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Abstract: In this study, we analyzed the predictions of hydrological droughts in the Lam Chiang
Kri Watershed (LCKW) by using the Soil and Water Assessment Tool (SWAT) and streamflow data
for 2010–2021. The objective was to assess the streamflow drought index (SDI) for 5-, 10-, 25-, and
50-year return periods (RPs) in 2029 and 2039 in two representative concentration pathway (RCP)
scenarios: the moderate climate change scenario (RCP 4.5) and the high-emission scenario (RCP 8.5).
The SWAT model showed high accuracy (R2 = 0.82, NSE = 0.78). In RCP4.5, streamflow is projected
to increase by 34.74% for 2029 and 18.74% for 2039, while in RCP8.5, a 37.06% decrease is expected
for 2029 and 55.84% for 2039. A historical analysis indicated that there were frequent short-term
droughts according to SDI-3 (3-month-period index), particularly from 2014 to 2015 and 2020 to
2021, and severe droughts according to SDI-6 (6-month-period index) in 2015 and 2020. The RCP8.5
projections indicate worsening drought conditions, with critical periods from April to June. A wavelet
analysis showed that there is a significant risk of severe hydrological drought in the LCKW. Drought
characteristic analysis indicated that high-intensity events occur with low frequency in the 50-year RP.
Conversely, high-frequency droughts with lower intensity are observed in RPs of less than 50 years.
The results of this study highlight an increase in severe drought risk in high emission scenarios,
emphasizing the need for water management.

Keywords: climate change; CMIP5; hydrological drought characteristics; Streamflow Drought
Index (SDI)

1. Introduction

Climate change exerts a significantly influence on extreme events [1], particularly
droughts [2], which have long-lasting impacts on human life, the environment, industry,
and the economy [3]. Hydrological droughts, characterized by below-average streamflow,
are crucial issues to consider in water resource planning and management due to increasing
demand and population growth [4]. As climate change continues to alter weather patterns,
predicting droughts becomes essential to ensuring efficient water resource management,
irrigation system operation, agricultural production, and national economic stability [5].

However, predicting hydrological droughts is challenging due to the nonstationary
nature of hydrological processes influenced by climate change [5]. These challenges com-
plicate integrated water resource management, as droughts significantly reduce available
water resources; therefore, it is necessary to design strategies to balance supply and de-
mand [6]. Moreover, climate change exacerbates drought severity on a global scale, making
it imperative to evaluate hydrological drought in various climate scenarios. Human ac-
tivities, such as water over-extraction and land-use changes, further influence drought
characteristics [7]. The increasing frequency, duration, and intensity of droughts underscore
the importance of effective monitoring. Among the various indexes used to assess the
severity of these phenomena, the streamflow drought index (SDI) is widely recognized
as a simple yet effective method for evaluating hydrological droughts. Numerous studies
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conducted in regions such as Northern Europe [8], Australia [9], Ethiopia [10], India [11],
and Turkey [12] have demonstrated the severity of droughts, highlighting the need for ro-
bust mitigation measures and a deeper understanding of the relationship between drought
and climate change [13,14]. Furthermore, the Intergovernmental Panel on Climate Change
(IPCC) and the Coupled Model Intercomparison Project (CMIP) have been instrumental
in developing models to predict future climate changes, with CMIP5 showing enhanced
performance in simulating global precipitation trends [15].

Northeastern Thailand is significantly affected by climate change, leading to de-
creased rainfall and streamflow, with projections indicating a 13–19% reduction in annual
streamflow and shifts in seasonal patterns [16]. This decline has severely impacted the
agricultural sector, especially rice farming, where yields are expected to decrease due to
higher temperatures and altered rainfall patterns [15]. The Lam Chiang Kri Watershed
(LCKW) is particularly vulnerable due to its geographical limitations and sandy soil, whose
water-holding capacity is poor. The region experienced a 24.52% decrease in rice produc-
tion during strong El Niño events, further illustrating the severe impact of drought [17].
Additionally, the region’s climate variability, frequent droughts, and issues such as soil
erosion and salinity exacerbate existing agricultural challenges. Consequently, sustainable
water resource management and improved agricultural practices are essential to address-
ing these issues [18–20]. This study presents a novel perspective on the hydrological and
climatic characteristics of Northeastern Thailand, a region whose unique features have
been largely underexplored in existing literature. By integrating hydrological drought
analysis with return period assessments under climate change scenarios, the research ad-
dresses a significant knowledge gap [21]. By focusing on Northeastern Thailand’s unique
challenges, the study provides valuable insights into the region’s vulnerability to future
droughts and contributes to the development of effective water resource management and
planning strategies.

In this study, we aimed to fill the existing research gap by evaluating the impact of
climate change on streamflow in the Lam Chiang Kri Watershed, assessing hydrological
drought by using the streamflow drought index (SDI), and characterizing this phenomenon
across different return periods in two climate change scenarios. We utilized the SWAT
model, a well-established tool for simulating streamflow, based on downscaled climate
projections from selected global climate models (GCMs) in two emission scenarios: RCP4.5
and RCP8.5. The analysis focuses on projections for the years 2029 and 2039, incorporating
observational streamflow data for the reference period to estimate future streamflow and
calculate hydrological drought.

2. Materials and Methods
2.1. Study Area

The Lam Chiang Kri Watershed (LCKW) is located in northeastern Thailand, within the
Isan Plateau, and serves as the upper branch of the Mun Watershed. Covering 2959.59 square
kilometers, it has an elevation range of 145 m to 593 m above sea level (Figure 1) [22]. The
terrain slopes from west to east, with predominantly laterite soil, which is a type of sandy
loam with poor water-holding capabilities. As a result, hydrographs in this region display
sharp rising limbs, high peaks, and steep recess limbs, indicating that rainfall quickly runs off
rather than soaking into the ground, leading to rapid changes in streamflow levels [23].

The LCKW experiences lower rainfall and higher temperatures than other regions in
Thailand. According to data from the Thai Meteorological Department (TMD), the area
receives an average annual rainfall of 947.66 mm and has an average temperature of 33 ◦C.
The LCKW has distinct wet and dry seasons driven by monsoons [24]. The southwestern
monsoon brings heavy rain from mid-May to mid-October, while the northeastern mon-
soon causes the dry season from mid-October to mid-February, with a transitional period
occurring from mid-February to mid-May. Additionally, the Roy-al Irrigation Department
of Thailand (RID) reports an average annual streamflow of 2661.51 m3/s, with 91.78%
occurring during the rainy season and the remaining 8.22% in the dry season. Furthermore,
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an analysis by Thailand’s Land Development Department (LDD) indicated that 88.89%
of the land use in the LCKW is agricultural, yet only 22.09% is irrigated. This highlights
the area’s high vulnerability to drought, with 45.89% of land being classified as high risk,
29.72% as moderate risk, and 24.39% as low risk. These factors underscore the region’s
susceptibility to drought, which significantly affects agriculture and water resources.
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Figure 1. The geographical location, topographical features, historical drought patterns, and weather
stations of the study area.

2.2. Data Collection
2.2.1. Meteorological Data

Daily meteorological data, including precipitation, temperature, humidity, wind speed,
and radiation, were obtained from the Thai Meteorological Department for the period from
1992 to 2022 [24]. Within the Lam Chiang Kri Watershed, data were collected from five
meteorological stations: P431003 (Dan Khun Thot), P431014 (Non-Thai), P431017 (Non-
Sung), P431034 (Theparak), and P431039 (Phra Thong Kham). We applied the Thiessen
method to ensure an accurate representation of rainfall across the watershed. This spatial
interpolation technique divides the area into polygons, with each polygon assigned the
rainfall data from the nearest meteorological station. As a result, it provides a precise
and reliable distribution of rainfall data across the region [25]. By doing so, the method
provides a more representative average of rainfall distribution across the watershed. The
processed data were then used as inputs for bias correction in climate models to evaluate
past, present, and future climate scenarios.
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2.2.2. Hydrological Data

Daily streamflow data in this study were obtained from the Irrigation Hydrology
Center, Royal Irrigation Department Thailand [26]. This station is M188 (Ban Bua). The
data covers April 2010–March 2021.

2.2.3. Topographic, Soil, and Land Use Data

The digital elevation model (DEM) was used in this study to represent the topographic
condition of the study area. This DEM has a resolution of 12.5 m. These data were retrieved
from the National Aeronautics and Space Administration (NASA) [27].

This study used a 2021 land use map and soil map of the LCKW, created by Thailand’s
Land Development Department (LDD), with reference to a spatial resolution suitable for
detailed watershed analysis.

2.3. Methodology

In this study, we utilized daily rainfall data from five gauges of the Thai Meteorological
Department (TMD), covering the historical period from 1992 to 2022. Additionally, daily
streamflow data from the gauge at the M188 station, provided by the Royal Irrigation
Department of Thailand (RID), were used for the historical period from 2010 to 2021. The
locations of these gauges are illustrated in Figure 1, while a schematic diagram of the
overall framework is shown in Figure 2. For the projected periods, two specific years were
selected, the 5th year (2029) and the 15th year (2039) from the current year, to assess the
impact of climate change on hydrological drought. Observational rainfall and streamflow
data were crucial to calibrating and validating the Soil and Water Assessment Tool (SWAT)
model version 2012, as well as calculating the baseline (2010–2021) hydrological drought
index. After performing bias correction, the ability of the global climate models (GCMs) to
generate streamflow for the baseline period was evaluated. The output from all selected
GCMs was then analyzed, with particular emphasis on the drought index results obtained
from the best-performing GCMs.
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2.3.1. Global Climate Models (GCMs) and Climate Scenarios

In this study, we employed three well-regarded global climate models (GCMs) from
the CMIP5 dataset: EC-Earth3, HadGEM2, and MPI-ESM-MR [28,29]. These models were
selected for their strong capabilities in simulating historical climate variability and accu-
rately projecting future scenarios. EC-Earth3 is particularly effective in high-resolution
assessments of extreme events like floods, droughts, and heatwaves. HadGEM2 is known
for its precision in modeling global warming and extreme weather conditions, making
it ideal for hydrology and drought studies. MPI-ESM-MR excels in simulating complex
climate interactions, such as monsoon dynamics, and is especially useful for assessing long-
term drought risks in Southeast Asia [30–32]. These models were chosen for their proven
ability to represent precipitation, which is a crucial variable in hydrological responses
and potential future hydrological drought scenarios. These scenarios include projected
frequency, duration, and severity of droughts as influenced by different climate change
pathways. Specifically, CMIP5 was chosen for its ability to address the diverse and complex
geography of Southeast Asia, which includes mountain ranges, major rivers, and coastal
regions highly vulnerable to climate change. Its validation in numerous regional studies
ensures its suitability for addressing local complexities [28]. To analyze future climate
impacts, we used precipitation data from these models under two Representative Concen-
tration Pathways (RCPs), which are greenhouse gas concentration trajectories adopted by
the Intergovernmental Panel on Climate Change (IPCC). Specifically, RCP 4.5 represents
a moderate climate impact scenario where radiative forcing stabilizes at 4.5 W/m2 by
2100 [33], while RCP 8.5 depicts a high-emission scenario with radiative forcing reaching
8.5 W/m2 by 2100, while RCP 8.5 depicts a high-emission scenario with radiative forcing
reaching 8.5 W/m2 by 2100. The comprehensive datasets and extensive validation of these
models in similar climates ensure the reliability and robustness of our projections.

To ensure the accuracy of the projected climate data, we refined the GCM outputs
through dynamic downscaling [34], improving alignment with local climate patterns and
enhancing their suitability for regional impact assessments. The downscaled models
were validated by comparing their outputs with observed climate data from 1992 to
2022, using statistical metrics such as correlation coefficient (r), root mean square error
(RMSE), and standard deviation (SD). The models’ performance was visually summarized
using a Taylor diagram, allowing for comparative evaluation [35]. For our analysis of
future climate impacts, we focused on two specific years, 2029 and 2039, representing the
5th and 15th years within the projected timeframe. These years were chosen to capture
both near-term and mid-term climate impacts, offering insights into potential changes
in hydrological patterns, particularly regarding drought conditions under different RCP
scenarios. To further ensure the accuracy of these projections, we compared the models’
rainfall predictions for these years with observed rainfall data from 2004 to 2022, allowing
us to assess the models’ reliability in projecting future climatic conditions.

2.3.2. SWAT Model

(1) Model Description

The SWAT model, a semi-distributed, process-based hydrological tool developed
by the United States Department of Agriculture (USDA), was employed in this study to
simulate watershed processes [36], with a particular focus on assessing the impacts of
climate change. The model utilized a comprehensive set of input data, including climate
variables sourced from the Thai Meteorological Department, topographical data derived
from a 12.5-m resolution DEM, soil characteristics provided by the Land Development
Department of Thailand, and land use data reflecting both current and historical patterns.
The construction of the model involved delineating the watershed, creating hydrologic
response units (HRUs) based on land use, soil type, and slope, and integrating these datasets
to accurately represent the hydrological processes within the watershed. Calibration
and validation of the model were conducted using multi-temporal observed streamflow
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data from 2010 to 2021, ensuring the model’s precision and reliability in simulating the
watershed’s behavior under various climate scenarios [37].

In this study, the SWAT model was also utilized to delineate the watershed, divide
it into sub-watersheds, and create HRUs based on land use, soil type, and slope data.
The Land Development Department of Thailand classified land use into twelve primary
categories, while the soil map identified forty-four distinct soil types within the study area.
Additionally, the slope was categorized into five classes: flat (0–2%), sloping (2–5%), hilly
(5–15%), steep (15–35%), and very steep (>35%).

A water balance equation was the basis for the SWAT model, represented as follows
(Equation (1)):

SWt = SW0 + ∑
(

Rday − Qsur f − Ea − Wseed − Qgw

)
(1)

where SW0 and SWt (mm) are the initial and final soil water on a given day, and Rday,
Qsur f , Ea, Wseed, and Qgw (mm) are the rainfall, runoff, ET, water seepage to the upper soil
layer, and return flow on that day, respectively.

The SWAT model used the Soil Conservation Service curve number (SCS-CN) ap-
proach to compute surface runoff in the study area. The SCS-CN equation is shown by
Equation (2), as follows:

Qsur f =

(
Rday − Ia

)2(
Rday − Ia + S

) (2)

where Qsur f is daily surface runoff (mm); Rday is daily rainfall depth (mm); Ia is the initial
abstraction (mm); and S is the retention parameter (mm). The retention parameter

S is not fixed and can be affected by factors such as slope, soil, and land-use man-
agement. Mathematically, the retention parameter can be represented as Equation (3),
as follows:

S = 254 ×
(

100
CN

− 1
)

(3)

where S is the retention parameter (mm), and CN is the curve number. The curve number
ranges from 0 to 100, with 100 indicating no potential retention and 0 reflecting infinite
potential retention [38].

(2) Model Setup

The SWAT model calibration and validation process requires careful consideration
of observation streamflow data from the M188 station. The data are divided into 80% for
calibration and 20% for validation, with periods selected from 2010 to 2021. The simulation
runs for 12 years, starting from 1 January 2010, to 31 December 2021. Nine sub-watersheds
were created in the study area, with a threshold of 10% for land use, 10% for soil, and 10%
for slope, resulting in 108 hydrologic response units.

(3) Model Evaluation

The study used SWAT-CUP software version 5.1.6 with the Sequential Uncertainty
Fitting (SUFI) algorithm to calibrate a model [39], which can handle a large number of
parameters and combine sensitive analysis and improvement [37].

The model’s performance was compared using three statistical performance indices:
Nash and Sutcliffe Efficiency (NSE) following Equation (4) [40]; the coefficient of determina-
tion (R2), following Equation (5) [41]; percent bias (PBIAS), following Equation (6) [42]; and
Kling–Gupta Efficiency (KGE), following Equation (7) [43], to evaluate its daily stream-flow
performance during calibration and validation phases.

NSE = 1 − ∑n
i=1(Qobs − Qsim)

2

∑n
i=1

(
Qobs − Qobs

)2 (4)



Atmosphere 2024, 15, 1136 7 of 22

R2 =

 ∑n
i=1

[(
Qobs − Qobs

)(
Qsim − Qsim

)][
∑n

i=1
(
Qobs − Qobs

)2
]0.5[

∑n
i−1

(
Qsim − Qsim

)2
]0.5


2

(5)

PBIAS =
∑n

i=1(Qobs − Qsim)

Qobs
× 100 (6)

KGE = 1 −
√
(r − 1)2 + (α − 1)2 + (β − 1)2 (7)

Qobs and Qsim represent observed and simulated values, respectively. The NSE value
of the model should be more than 0.50, while the R2 should be at least 0.7. PBIAS should
not exceed 25 percent to be acceptable. KGE can be categorized as good (KGE ≥ 0.75),
intermediate (0.75 > KGE ≥ 0.5), poor (0.5 > KGE > 0), and very poor (KGE ≤ 0).

2.3.3. Hydrological Drought Index

The streamflow drought index (SDI) is a key tool for assessing hydrological drought
severity, where positive values indicate wetter conditions, and negative values signal
the presence of drought. Calculated using monthly streamflow data, the SDI aids in
managing drought and water scarcity across various time frames, encompassing both
dry and wet seasons [44]. Specifically, the SDI-3, which tracks drought over a 3-month
period, is particularly valuable for monitoring agricultural droughts and their impact on
crops, whereas the SDI-6, calculated over 6 months, offers deeper insights into hydrological
droughts that affect both surface and groundwater resources [45]. By analyzing both SDI-3
and SDI-6 together, a more comprehensive understanding of drought conditions can be
achieved across both short-term and long-term time scales. Moreover, these time scale
choices can be further refined depending on the specific climate and water resource focus
of the study area, as detailed in Equation (8) [44].

SDI =
Vn,q − Vqm

Sq
(8)

where Vn,q represents the cumulative streamflow volume for period (n) and quarter (q)
while Vqm and Sq are the mean and the standard deviation of cumulative streamflow
volumes of the reference period, respectively. The classification of hydrological drought
based on the SDI (Table 1) offers a detailed understanding of drought characteristics.

Table 1. Classification of hydrological drought based on SDI.

State Description Range

1 No drought 0 ≤ SDI
2 Mild drought −1 ≤ SDI < 0
3 Moderate drought −1.5 ≤ SDI < −1
4 Severe drought −2 ≤ SDI < −1.5
5 Extreme drought SDI ≤ −2

The Theory of Runs (ToR) is a statistical method used to analyze drought characteris-
tics [46], including drought event (DE), drought duration (DD), drought severity (DS), and
drought intensity (DI) (Figure 3). DE is identified when the SDI value falls below a critical
threshold. DD represents the duration of drought in months with negative SDI values,
while DS is the sum of the absolute values of the SDI during a DE. DI can be defined as the
absolute lowest value of the index (DI1) or the ratio of DS to DD in a DE (DI2).
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2.3.4. Scenarios Analysis in Different Return Periods

The CumFreq software version 5.0. (https://www.waterlog.info/cumfreq.htm; ac-
cessed on 28 January 2024) was employed to determine the most suitable statistical distribu-
tion for characterizing drought events across various return periods (5, 10, 25, and 50 years)
and time scales (3 and 6 months). CumFreq utilizes multiple probability distribution
functions to analyze the input data and subsequently recommend the most appropriate dis-
tribution for drought characterization [48]. The absolute values of the streamflow drought
index (SDI) were input into CumFreq to derive these distributions.

To further analyze the impact of droughts over different periods, wavelet analysis was
applied to assess the variability of SDI values at different time scales and across varying re-
turn periods. This method provided deeper insights into the temporal patterns and severity
of droughts under different climate scenarios. Additionally, a geostatistical approach was
employed to interpolate streamflow and SDI values, which were then visualized as contour
maps. These maps were generated using accurate variogram models, which are crucial
for interpreting the spatial distribution of natural phenomena like drought [49]. Moreover,
the relationship between streamflow and absolute SDI was explored using Surfer 21.1.158
software, enabling the creation of three-dimensional diagrams with contour lines based on
the Kriging interpolation method [50].

3. Results

The investigation of critical hydrological droughts in the Lam Chiang Kri Watershed
(LCKW) in CMIP5 climate change scenarios was divided into three key areas, i.e., the
calibration and validation of the SWAT model, identification of historical drought charac-
teristics, and assessment of climate change impacts on hydrological drought, as detailed in
the following sections.

3.1. Calibration and Validation of SWAT Model

The SWAT model simulation for the period from 2010 to 2021, supported by data from
a hydrological station within the Lam Chiang Kri Watershed, allowed us to effectively
analyze the watershed’s hydrological responses to varying meteorological conditions. The
calibration and validation performed by using the SUFI-2 algorithm within SWAT-CUP
ensured the accuracy of the streamflow patterns, significantly enhancing the reliability of
the results (Table 2).

Table 2. Sensitivity parameters in the SWAT-CUP model of LCKW.

Parameter t-Stat p-Value Fit Value Min Value Max Value

1: R__CN2.mgt −5.48 0.01 40.395 35 100
2: R__SOL_AWC(..).sol −2.84 0.04 0.343 −0.2 0.4
3: R__ESCO.hru 2.16 0.08 0.21525 0.1 0.35
4: V__GW_DELAY.gw 1.82 0.14 155.5 0 500
5: R__SLSUBBSN.hru −1.71 0.17 56.90 50 150

https://www.waterlog.info/cumfreq.htm
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A sensitivity analysis identified five critical parameters—CN2, ESCO, SOL_AWC,
GW_DELAY, and SLSUBBSN—highlighting their significant influence on the streamflow
simulation. These findings provide a robust foundation for future water resource manage-
ment and drought mitigation strategies in the LCKW.

The calibration and validation phases in SWAT model development depend on accu-
rate observational streamflow data. For this study, data from the M188 station, covering the
period from 2010 to 2021, were utilized. Figure 4 shows that the calibrated SWAT model for
the M188 station closely matched the observational data patterns.
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Figure 4. The monthly simulated and observed streamflow comparison for the M188 station during
the calibration (2010–2017) and validation (2018–2021) periods. The two periods are separated by
vertical dashed lines within the graphs.

For statistical evaluation, R2, NSE, PBIAS, and KGE values were used. Throughout the
calibration and validation periods, the streamflow station data exhibited R2 and NSE values
above 0.75, indicating good to very good performance. The PBIAS values were maintained
below 25%, aligning with the preferred threshold. The KGE values were classified in the
intermediate category, as detailed in Table 3.

Table 3. Statistical parameters of the SWAT model based on SWAT-CUP.

Statistic Parameters Calibration (2011–2017) Validation (2018–2021) Total (2011–2021)

R2 0.83 0.81 0.82
NSE 0.78 0.78 0.78
PBIAS 12.0 28.04 20.02
KGE 0.64 0.46 0.55

3.2. Identification of Historical Drought Characteristics

The historical drought characteristics were calculated using the streamflow drought
index (SDI) and divided into two periods: SDI-3 and SDI-6. The figure illustrates the SDI
variations in the LCKW from 2010 to 2021, focusing on these two different accumulation
periods. According to the 3-month accumulation period (SDI-3) analysis, the graph indi-
cates frequent fluctuations in the SDI values (Figure 5), with significant drought periods
around 2014–2015, where the mean SDI-3 value dropped to approximately −1.75. During
2020–2021, the SDI-3 values decreased to levels as low as −2.25, suggesting that short-term
drought events are common and often occur annually. The 6-month accumulation period
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(SDI-6) analysis showed less frequent but more severe and prolonged droughts (Figure 5).
Notably, in 2015, the SDI-6 value reached approximately −2.5, and in 2020, it dropped
further, to around −2.74, indicating that medium-term droughts, while less frequent, tend
to be more intense and prolonged. Both the SDI-3 and SDI-6 analyses indicated that severe
and extreme drought events occurred almost every year, highlighting the persistent and
recurring nature of drought conditions in the region.
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red represents mild to moderate, severe, and extreme drought categories, respectively.

The analysis indicated an average of 2.67 drought events per year, with a maximum
duration of 3 months and a peak severity of −31.97. The SDI-6 analysis showed less
frequent yet more severe and prolonged droughts, notably in 2015 and 2020, with an
average of 1.25 drought events per year, a maximum duration of 6 months, and a peak
severity of −43.04. Both indexes underscore the persistent and recurrent nature of drought
conditions, highlighting the necessity for effective water resource management strategies to
mitigate both short-term and medium-term drought risk. The maximum intensity values
for SDI-3 were −2.44 in 2015 (DI1) and −1.35 (DI2), whereas for SDI-6, they were −2.74
(DI1) in 2020 and −1.69 (DI2) (Table 4).

Table 4. The historical drought characteristics in the LCKW represented by the SDIs for 3- and
6-month accumulation periods.

Hydrological Drought
SDI-3 SDI-6

Average drought event (time/year) 2.67 1.25
Total number of drought events (times) 32 15
Maximum drought duration (months) 23 36

Maximum drought severity −31.97 −43.04
Maximum drought intensity based on DI1 −2.44 −2.74
Maximum drought intensity based on DI2 −1.35 −1.69

3.3. Assessment of Climate Change Impacts on Hydrological Drought
3.3.1. The Selection of the Fittest GCM

In this study, we utilized daily rainfall observations from five weather stations located
within the Lam Chiang Kri Watershed (LCKW) (as shown in Figure 1). The rainfall data
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were aggregated and analyzed by using the Thiessen method to accurately represent the
spatial distribution of rainfall across the watershed. The observational data covered the
historical period from 1992 to 2022, which was divided into two distinct phases: 1992–2005
for calibration and 2006–2022 for validation. These periods were used to assess the perfor-
mance of three selected CMIP5 GCMs, i.e., EC-Earth3, HadGEM2, and MPI-ESM-MR, in
the RCP4.5 and RCP8.5 scenarios.

The data were processed to ensure consistency and accuracy before being used in
Taylor diagram analysis. To create the Taylor diagram, data for 1992–2022 were used to
assess how accurately the models predicted results compared with the observational data
during that period, which were employed to assess the fit of these models. Among the
models, the EC-Earth3 model (red dot) demonstrated the highest correlation with the
observational data, with a correlation coefficient of 0.65, a standard deviation (SD) of 1.98,
and a root mean square error (RMSE) of 3.41, making it the most accurate model. The
HadGEM2 model (blue dot) also showed a strong correlation but had a higher RMSE.
The MPI-ESM-MR model (green dot) exhibited moderate correlation and RMSE values
(Figure 6).
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rainfall in the LCKW.

3.3.2. Future Rainfall

The future rainfall analysis compared monthly averages from the observational periods
with projections in the RCP4.5 and RCP8.5 scenarios. Figure 7 presents the EC-Earth3
model’s average monthly rainfall predictions for 2029 and 2039, alongside the baseline data
for 2004–2022 (Table 5), to evaluate changes in both climate scenarios.

In 2029, which represents the 5th year from the baseline reference year (2024), in
the RCP4.5 scenario, the projected annual rainfall totals 1311.94 mm, with the highest
monthly rainfall value occurring in September (383.03 mm) and the lowest one in January
(11.46 mm). This represents a predicted increase of 38.44% in future rainfall compared with
the baseline. In the RCP8.5 scenario, the projected annual rainfall is 892.97 mm, with the
highest value in August (215.53 mm) and the lowest one in February (11.90 mm), indicating
a decrease of 5.77% compared with the baseline.

In 2039, which represents the 15th year from the baseline reference year (2024), in the
RCP4.5 scenario, the projected annual rainfall is 1101.06 mm, with the highest monthly
rainfall value in August (248.36 mm) and the lowest one in January (14.80 mm), marking a
16.19% increase compared with the baseline. In the RCP8.5 scenario, the projected annual
rainfall totals 805.46 mm, with the highest value in October (218.96 mm) and the lowest one
in January (1.33 mm), reflecting a 15.00% decrease compared with the baseline (Table 5).



Atmosphere 2024, 15, 1136 12 of 22

The findings indicate that there are considerable differences in the variability of
monthly rainfall between the two future periods, with more substantial changes being
predicted for 2039, particularly in the RCP8.5 scenario, where the most significant rainfall
declines are anticipated.
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Figure 7. A comparison of streamflow between the baseline period (2004–2022) and the projections
for 2029 (a) and 2039 (b) in the RCP4.5 and RCP8.5 future climate scenarios.

Table 5. Future rainfall changes in the RCP4.5 and RCP8.5 scenarios for 2029 and 2039 compared
with the baseline period of 2004–2022.

Time
Baseline (2004–2022) RCP4.5 RCP8.5

(mm) (mm) % Change (mm) % Change

2029 947.64 1311.94 38.44 892.97 −5.77
2039 947.64 1101.06 16.19 805.46 −15.00

3.3.3. Future Streamflow

In this study, we analyzed variations in streamflow by comparing historical data with
model simulations, focusing on mean annual streamflow in the RCP4.5 and RCP8.5 climate
scenarios. Figure 8 presents the predicted average monthly streamflow for 2029 and 2039
compared with the baseline period of 2010–2021 (Table 6) to evaluate potential changes in
each scenario.
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Table 6. A comparison of the amount of streamflow between the baseline (2010–2021) and the RCP4.5
and RCP8.5 future climate scenarios for both 2029 and 2039.

Months

Baseline
(m3/s)

Future Streamflow (m3/s)

RCP4.5 RCP8.5

2029 2039 2029 2039

Observation Simulation Simulation Simulation Simulation Simulation

January 45.96 46.59 60.83 45.78 4.94 4.94
February 19.30 19.30 1.20 10.92 0.00 5.76
March 9.77 10.66 0.13 9.66 0.00 6.69
April 24.54 25.14 0.13 9.66 0.19 0.19
May 62.52 63.23 12.08 6.08 0.07 116.05
June 122.29 123.02 30.30 7.45 0.33 128.14
July 205.78 206.47 46.95 15.21 4.57 114.43
August 329.76 330.48 249.36 159.97 80.37 378.82
September 626.43 671.42 624.79 474.93 225.28 325.10
October 652.15 653.03 1495.52 1495.52 708.20 65.79
November 419.28 419.99 691.80 593.66 421.28 10.70
December 143.72 119.69 410.01 363.35 247.15 30.93

Total runoff 2661.51 2689.02 3623.09 3192.18 1692.38 1187.54

Wet period (m3/s) 2442.76 2492.78 3150.93 2762.47 1440.29 1139.21
Dry period (m3/s) 218.74 196.24 472.17 429.71 252.09 48.33

(%) Percentage
change - - 34.74 18.71 −37.06 −55.84

In 2029, in the RCP4.5 scenario, the annual streamflow is projected to be 3623.09 m3/s,
with the highest flow value occurring in October (1495.52 m3/s) and the lowest one
in February and March (0.13 m3/s). The monsoon season is expected to contribute
86.97% (3150.93 m3/s) of the total streamflow, with the dry season contributing 13.03%
(472.17 m3/s), indicating a 34.74% increase compared with the baseline period. In the
RCP8.5 scenario, the streamflow is projected to decrease to 1692.38 m3/s, with the highest
flow in October (708.20 m3/s) and no flow in February and March. The monsoon season is
expected to contribute 85.10% (1440.29 m3/s) of the total streamflow, with the dry season
contributing 14.90% (252.09 m3/s), representing a 37.06% decrease compared with the
baseline period (Table 6).

In 2039, in the RCP4.5 scenario, the projected streamflow is 3192.18 m3/s, reflect-
ing an 18.71% increase compared with the baseline. October again has the highest flow
(1495.52 m3/s), and the lowest flows are expected in March and April (9.66 m3/s). The
monsoon season is projected to contribute 86.54% (2762.47 m3/s) of the total streamflow,
with the dry season contributing 13.46% (429.71 m3/s). Conversely, in the RCP8.5 scenario
for 2039, streamflow is projected to further decrease to 1187.54 m3/s, a 55.84% decrease
compared with the baseline. The peak flow is expected in August (378.82 m3/s) and the
lowest value in April (0.19 m3/s). The monsoon season is expected to contribute 95.93%
(1139 m3/s) of the total, with the dry season accounting for only 4.06% (48.33 m3/s).

The results highlight significant disparities in the variability in monthly streamflow
between the two future time frames, with more pronounced changes being observed in 2039,
especially in the RCP8.5 scenario, where the steepest declines in streamflow are projected.
These changes in streamflow mirror the patterns seen in rainfall variability, indicating a
strong correlation between precipitation and streamflow responses to climate change.

3.3.4. Future Hydrological Drought Characteristics

The future hydrological drought characteristics, as projected based on the SDI for the
years 2029 and 2039, were analyzed in two climate scenarios, RCP4.5 and RCP8.5, based on
3-month (SDI-3) and 6-month (SDI-6) accumulation periods (Figure 9), as detailed below.
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Figure 9. The temporal variation in the spatial averaged time series of the SDI in the LCKW at 3- and
6-month time scales calculated based on the EC-Earth3 model: 2029 (a); 2039 (b). The color scale from
yellow to red represents mild to moderate, severe, and extreme drought categories, respectively.

The analysis shows that in 2029, the SDI-3 values in RCP4.5 indicate drier conditions
from January to April, with improvements from May to September and a decline towards
the year’s end. The RCP8.5 scenario follows a similar pattern but with more severe droughts.
In terms of the SDI-6 values, both scenarios exhibit dry conditions early in the year, with
some recovery from April to July and a decline towards the year’s end, with RCP8.5
showing more intense droughts. For 2039, both SDI-3 and SDI-6 projections in RCP4.5 and
RCP8.5 suggest worsening droughts, particularly in RCP8.5, with severe droughts expected
from April to July. The projections highlight an increasing trend in drought severity and
frequency, especially in the higher-emission scenario (RCP8.5), emphasizing the urgent
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need for effective water management and climate adaptation measures to mitigate the
adverse impacts of these projected changes.

3.3.5. Analysis of SDI in Different Return Periods

We further investigated the relationship between streamflow and the absolute SDIs
across different return periods and time scales by using wavelet analysis (Figure 10).
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SDIs, and return periods for the baseline (a), RCP4.5 (b), and RCP8.5 (c). The horizontal axis represents
return periods (years), and the vertical axis represents average streamflow (m3/s). Bold blue lines
indicate areas of low drought severity, while bold red lines mark areas of high severity. Contour lines
highlight transitions between severity levels, with the color gradient further illustrating drought
severity (blue for low and red for high).

For SDI-3, return periods of 2–10 years exhibit the highest drought severity, with
SDI values ranging from 2.08 to 2.86, indicating that the most severe droughts occur over
shorter periods. In contrast, longer return periods (over 10 years) show less intense and
shorter droughts. In the RCP4.5 scenario, the most severe droughts are observed within
2–10 year return periods, rather than increasing with longer return periods. Conversely,
the RCP8.5 scenario shows more severe and widespread droughts, particularly in return
periods of 25–50 years, with absolute SDI values ranging from 2.26 to 4.34. Return pe-
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riods of 1–25 years in RCP8.5 also show moderate drought severity across most of the
watershed area.

For SDI-6, we found that return periods of 10–50 years exhibit the greatest drought
severity, with absolute SDI values ranging from 2.24 to 2.74. These severe droughts cover
longer periods and have a relatively long duration. In shorter return periods of 1–10 years,
fewer droughts are observed. In the RCP4.5 scenario, severe droughts are primarily seen in
25–50 year return periods, with absolute SDI values ranging from 2.31 to 3.76, indicating
continuous drought severity over a long period. For return periods of 0–10 years, no
droughts occur in the first 5 years, and moderate droughts are observed in the 5–10 year
period, with absolute SDI values ranging from 1.56 to 1.97. However, the RCP8.5 scenario
shows a more extensive and severe drought distribution. In return periods of 10–50 years,
high severity covers a wide area of the watershed, with absolute SDI values ranging from
2.38 to 4.38. For return periods of 1–10 years, a moderate level of drought severity covers
most of the watershed area.

We found that the probability of severe hydrological drought in the LCKW is quite
high due to low annual recurrence. The severity of drought varies across different periods,
showing distinct behavior at different recurrence intervals. In all scenarios for SDI-3 and
SDI-6, drought severity generally increases with longer return periods, except for SDI-3 in
the RCP4.5 scenario, where the most severe droughts are associated with shorter return
periods. Notably, SDI-6 exhibits greater severity and duration of droughts than SDI-3, as it
better captures the lag between reduced rainfall and its impact on streamflow, providing a
clearer indication of hydrological drought conditions.

Overall, the results of this study highlight the significant impact of higher greenhouse
gas emissions on drought severity and distribution. The RCP8.5 scenario consistently
indicates more severe and widespread drought conditions than the RCP4.5 scenario. The
analysis underscores the importance of considering different time scales and return periods
when assessing drought severity to understand the potential future impacts in varying
climate change scenarios. Effective water resource management and climate mitigation
efforts are crucial to addressing the increasing severity and frequency of droughts associated
with higher greenhouse gas emissions.

4. Discussion
4.1. Trends in Future Rainfall

In this study, we analyzed future rainfall patterns in northeastern Thailand in two
climate change scenarios, RCP4.5 and RCP8.5, by using simulations based on the EC-Earth3
model. These simulations provide valuable insights into the region’s future climate, as
confirmed by Pimonsree et al. (2023) [51], who proved their accuracy based on a high
spatial correlation coefficient and observational rainfall data across Southeast Asia. The
findings suggest a significant increase in both annual and seasonal rainfall, particularly
during the rainy season from May to November [52,53]. Despite the overall increase in
rainfall, the pattern of daily rainfall remains stable, which is consistent with the findings of
other studies [54].

First, in the RCP4.5 scenario, researchers such as Tammadid et al. (2023) [55] and
Boonwicahi et al. (2018) [56] predicted a significant increase in rainfall in northeastern
Thailand by the period 2030–2035, with annual precipitation expected to increase by 13%.
Additionally, for the nearby watershed area, Li et al. (2021) [57] indicated that rainfall
during the wet season is projected to increase substantially in RCP4.5, which is particularly
crucial for agriculture and water resource management in the region. These changes are
attributed to the warming of global climate, as noted by the IPCC, which forecasted an
intensified water cycle in Southeast Asia [58]. This scenario also suggests higher surface
temperatures and stronger winds, potentially leading to more frequent tropical cyclones,
increased rainfall, and heightened flood risk [59].

Conversely, in the RCP8.5 scenario, which assumes a higher trajectory of greenhouse
gas emissions, the outlook changes significantly. Shrestha et al. (2021) [59] and Okwala
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et al. (2020) [60] predicted a reduction in rainfall, with a forecasted 11% decrease by
2050 in two watershed areas close to the LCKW, which have the same climate. These
nearby watersheds are relevant to our study because they share similar hydrological and
meteorological characteristics, making them a useful proxy for understanding potential
impacts in our primary study area. The reduction in rainfall is more pronounced during the
wet seasons, which could critically impact the region’s hydrology. The decrease in rainfall,
combined with expanded irrigation practices and the increasing frequency and intensity of
El Niño events, suggests that streamflow and water availability will be significantly affected,
potentially leading to more severe drought conditions and water scarcity [61]. The results
of the examination of future rainfall trends in these two distinct climate scenarios, RCP4.5
and RCP8.5, highlight significant variations in regional climate responses. This underscores
the importance of considering the impacts of climate change on water management in
northeastern Thailand.

4.2. Effects on Future Streamflow

This study assessed the impacts of climate change on streamflow, focusing on how
decreases in precipitation during the rainy season contribute significantly to reductions in
annual streamflow. In Southeast Asia, our findings are consistent with previous studies,
such as Promping et al. (2020) [62], who projected a 3.39–6.15% decrease in streamflow
from 2020 to 2050 in the RCP8.5 scenario, with rainy season flows potentially being reduced
by 31–47% in the Pasak River Basin, a neighboring watershed. The Pasak River Basin
shares similar climatic and hydrological characteristics with our study area, making it a
valuable reference point for understanding the broader regional impacts of climate change
on water resources.

Conversely, in the RCP4.5 scenario, increased rainfall could lead to significant increases
in streamflow. For example, Kimmany et al. (2020) [63] reported 8% and 22% increases in
dry season and annual streamflow, respectively. Similarly, Li et al. (2021) [57] projected that
streamflow in the Mun River, which is the main river basin of the LCKW, could increase by
10.5%, 20.1%, and 23.2% during 2020–2093, due to high concentrations of greenhouse gases
altering, cloud formation, increasing temperatures, and changing precipitation patterns [64].
Increased aerosol levels can lead to more reflective clouds [65], which are less effective
in producing rain [66], while weakened atmospheric circulation further reduces storm
occurrence, exacerbating water scarcity in the region [67].

However, these increases are not consistent across all regions and are influenced by
various factors, including land-use changes, soil moisture retention, and evapotranspira-
tion rates, all of which are impacted by climate change. This complexity suggests that
while some regions may experience higher streamflow, others may not see corresponding
increases, even with greater rainfall, underscoring the nuanced effects of climate change
on hydrology [68]. Given this variability, the accuracy of hydrological model predictions
becomes crucial. However, in regions with limited streamflow measurement stations,
the scarcity of data can significantly hinder accurate predictions. Therefore, expanding
the network of streamflow stations is essential, as it would provide more comprehen-
sive data, thereby improving the accuracy of hydrological models and enhancing climate
change projections.

4.3. Characteristics of Hydrological Drought

The findings suggest that climate change scenarios in RCP8.5 are likely to increase
drought severity compared with historical data. Climate change is expected to alter precip-
itation patterns, leading to more intense and frequent drought events. These results are
consistent with previous research, including the study by Satoh et al. (2022) [69], where
increased drought severity due to these changes was predicted. Altered precipitation pat-
terns are expected to exacerbate water scarcity in vulnerable areas, as highlighted by Ullah
et al. (2023) [70]. While the RCP8.5 scenario projects increased drought severity, the higher
emissions associated with this scenario present a greater risk, leading to more widespread
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and intense droughts. These severe drought conditions could result in substantial ecological
impacts, including biodiversity loss and the degradation of water resources [71].

The findings also indicate a high probability of very severe droughts in the Lam
Chiang Kri Watershed (LCKW), primarily due to low annual recurrence rates. This finding
is supported by Maithong et al. (2022) [45,72], who investigated the spatial distribution of
drought return periods in the Mun Watershed, of which the LCKW is a branch watershed.
In their study, they found increased drought severity in rivers with high streamflow over
extended periods, influenced by natural variations and human activities such as dam
operations and water diversions [73,74]. The diverse conditions of the selected rivers
provide a comprehensive understanding of drought occurrences across different return
periods. Furthermore, the choice of the SDI (e.g., SDI-3 and SDI-6) influences the results
of drought behavior. SDI-3, as noted by Hasan et al. (2022) [75], is sensitive to short-term
fluctuations and detects more frequent but less severe droughts [76]. In contrast, SDI-6
captures longer-term trends, reflecting more prolonged droughts [77].

While natural factors drive drought occurrences, human activities, such as land-use
change and water extraction, can further exacerbate their impacts. Therefore, understand-
ing these complexities is crucial to developing effective water management and adaptation
strategies to mitigate the socioeconomic consequences of drought [78]. Although focusing
on the specific years 2029 and 2039 provides valuable insights into near-term and mid-term
climate impacts, this approach has its limitations. Specifically, single-year projections can ef-
fectively highlight extremes but are also susceptible to anomalies and may not fully capture
long-term trends. Consequently, to enhance the reliability of future research, it would be
beneficial to analyze broader periods spanning multiple decades. Such an approach would
offer a more stable assessment of drought trends, thereby providing a comprehensive
understanding that better informs water resource management and adaptation strategies.

4.4. Management Implications and Future Perspectives

Based on the results of this study, we suggest using Reservoir Operation Study (ROS)
technology to optimize water storage and drainage management, particularly in the north-
eastern region, where unique geographical challenges complicate water management [79].
ROS technology is particularly effective in addressing these issues by enabling more precise
control of water resources, ensuring that water is available when needed for agriculture,
and reducing the risk of both water shortages and flooding. Additionally, farmers are
encouraged to shift to less water-intensive crops and zone their cultivation based on soil
and water availability. Sustainable farming practices, such as alternating wet and dry
farming, using fertilizers, avoiding burning stubble and rice straw, and integrating pest
management, are crucial to reducing greenhouse gas emissions and improving rice farming
efficiency [80].

In the context of drought preparedness, particularly in regions such as Thailand, adopt-
ing integrated water resource management (IWRM) principles can enhance water manage-
ment efficiency [81]. Developing and planting drought-resistant crops, which require less
water and are more resilient to dry conditions, can significantly reduce agriculture’s vul-
nerability to drought [82]. Empowering local communities in drought management is also
essential, as community-based approaches integrate local knowledge into preparedness
and response strategies.

The methodology proposed in this study can be applied globally, especially in regions
such as the one studied, facilitating strategic drought management. This involves engag-
ing stakeholders, policymakers, and water resource managers in monitoring, prediction,
modeling, and disaster risk reduction. However, we acknowledge the uncertainties of
this study, such as limited observational streamflow data, which affected model accuracy.
Future research should incorporate changes in climate variables, land use, soil conditions,
and population growth, especially in agricultural regions reliant on irrigation.

By investing in research and data collection, we can improve our ability to predict
future changes and inform decision-making processes, ensuring more resilient and sustain-
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able water and agricultural management practices. Finally, continued research and data
collection are essential to refine our understanding of climate change impacts and develop
effective adaptation and mitigation strategies.

5. Conclusions

Climate change impacts in Thailand, particularly in the LCKW region, are expected to
vary significantly. In RCP4.5, an increase in annual and seasonal rainfall, especially during
the rainy season, is projected, while RCP8.5 predicts a decrease, particularly in wet seasons,
potentially leading to water scarcity. Streamflow projections show potential increases in
RCP4.5, but a significant decrease is anticipated in RCP8.5.

The findings suggest that future droughts in RCP8.5 scenarios may be more intense
and frequent compared with historical periods. Severe droughts are likely to occur more fre-
quently and with greater intensity in RCP8.5. The SDI-3 analysis indicates quick-developing,
short-duration droughts, whereas the SDI-6 analysis shows more widespread and pro-
longed drought conditions, especially in RCP8.5.

These projections underscore the urgent need for the implementation of proactive
water management strategies in the LCKW, such as expanding reservoir capacity, improving
irrigation efficiency, and promoting water conservation. The expected changes in rainfall
and drought patterns will likely have significant socio-economic impacts, particularly on
agriculture and water supply. Policymakers should prioritize investments in early warning
systems, drought-resistant crops, and community-based adaptation to enhance resilience
and ensure water security.
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