The Influence of Hydrometeorological Conditions on Changes in Littoral and Riparian Vegetation of a Meromictic Lake in the Last Half-Century
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
- Iwanow’s:
- Jaworski:
4. Results
4.1. Hydrometeorological Conditions
4.2. Lake’s Area Changes
4.3. Water Quality
4.4. Vegetation Dynamics of the Littoral and Coastal Zone of the Lake
5. Discussion
Factors Shaping the Development of Vegetation in the Littoral and Coastal Zones
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jeppesen, E.; Meerhoff, M.; Davidson, T.A.; Trolle, D.; Søndergaard, M.; Lauridsen, T.L.; Beklioǧlu, M.; Brucet, S.; Volta, P.; González-Bergonzoni, I.; et al. Climate change impacts on lakes: An integrated ecological perspective based on a multi-faceted approach, with special focus on shallow lakes. J. Limnol. 2014, 73, 88–111. [Google Scholar] [CrossRef] [Green Version]
- Lawniczak, A.E.; Zbierska, J.; Nowak, B.; Achtenberg, K.; Grześkowiak, A.; Kanas, K. Impact of agriculture and land use on nitrate contamination in groundwater and running waters in central-west Poland. Environ. Monit. Assess. 2016, 188, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Jeppesen, E.; Brucet, S.; Naselli-Flores, L.; Papastergiadou, E.; Stefanidis, K.; Nõges, T.; Nõges, P.; Attayde, J.L.; Zohary, T.; Coppens, J.; et al. Ecological impacts of global warming and water abstraction on lakes and reservoirs due to changes in water level and related changes in salinity. Hydrobiologia 2015, 750, 201–227. [Google Scholar] [CrossRef]
- Saidi, H.; Dresti, C.; Ciampittiello, M. Fluctuations of Lake Orta water levels: Preliminary analyses. J. Limnol. 2016, 75, 86–92. [Google Scholar] [CrossRef] [Green Version]
- Yan, L.; Zheng, M. The response of lake variations to climate change in the past forty years: A case study of the northeastern Tibetan Plateau and adjacent areas, China. Quat. Int. 2015, 371, 31–48. [Google Scholar] [CrossRef]
- Zhang, Y.; Jeppesen, E.; Liu, X.; Qin, B.; Shi, K.; Zhou, Y.; Thomaz, S.M.; Deng, J. Global loss of aquatic vegetation in lakes. Earth Sci. Rev. 2017, 173, 259–265. [Google Scholar] [CrossRef]
- Alahuhta, J.; Kanninen, A.; Hellsten, S.; Vuori, K.M.; Kuoppala, M.; Hämäläinen, H. Variable response of functional macrophyte groups to lake characteristics, land use, and space: Implications for bioassessment. Hydrobiologia 2014, 737, 201–214. [Google Scholar] [CrossRef]
- Coops, H.; Theo Vulink, J.; van Nes, E.H. Managed water levels and the expansion of emergent vegetation along a lakeshore. Limnologica 2004, 34, 57–64. [Google Scholar] [CrossRef] [Green Version]
- Bornette, G.; Puijalon, S. Response of aquatic plants to abiotic factors: A review. Aquat. Sci. 2011, 73, 1–14. [Google Scholar] [CrossRef]
- Prats, J.; Salençon, M.J.; Gant, M.; Danis, P.A. Simulation of the hydrodynamic behaviour of a Mediterranean reservoir under different climate change and management scenarios Jordi. J. Limnol. 2018, 77, 62–81. [Google Scholar] [CrossRef] [Green Version]
- Jeppesen, E.; Jensen, J.P.; Sondergaard, M.; Lauridsen, T.; Landkildehus, F. Trophic structure, species richness and biodiversity in Danish lakes: Changes along a phosphorus gradient. Freshw. Biol. 2000, 45, 201–218. [Google Scholar] [CrossRef]
- Jeppesen, E.; Søndergaard, M.; Liu, Z. Lake restoration and management in a climate change perspective: An introduction. Water 2017, 9, 122. [Google Scholar] [CrossRef] [Green Version]
- Lawniczak-Malińska, A.E.; Achtenberg, K. Indicator values of emergent vegetation in overgrowing lakes in relation towater and sediment chemistry. Water 2018, 10. [Google Scholar] [CrossRef] [Green Version]
- Lawniczak-Malińska, A.E.; Achtenberg, K. On the use of macrophytes to maintain functionality of overgrown lowland lakes. Ecol. Eng. 2018, 113. [Google Scholar] [CrossRef]
- Nowak, B.M.; Ptak, M. The effect of a water dam on Lake Powidzkie and its vicinity. Bull. Geogr. Phys. Geogr. Ser. 2018, 15, 5–13. [Google Scholar] [CrossRef] [Green Version]
- Nowak, B.; Mielcarek, M. Water resources of Powidzkie Lake and its catchment. In Proceedings of the International Conference Lakes, Reservoirs and Ponds Impacts—Threats—Conservation, Iława, Poland, 31 May–3 June 2016. [Google Scholar]
- Kaczorowska, Z. Opady w Polsce w Przekroju Wieloletnim (Precipitation in Poland in Long-Period Averages); Polish Academy of Science, Institute of Geography: Warsaw, Poland, 1962. [Google Scholar]
- Nowak, B.M.; Ptak, M. Natural and anthropogenic conditions of water level fluctuations in lakes—Lake Powidzkie case study (Central-Western Poland). J. Water Land Dev. 2019, 40, 13–25. [Google Scholar] [CrossRef]
- Byczkowski, A. Hydrologia (Hydrology); Wyd. Warsaw University of Life Sciences: Warszaw, Poland, 1999. [Google Scholar]
- Kędziora, A. Podstawy Agrometeorologii (Basics of agrometeorology); Powszechne Wydawnictwo Rolnicze i Leśne: Poznań, Poland, 2008. [Google Scholar]
- Kędziora, A. Warunki klimatyczne i bilans wodny Pojezierza Kujawskiego (Climatic conditions and water balance of the Kujawy Lakeland). Rocz. Glebozn. 2011, 62, 189–203. [Google Scholar]
- Kędziora, A. Bilans wodny krajobrazu konińskich kopalni odkrywkowych w zmieniających się warunkach klimatycznych (Water balance of Konin strip mine landscape in changing climatic conditions). Rocz. Glebozn. 2008, 59, 104–118. [Google Scholar]
- Kowalczyk, S.; Ujda, K. Pomiary porównawcze opadów atmosferycznych (Comparative measurements of precipitation). Mater. Badaw. Imgw. Ser. Meteorol. 1987, 14, 3–48. [Google Scholar]
- Rösler, A.; Bielawny, K.; Chmal, M.; Chmal, T.; Staszkiewicz, S.; Szymanowska, K. Analiza Zmian Składowych Bilansu Wodnego Jezior na Przykładzie Jeziora Sława (1976–2005) (Analysis of Changes in Lake Water Balance Components on the Example of Lake Sława (1976–2005)). Task DS.-H 1.6b; IMGW: Poznań, Poland, 2007. [Google Scholar]
- Rösler, A.; Chmal, M. Korekta opadu w bilansie wodnym (Correction of Precipitation in the Water Balance). In Dynamika Procesów Przyrodniczych w Zlewni Drawy i Drawieńskim Parku Narodowym (The Dynamics of Natural Processes in the Drawa River Catchment and Drawieński National Park); Grześkowiak, A., Nowak, B., Eds.; IMGW-PIB—Polskie Towarzystwo Geofizyczne: Poznań, Poland, 2010; pp. 127–132. [Google Scholar]
- Jaworski, J. Parowanie w Cyklu Hydrologicznym Zlewni Rzecznych (Evaporation in the Hydrological Cycle of River Catchments); PTGeof.: Warszaw, Poland, 2004. [Google Scholar]
- Rösler, A.; Chmal, M.; Chmal, T. Parowanie z powierzchni wody—Porównanie wzorów z pomiarami (Evaporation from the water surface—A comparison of patterns with measurements). In Natural and Anthropogenic Transformations of Lakes; Dunalska, J., Ed.; UWM w Olsztynie: Olsztyn, Poland, 2013; pp. 68–70. [Google Scholar]
- Woolway, R.I.; Verburg, P.; Lenters, J.D.; Merchant, C.J.; Hamilton, D.P.; Brookes, J.; de Eyto, E.; Kelly, S.; Healey, N.C.; Hook, S.; et al. Geographic and temporal variations in turbulent heat loss from lakes: A global analysis across 45 lakes. Limnol. Oceanogr. 2018, 63, 2436–2449. [Google Scholar] [CrossRef] [Green Version]
- Provincial Environmental Protection Inspectorate. Raport o stanie środowiska w Wielkopolsce (Report on the state of the environment in Wielkopolska); Provincial Environmental Protection Inspectorate: Poznań, Poland, 1991–2015. [Google Scholar]
- Carlson, R.E. A trophic state index for lakes. Limnol. Oceanogr. 1977, 22, 361–369. [Google Scholar] [CrossRef] [Green Version]
- Kratzer, C.R.; Brezonik, P.L. A Carlson-type trophic state index for nitrogenin Florida lakes. Water Res. Bull. 1981, 17, 713–715. [Google Scholar] [CrossRef]
- Nowak, B.M. Report on the implementation of the research task: Transformation of the lake shore zone—Determination of the criteria for succession and regression of coastal vegetation and their relationship with changes of hydrometeorological and anthropogenic conditions. In Hydrological Regime of Lakes; Statutory Research No. DS—H3; Instytut Meteorologii i Gospodarki Wodnej: Poznań, Poland, 2011. [Google Scholar]
- Nowak, B.M. Rola jezior w kształtowaniu zasilania i drenażu wód podziemnych na Pojezierzu Gnieźnieńskim w warunkach naturalnych i antropopresji hydrodynamicznej (The role of lakes in drainage and recharge of groundwater in the Gniezno Lakeland area in natural conditions and conditions of hydrodynamic anthropopressure). Ph.D. Thesis, Adam Mickiewicz University in Poznan, Poznan, Poland, December 2018. [Google Scholar]
- Ptak, M.; Nowak, B. Variability of Oxygen-Thermal Conditions in Selected Lakes in Poland. Ecol. Chem. Eng. 2016, 23, 639–650. [Google Scholar] [CrossRef] [Green Version]
- Przybyłek, J.; Nowak, B. Wpływ niżówek hydrogeologicznych i odwodnień górniczych na systemy wodonośne Pojezierza Gnieźnieńskiego (Impact of hydrogeological low flows and groundwater drainage by lignite open cast mine on aquifer systems in Gniezno Lakeland). Biul. Panstw. Inst. Geol. 2011, 445, 513–528. [Google Scholar]
- Morillo, S.; Imberger, J.; Antenucci, J.P.; Woods, P.F. Influence of Wind and Lake Morphometry on the Interaction between Two Rivers Entering a Stratified Lake. J. Hydraul. Eng. Asce 2008, 134, 1579–1589. [Google Scholar] [CrossRef]
- Tammeorg, O.; Niemistö, J.; Möls, T.; Laugaste, R.; Panksep, K.; Kangur, K. Wind-induced sediment resuspension as a potential factor sustaining eutrophication in large and shallow Lake Peipsi. Aquat. Sci. 2013, 75, 559–570. [Google Scholar] [CrossRef]
- Scheffer, M.; Van Nes, E.H. Shallow lakes theory revisited: Various alternative regimes driven by climate, nutrients, depth and lake size. In Shallow Lakes in a Changing World; Springer: Dodrecht, The Netherlands, 2007; pp. 584, 455–466. [Google Scholar]
- Paerl, H.W.; Xu, H.; McCarthy, M.J.; Zhu, G.; Qin, B.; Li, Y.; Gardner, W.S. Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): The need for a dual nutrient (N & P) management strategy. Water Res. 2011, 45, 1973–1983. [Google Scholar] [CrossRef]
- Descy, J.P.; Leprieur, F.; Pirlot, S.; Leporcq, B.; Van Wichelen, J.; Peretyatko, A.; Teissier, S.; Codd, G.A.; Triest, L.; Vyverman, W.; et al. Identifying the factors determining blooms of cyanobacteria in a set of shallow lakes. Ecol. Inform. 2016, 34, 129–138. [Google Scholar] [CrossRef]
- Søndergaard, M.; Lauridsen, T.L.; Johansson, L.S.; Jeppesen, E. Nitrogen or phosphorus limitation in lakes and its impact on phytoplankton biomass and submerged macrophyte cover. Hydrobiologia 2017, 795, 35–48. [Google Scholar] [CrossRef]
- Mohamed, Z.A. Macrophytes-cyanobacteria allelopathic interactions and their implications for water resources management—A review. Limnologica 2017, 63, 122–132. [Google Scholar] [CrossRef]
- Crisman, T.L.; Alexandridis, T.K.; Zalidis, G.C.; Takavakoglou, V. Phragmites distribution relative to progressive water level decline in Lake Koronia, Greece. Ecohydrology 2014, 7, 1403–1411. [Google Scholar] [CrossRef]
- Hanslin, H.M.; Mæhlum, T.; Sæbø, A. The response of Phragmites to fluctuating subsurface water levels in constructed stormwater management systems. Ecol. Eng. 2017, 106, 385–391. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, Q.; Tan, Z.; Li, Y.; Wang, X. Effects of water-table depth and soil moisture on plant biomass, diversity, and distribution at a seasonally flooded wetland of Poyang Lake, China. Chin. Geogr. Sci. 2015, 25, 739–756. [Google Scholar] [CrossRef]
- Zhiqiang, T.; Qi, Z.; Mengfan, L.; Yunliang, L.; Xiuli, X.; Jiahu, J. A study of the relationship between wetland vegetation communities and water regimes using a combined remote sensing and hydraulic modeling approach. Hydrol. Res. 2016, 47, 278–292. [Google Scholar] [CrossRef] [Green Version]
- Ogdahl, M.E.; Steinman, A.D. Factors influencing macrophyte growth and recovery following shoreline restoration activity. Aquat. Bot. 2015, 120, 363–370. [Google Scholar] [CrossRef]
- Nowak, B.; Brodzińska, B.; Gezella-Nowak, I. Natural and economic factors of shrinkage of lakes of the Wielkopolska Lakeland. Limnol. Rev. 2011, 11, 123–132. [Google Scholar] [CrossRef] [Green Version]
Period | Water Level/m a.s.l.* | Lake Surface/ha | Loss of Area Compared to 1960/% |
---|---|---|---|
1960s | 98.60 ± 0.10 | 1134.5 | - |
1970s and 1980s | 98.44 ± 0.16 | 1051.2 | 7.3 |
1990s | 98.20 ± 0.17 | 1025.3 | 9.6 |
2010s | 98.00 ± 0.14 | 1007.3 | 11.2 |
Year. | TSI (Chl) | TSI (SD) | TSI (TP) | TSI (TN) | TSI | Classification |
---|---|---|---|---|---|---|
1985 | 51.6 | 39.0 | 82.6 | 61.2 | 58.6 | eutrophy |
1991 | 52.5 | 46.8 | 66.5 | 53.2 | 54.8 | eutrophy |
1996 | 44.4 | 45.1 | 52.7 | 59.6 | 50.5 | eutrophy |
2000 | 41.4 | 44.1 | 70.7 | 56.6 | 53.2 | eutrophy |
2004 | 46.8 | 35.9 | 40.0 | 52.6 | 43.8 | mesotrophy |
2009 | 41.7 | 35.7 | 29.5 | 46.1 | 38.8 | oligotrophy |
2012 | 36.4 | 37.4 | 27.4 | 53.9 | 38.3 | oligotrophy |
2015 | 45.4 | 40.4 | 47.4 | 57.2 | 47.6 | mesotrophy |
Plant Communities | Area of Emerged Littoral Zone in 1960 | Area of Emerged Littoral Zone in the First Decade of the 21st Century | Areas of Littoral and Riparian Zones (ha) in the First Decade of the 21st Century |
---|---|---|---|
Reeds—dense Phragmitetum australis (Gams 1927) Schmale 1939 | nd * | 86.72 | 91.58 |
Reeds—thin Phragmitetum australis (Gams 1927) Schmale 1939 | nd | 28.14 | 28.21 |
Narrow-Leaved Cattail community—dense Typhetum angustifoliae (Allorge 1922) | nd | 1.55 | 1.55 |
Narrow-Leaved Cattail community—rare Typhetum angustifoliae (Allorge 1922) | nd | 0.25 | 0.25 |
Common club-rush—dense Scirpetum lacustris (Allorge 1922) Chouard 1924 | nd | 0.33 | 0.33 |
Common club-rush—rare Scirpetum lacustris (Allorge 1922) Chouard 1924 | nd | 0.1 | 0.1 |
Reeds, narrow-stem and eyeball reed, unsealed | nd | 1.65 | 1.65 |
Total | 41.5 | 118.75 | 123.67 |
Trees and shrubs for several years (Alnus glutinosa, Salix cinerea, etc.), include trees and shrubs within the rushes | nd | 45.81 | 56.79 |
nd | 24.09 | 26.35 | |
Trees and shrubs of several decades (Alnus glutinosa, Salix cinerea, etc.) | nd | 38.9 | 164.36 |
Total | 9.7 | 84.71 | 221.15 |
Rushes, bushes and trees—total | 51.2 | 203.46 | 344.82 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nowak, B.; Lawniczak-Malińska, A.E. The Influence of Hydrometeorological Conditions on Changes in Littoral and Riparian Vegetation of a Meromictic Lake in the Last Half-Century. Water 2019, 11, 2651. https://doi.org/10.3390/w11122651
Nowak B, Lawniczak-Malińska AE. The Influence of Hydrometeorological Conditions on Changes in Littoral and Riparian Vegetation of a Meromictic Lake in the Last Half-Century. Water. 2019; 11(12):2651. https://doi.org/10.3390/w11122651
Chicago/Turabian StyleNowak, Bogumił, and Agnieszka E. Lawniczak-Malińska. 2019. "The Influence of Hydrometeorological Conditions on Changes in Littoral and Riparian Vegetation of a Meromictic Lake in the Last Half-Century" Water 11, no. 12: 2651. https://doi.org/10.3390/w11122651