can be trained on different
water quality data and has a wide range of application scenarios. The experimental results
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show that the proposed neural network model can predict water quality well, and the
GDBN with GRBM stacking improves the data feature loss caused by the classical RBM
stacking DBN visible layer and hidden layer duality problem, which is then input to the
LSTM network, providing a new and feasible way for water quality prediction. In this
paper, the single-factor indicator evaluation method and TSL are used to evaluate water
quality, the prediction results of the proposed network and other networks are compared
with different evaluation indicators, and the experimental results show that the proposed
network has a higher evaluation accuracy. After that, the probabilities of future water
quality categories are obtained by adding random noise for multiple evolutions, which
provides a new idea for future water pollution prevention and control. Some limitations
should be noted. First, the model is only conducted based on a specific water quality
data set, and its generalization ability needs to be further verified. Second, dealing with
anomalies or long-term data changes has not been explored in-depth, and more research is
needed on how models perform under extreme conditions. Finally, due to the limitations of
input data quality and sampling frequency in practical applications, further optimization
may be required for application scenarios with high real-time requirements. This study
is based on data-driven water quality prediction. In the future, water quality prediction
should be combined with a water quality mechanism model, and uncertainty should be
added to the prediction to assess future water quality more accurately.
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