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Highlights:
What are the main findings?

• The future drought conditions predicted by AWI-CM-1-1-MR and MPI-ESM1-2-HR are relatively
reasonable. However, EC-Earth3 tends to underestimate future drought conditions.

• Drought conditions across much of the globe are expected to become increasingly serious, and the
trend is significant.

• The drought events in much of the world are mainly driven by precipitation.

What is the implication of the main finding?

• We found that the primary reason for the substantial differences in drought predictions among the
three models is the overestimation of future precipitation by EC-Earth3.

• The future drought conditions in most regions around the world are expected to worsen.

Abstract: Due to the complex coupling between drought and climatic factors, the future drought
conditions that might occur under climate change is still unclear. In this research, we used the daily
SPEI algorithm to project global drought conditions during 2016–2100 based on the data from phase 6
of the Coupled Model Intercomparison Project (CMIP6). We also employed partial correlation analysis
to explore the influence of climate factors on drought. Our analyses show the following: (1) Drought
conditions projected by CMIP6 under different models are similar; however, they can vary widely
across regions. (2) According to the MK trend test, drought conditions in most regions around the
world are expected to become increasingly severe in the future, and this trend is significant. (3) Based
on the results of the partial correlation analysis results, it is understood that drought events in most
regions worldwide are primarily driven by precipitation. This study contributes to the discussion of
projecting future drought conditions and expands the application by utilizing the state−of−the−art
CMIP6 climate models and scenarios.Highlight

Keywords: CMIP6; drought; SPEI; climate change; drought index

1. Introduction

Drought consequences are among the costliest natural disasters on earth. Agriculture,
the economy, and society worldwide are threatened by droughts due to their frequency, the
large areas affected, and the long duration of these events [1–5]. Drought is estimated to
have killed 11.73 million people between 1900 and 2021, with economic losses ranging from
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USD 6 billion to USD 8 billion per year, which is far worse than any other disaster [6–10].
Due to climate change, extreme hydrological events, such as drought, are expected to
become more frequent [11–15]. Therefore, it is paramount to understand how drought is
expected to change in different climate change scenarios to prepare timely warning and
mitigation strategies.

Drought indices are commonly used to characterize and study these events. Several
drought indices have their applications, strengths, and effectiveness [16–19]. Palmer’s drought
severity index (PDSI) and the standardized precipitation index (SPI) have been widely ap-
plied to drought research [20,21]. However, they also present shortcomings [22,23]: (1) PDSI
has some problems related to time−scale fixation, data−dependent calibration, and poor
spatial comparability [22,24,25]; and (2) evapotranspiration is not taken into account in the
formulation of SPI, as it is solely based on precipitation factors [26]. For drought monitoring
and assessment, Vicente−Serrano et al. developed the standardized precipitation evapo-
transpiration index (SPEI), which combines the strengths of PDSI and SPI [27]. In addition
to considering the influence of evapotranspiration on drought, SPEI also compares and
spatially characterizes different types of drought on multi−time scales [24,26]. Therefore,
SPEI is designed as a better tool to study future global drought conditions under climate
change, as it takes into consideration the influence of evapotranspiration [28].

SPEI has been extensively used for drought monitoring and forecasting. However,
the monthly SPEI has some limitations that make it impossible to monitor short−term
droughts [24]. During critical vegetation growth periods, droughts of a few days can lead
to severe detrimental effects [24]. To describe a sudden drought of short duration (for
example, a few days), a new approach focused on daily SPEI was recently developed [29].
This new daily SPEI has been applied in previous studies to evaluate drought and its
effects [29,30]. The daily SPEI is calculated and applied similarly to the monthly SPEI.
Different time scales of SPEI are associated with meteorological drought (30 days), agricul-
tural drought (90−180 days), hydrological drought (360 days) and socioeconomic drought
(720 days) [20,28]. It can monitor and assess drought at all−time scales, from daily, weekly,
and monthly to any longer scale, and the daily SPEI can monitor the specific date of drought
onset and the number of days of duration.

The Coupled Model Intercomparison Project (CMIP) is one of the most powerful
international data sources at present [31,32]. Studies have shown that CMIP6 reproduces the
spatial pattern change of large-scale average surface temperatures and precipitation more
accurately than CMIP3 and CMIP5 [7,33,34]. The global climate models (GCMs) available
in CMIP6 have been widely used in previous studies [35–37]. Based on CMIP6, a number
of drought forecasts have been made at the global and regional scales, and strong drought
trends have been observed in many areas [7,21]. Previous results revealed that CMIP6
has a strong ability to capture drought characteristics [7,27]. The majority of previous
forecasting studies have focused on mean/extreme temperatures or precipitation [7,38–40].
These studies have ignored long−term changes in drought characteristics. Therefore, it is
necessary to use the latest CMIP6 data to predict changes in the duration, frequency, and
severity of future drought events.

Considering the improvement in CMIP6 and the fact that daily SPEI is better able to
project the characteristics of future drought events, we selected three models from CMIP6
(EC-Earth3, AWI CM-1-1-MR, and MPI-ESM1-2-HR) to assess future drought characteristics
based on SSP scenarios (SSP585). Finally, we projected the spatial patterns and the change
trends of global drought event severity, estimated the duration and frequency during
2016–2100 and used partial correlation analysis to explore the impact of climate factors
on drought. This paper aims to study drought conditions under future climate change
conditions based on different climate models, thereby providing new information for global
drought research.
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2. Data Sources and Methods
2.1. Data Sources

Three models (EC-Earth3, AWI-CM-1-1-MR, and MPI-ESM1-2-HR) have been widely
used in climate change studies [37,41–43] and one SSP scenario (SSP585) from ScenarioMIP
were selected from the CMIP6 database (https://esgf$-$node.llnl.gov/search/cmip6/,
accessed on 1 February 2023). In the SSPs, an array of future GHG emissions and land use
variations scenarios are evaluated from composite evaluation models based on different
assumptions about economic growth, climate mitigation, and global governance [35,44].
We want to study future drought conditions under the highest forcing scenario. Therefore,
the SSP5−8.5 (+8.5 W m−2; high−end forcing pathway) drawn from Tier 1 of ScenarioMIP
was used in this study. The details of climate factors data are shown in Table 1.

Table 1. The details of climate factors data from CMIP6.

Data Description Unit Spatial
Resolution Period

pr Precipitation (include both liquid and
solid phases) kg m−2 s−1 100 km 2016–2100

rsds
Surface Downwelling Shortwave

Radiation (surface solar irradiance for
UV calculations)

W m−1 100 km 2016–2100

tasmax
tasmin

Daily Maximum Near−Surface Air
Temperature

Daily Maximum Near−Surface Air
Temperature

K
K

100 km
100 km

2016–2100
2016–2100

2.2. Drought Index

Vicente−Serrano et al. (2010) first developed SPEI to evaluate and monitor drought
conditions, providing added value compared to SPI by incorporating the temperature
effect through the inclusion of evapotranspiration. In this research, we utilized the newly
developed daily SPEI to assess drought. The computation of daily SPEI was conducted
following the methodology outlined in Wang’s study [24]. Daily SPEI values were calcu-
lated for 30-day accumulation periods, considering the water balance as the difference
between precipitation and PET (D = P − PET). We used the generalized extreme value
(GEV) distribution to standardize the D series into the SPEI data series, since the GEV
distribution is the most suitable for SPEI calculation [28,45]. For a detailed calculation
process and specific parameters, please refer to [24,46]. The D accumulation for each grid,
from 2016 to 2100, for day i per year (30 days of D accumulation up to day i) resulted in
85 cumulative values. These 85 values were then used to fit the GEV probability function.
The various wet and dry categories are presented in Table 2.

Table 2. Different wet and dry grade classifications of SPEI.

Categorization SPEI Values

Extremely Wet SPEI ≥ 2
Severely Wet 1.5 ≤ SPEI < 2

Moderately Wet 1 ≤ SPEI < 1.5
Mildly Wet 0.5 < SPEI < 1

Normal −0.5 ≤ SPEI ≤ 0.5
Mild Drought −1 < SPEI < −0.5

Moderate Drought −1.5 < SPEI ≤ −1
Severe Drought −2 < SPEI ≤ −1.5

Extreme Drought SPEI ≤ −2

https://esgf$-$node.llnl.gov/search/cmip6/
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2.3. Identification of Drought Events

The characteristics of drought events (severity, duration, and frequency) were defined
using the run theory proposed by Yevjevich (1967). Firstly, we defined a drought event by
determining the beginning and ending dates of the drought, and subsequently determined
its characteristics. The drought duration refers to the persistent period of drought from
start to finish. The drought severity is measured as the area under the curve of the absolute
value of the SPEI (value < −0.5) and the horizontal axis (SPEI = 0) during the drought
period. The drought frequency represents the total number of drought event occurrences
within a specific period. The drought events and their corresponding characteristics are
illustrated in Figure 1.
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Figure 1. Schematic plot of dry and wet events (the drought events are red; the wet events are blue;
and the normal periods are green).

To assess the overall characteristics of drought events, we calculated the annual total
drought severity (ATDS), the annual total drought duration (ATDD), and the annual total
drought frequency (ATDF) on a 1-month scale [24]. These three variables accumulate the
severity, duration, and frequency of all the drought events per year, respectively. They
enable us to compare and analyze the global characteristics of drought events.

2.4. Statistical Analysis

The Mann−Kendall (MK) test was used to determine the variation trends of drought
events’ characteristics and assess their significance [47]. As a non−parametric test, the
Mann−Kendall method does not require the data to conform to a normal distribution [47–49].
Due to the lack of distribution−specific requirements, the calculation is relatively straight-
forward. The MK test is widely employed to analyze the changing trends in drought,
precipitation, and temperature time series [50,51]. The trends of drought event characteris-
tics span the entire period from 2016 to 2100. A p−value < 0.05 represents a statistically
significant trend [24].

Correlation is a mathematical method extensively used in climate analysis, serving as a
statistical index that measures the relation between two or more variables, expressed as the
correlation coefficient [52]. Partial correlation analysis is a linear correlation method used
to isolate the effect of a third variable on the correlation between any two variates [53,54].
Partial correlation analysis was employed to determine the independent relationship be-
tween drought and each climate factor, thereby eliminating the interaction among the
climate factors.
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3. Results
3.1. Interannual Variation of Climatic Factors

We analyze the interannual variation in three periods: the early period (2016–2040),
the middle period (2041–2070), and the late period (2071–2100). Following steps were
undertaken to calculate the time series: for precipitation, we first accumulated 365 days for
each grid point of each model, and then took the mean, 25th percentile and 75th percentile,
of all the grids for each year; and for net surface radiation, maximum temperature and
minimum temperature, we first averaged 365 days for each grid point of each model,
and then took the mean, 25th percentile and 75th percentile, of all the grids for each year.
As seen in the interannual variation of climate factors from 2016 to 2100, the EC-Earth3
simulation yields much larger precipitation than the other two models, and it is more
pronounced in the later period (Figure 2). The maximum temperature from MPI-ESM1-2-
HR shows overall lower values than the other two models in most years, and the minimum
temperature from AWI-CM-1-1-MR shows higher values than the other two models in most
years. The interannual variation of precipitation, maximum temperature, and minimum
temperature in the three models indicate an increasing trend from 2016 to 2100. However,
the interannual variation of net surface radiation in the three models shows an overall
declining trend.
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Figure 2. Interannual variation of precipitation (a), net surface radiation (b), maximum temperature
(c) and minimum temperature (d) from 2016 to 2100 (The solid lines signify the average value of all
grids worldwide per year, and shaded colors signify the 25th percentile and 75th percentile as the
lower and upper limits, respectively).

3.2. Interannual Variation of Drought Events’ Characteristics

Time series were obtained by taking the mean, 25th percentile and 75th percentile,
of all grids for each year of drought events’ characteristics (ATDS, ATDD, and ATDF).
Figure 3 shows that there is an overall increasing trend in the severity and duration of
global droughts and an overall decreasing trend in the frequency of occurrence. The
increasing trend in severity and duration is greater in the later period than in the early and
middle period; the decreasing trend in frequency is similarly greater in the later period than
in the early and middle period. It can be seen that the rise in drought severity and drought
duration obtained from the EC-Earth3 prediction is the most obvious, with both the severity
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and duration being lower than the other two models in the early and middle periods, and
then suddenly rising over the other two models in the later period. The magnitude of
change in the three drought characteristics in the early and middle periods was not very
different. Combining Figures 2 and 3, we can find that in the early and middle period,
the interannual variation of ATDS, ATDD and ATDF is closely related to the interannual
variation of precipitation; the higher the precipitation, the lower the ATDS, the shorter the
ATDD, and the lower the ATDF. In the late period, the interannual variation of drought
event characteristics is less closely related to the interannual variation of precipitation, and
is more related to the combined effect of the four climatic factors, especially the combined
effect of precipitation and minimum temperature.
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3.3. Spatial Pattern of Drought Events’ Characteristics

ATDS can determine the hot spot regions where drought conditions are more severe.
The calculated ATDS values of the three models (EC-Earth3, AWI-CM-1-1-MR, and MPI-
ESM1-2-HR) globally are shown in Figure 4. The spatial pattern of ATDS values reveals
that compared with the other two models, the EC-Earth3−forecast ATDS values are lower
and concentrated in the mild drought category. The spatial pattern of ATDS predicted by
AWI-CM-1-1-MR and MPI-ESM1-2-HR is similar, concentrated in moderate drought, but
the ATDS predicted by MPI-ESM1-2-HR is greater in some regions. Combining the ATDS
results predicted by the three models, it can be inferred that two−thirds of the world will
face moderate drought in the future, with severe or even extreme drought in Central Africa
and eastern South America.

Water 2023, 15, x FOR PEER REVIEW 8 of 21 
 

 

 
Figure 4. The spatial pattern of global ATDS simulated by EC−Earth3 (a,d), AWI−CM−1−1−MR 
(b,e), and MPI−ESM1−2−HR (c,f). 

The calculated ATDF values of the three models (EC−Earth3, AWI−CM−1−1−MR, and 
MPI−ESM1−2−HR) worldwide are shown in Figure 6. The spatial pattern of ATDF values 
shows that, compared with the other two models, the ATDF values projected by 
EC−Earth3 are lower and concentrated in rare and moderate frequency. The projected 
ATDF values of AWI−CM−1−1−MR and MPI−ESM1−2−HR are generally consistent, with 
moderate and frequent occurrence. Combining the ATDF results projected by the three 
models, we can opine that most regions around the world are expected to experience six 
to eight drought events per year in the future. In addition, from the spatial pattern of ATDF 
values, it can be inferred that drought may occur in both dry and wet areas. 

Figure 4. The spatial pattern of global ATDS simulated by EC-Earth3 (a,d), AWI-CM-1-1-MR (b,e),
and MPI-ESM1-2-HR (c,f).

The calculated ATDD values of the three models (EC-Earth3, AWI-CM-1-1-MR, and
MPI-ESM1-2-HR) worldwide are shown in Figure 5. The spatial pattern of the ATDD values
shows that, compared with the other two models, the ATDD value from EC-Earth3 is lower
and concentrated in the medium duration. The predicted ATDD values of AWI-CM-1-1-MR
and MPI-ESM1-2-HR are generally consistent, concentrated in medium and long duration,
but the predicted ATDD values of MPI-ESM1-2-HR are higher in some regions. Combining
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the ATDD results predicted by the three models, one can state that two−thirds of the world
is projected to endure droughts typically longer than 115 days in the future. Furthermore,
these regions are projected to experience droughts nearly one−third of the time.
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The calculated ATDF values of the three models (EC-Earth3, AWI-CM-1-1-MR, and
MPI-ESM1-2-HR) worldwide are shown in Figure 6. The spatial pattern of ATDF values
shows that, compared with the other two models, the ATDF values projected by EC-Earth3
are lower and concentrated in rare and moderate frequency. The projected ATDF values
of AWI-CM-1-1-MR and MPI-ESM1-2-HR are generally consistent, with moderate and
frequent occurrence. Combining the ATDF results projected by the three models, we can
opine that most regions around the world are expected to experience six to eight drought
events per year in the future. In addition, from the spatial pattern of ATDF values, it can be
inferred that drought may occur in both dry and wet areas.
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3.4. Trends of Drought Events’ Characteristics

Depending on the ATDS variation trends, drought severity can be identified as weak-
ening or intensifying over time. The spatial pattern of variation trends for ATDS from
2016 to 2100 worldwide is shown in Figure 7. The spatial pattern of ATDS change trend
projected by the three models is generally consistent, with only the upward trend being
significant (p < 0.05). Compared with the other two models, the ATDS projected by MPI-
ESM1-2-HR presents an increasing trend in fewer areas and a declining trend in more
extensive areas. Based on the ATDS trend results projected by the three models, drought
severity in southwest North America, northern South America, southern Europe, western
Asia, and Southwest Africa presents a significant increasing trend (p < 0.05). In contrast,
other regions present a declining trend during 2016–2100.

Depending on the ATDD variation trends, drought duration can be identified as
shorter or longer over time. The worldwide spatial pattern of variation trends for the
ATDD is shown in Figure 8. The spatial pattern of the ATDD change trend predicted by the
three models is generally consistent, and only the increasing trend is significant (p < 0.05).
Compared with the other two models, the ATDD projected by MPI-ESM1-2-HR presents an
increasing trend in fewer areas and a declining trend in more extensive areas. Based on the
ATDD trend results projected by the three models, the duration of drought in southwest
North America, northern South America, southern Europe, western Asia, and Southwest
Africa presents a significant increasing trend (p < 0.05). In contrast, other regions present a
declining trend during 2016–2100.
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Depending on the ATDF variation trends, the frequency of drought events can be
identified as increasing or reducing over time. The spatial pattern of variation trends of
ATDF globally is shown in Figure 9. The spatial pattern of the ATDF change trend projected
by the three models is consistent. Most of the global ATDF change trend is decreasing, but
is not significant, and only some regions with the increasing trends are significant (p < 0.05).
Based on the ATDF trends projected by the three models, only northern South America,
southwest Europe, and Southwest Africa show an increasing trend of drought frequency
during 2016–2100. The increasing trend is significant (p < 0.05), while other regions present
a declining trend.
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3.5. Partial Correlation between Drought Events and Climatic Factors

Results from the partial correlation analysis between the drought events’ character-
istics projected by the three models and climatic factors (Figure 10) show that there is a
negative correlation between precipitation and the three drought characteristics, a posi-
tive correlation between the maximum temperature and the three drought characteristics,
and a positive or negative correlation between the minimum temperature, the net surface
radiation and the three drought characteristics. Precipitation is the variable with the high-
est correlation to drought characteristics. Among them, the correlation degree of ATDS
and ATDD with climatic factors is precipitation > maximum temperature > minimum
temperature > net surface radiation.

Figure 11 shows that according to drought projections from EC-Earth3, drought
severity in most regions including South America, Africa and southern Asia is mostly
driven by the maximum temperature and net surface radiation. In North Asia, northern
Europe and eastern North America, it is mainly driven by precipitation. According to the
drought prediction of AWI-CM-1-1-MR and MPI-ESM1-2-HR, drought severity in most
regions including Asia, Europe, North America, western South America and central Africa
is mainly driven by precipitation, and the corresponding partial correlation coefficient is
also larger. At the same time, it is driven by the maximum temperature and net surface
radiation in fewer regions.

Figure 12 shows that according to drought projections from EC-Earth3, drought
duration in most areas including South America, Africa and southern Asia is mainly driven
by the maximum temperature and net surface radiation. In North Asia, northern Europe
and eastern North America, it is mainly driven by precipitation. According to the drought
predictions from AWI-CM-1-1-MR and MPI-ESM1-2-HR, drought duration in most areas
including Asia, Europe, North America, western South America and central Africa is
mainly driven by precipitation, and the corresponding partial correlation coefficient is also
larger. However, in a few regions, this is driven by the maximum temperature and net
surface radiation.
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Figure 13 shows that, according to drought projections from EC-Earth3, drought fre-
quency in most regions including North America, Africa, Europe and northern Asia is
mainly driven by the maximum temperature, net surface radiation and precipitation, while
in South America and southern Asia, it is mainly driven by minimum temperature. Accord-
ing to drought predictions from AWI-CM-1-1-MR and MPI-ESM1-2-HR, drought frequency
in most regions including Asia, Europe, North America, southwest South America and
central Africa is mainly driven by precipitation. While in fewer regions, it is mostly driven
by maximum temperature and net surface radiation, but their corresponding correlation
coefficient is small.
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4. Discussion

Based on three GCMs from CMIP6 forced with SSP585, we used the daily SPEI [55]
to project drought conditions for the period 2016–2100. This methodology has been previ-
ously applied to drought evaluation and monitoring, and its results have been extensively
validated [29,30,56]. While the monthly SPEI is suitable for assessing meteorological, agri-
cultural, hydrological, and socio−economic droughts, it falls short in effectively identifying
abrupt droughts with durations of less than one month [24]. Monthly SPEI can only de-
termine the first and last months of a drought and fails to detect the exact beginning and
ending dates of drought events [24,57]. The new model addresses the deficiencies of the
monthly SPEI for drought evaluation and monitoring. However, it is worth noting that the
estimation of PET in the daily SPEI is based on the Hargraves−Samani formula [58], which
may lead to an overestimation of evapotranspiration in windy areas. This uncertainty in
PET eventually affects the accuracy of the daily SPEI, potentially resulting in exaggerated
future droughts in windy regions [59].

This study excluded marine, desert, and cold regions. Desert areas have prolonged
periods of no precipitation, minimal soil evaporation, and the absence of human and vege-
tation activities, making them scientifically less relevant to this study [60,61]. Therefore,
these areas were not included in our analysis. Among the three GCMs used in this study,
MPI-ESM1-2-HR projected the most severe drought characteristics for the future, followed
by AWI-CM-1-1-MR, while EC-Earth3 projected the least severe drought characteristics.
The future drought conditions predicted by AWI-CM-1-1-MR and MPI-ESM1-2-HR are
relatively reasonable. However, EC-Earth3 tends to underestimate future drought condi-
tions [7]. By considering the interannual variability of climate factors and drought events’
characteristics (Figures 2 and 3), we found that the primary reason for the substantial
differences in drought predictions among the three models is the overestimation of future
precipitation by EC-Earth3 [59]. This issue should be noted and emphasized in subse-
quent studies. It is observed that although CMIP6 projects similar drought conditions
under different models globally, there can be substantial local variations. Based on the MK
trend test, future drought conditions in most regions around the world are expected to
worsen [7,62–65]. The partial correlation analysis results between drought events’ charac-
teristics and climate factors indicate that precipitation predominantly influences drought
events’ characteristics in most areas [57,63].

In contrast to previous studies, this research did not utilize a multi−model ensemble
approach, as our intention was to compare the performance and differences between
different models in projecting drought. However, this approach can lead to computationally
intensive calculations. Therefore, in this study, we focused on calculating drought projection
results only for three global climate models under one forcing scenario. In future work, it
is recommended to consider additional forcing scenarios and different models to reduce
uncertainties. The climate factor data in this paper, derived from CMIP6, have a spatial
resolution of 100 km, which limits the spatial detail. To overcome this limitation, future
analyses can incorporate other datasets with finer resolutions for comparative analysis.
Since the projected drought conditions are for the future, the accuracy of the results needs
further analysis and verification. Uncertainties may arise from climate models, drought
identification, and bias correction methods [66]. Therefore, it is advisable to include more
climate models to minimize uncertainties in the analysis process and subsequently perform
analyses based on a multi−model ensemble.

This study offers a reference for researching global drought changes under climate
change and gives a basis for the application of CMIP6. The findings of this research can
help us to give early warning and develop measures to prevent possible future droughts.

5. Conclusions

Due to the complex coupling between drought and climatic factors, the future status of
drought under climate change remains unclear. We projected one scenario of global drought
using CMIP6 GCMs and investigated the driving mechanisms behind it. The objectives
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of this study are to validate the newly released CMIP6 and explore the characteristics of
global drought events. Our findings are as follows:

(1) Among the three models, MPI-ESM1-2-HR projected the most severe drought, fol-
lowed by AWI-CM-1-1-MR, while EC-Earth3 projected the least severe drought. The
future drought conditions predicted by AWI-CM-1-1-MR and MPI-ESM1-2-HR are
relatively reasonable. However, EC-Earth3 tends to underestimate future drought con-
ditions.

(2) From 2016 to 2100, ATDS and ATDD exhibit an increasing trend in most regions
worldwide, and this trend is statistically significant (p < 0.05). ATDF, on the other
hand, shows a decreasing trend, although it is not statistically significant. Only certain
areas demonstrate a significant increasing trend (p < 0.05).

(3) Precipitation exhibits the highest correlation with drought event characteristics. Among
them, the correlation strength between ATDS and ATDD with climatic factors follows
a certain order: precipitation > maximum temperature > minimum temperature > net
surface radiation.

(4) The severity and duration of drought in most regions are primarily driven by precip-
itation. The corresponding partial correlation coefficient is also substantial. While
drought frequency is also influenced by precipitation, the corresponding correlation
coefficient is relatively small.
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