Analysis of Long-Term Monitoring of Radon Levels in a Low-Ventilated, Semi-Underground Laboratory—Dose Estimation and Exploration of Potential Earthquake Precursors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of the Building
2.2. Underlying Geology
2.3. Measurement Methods
2.4. Dose Assessment
2.5. Earthquake Prediction Method
3. Results and Discussion
3.1. Inhalation Dose from Radon Exposure of Students and Employees
3.2. Exploration of Potential Earthquakes
3.2.1. Analysis of Characteristic Radon Peaks
3.2.2. Analysis with Adjustment of Empirical Laws
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UNSCEAR Source and Effect of Ionizing Radiation. The General Assembly with Scientific Annex; Annex B: Exposures from natural radiation sources; United Nations Scientific Committee on the Effects of Atomic Radiation: New York, NY, USA, 2000. [Google Scholar]
- Portaro, M.; Rocchetti, I.; Tuccimei, P.; Galli, G.; Soligo, M.; Ciotoli, G.; Longoni, C.; Vasquez, D.; Sola, F. Indoor Radon Surveying and Mitigation in the Case-Study of Celleno Town (Central Italy) Located in a Medium Geogenic Radon Potential Area. Atmosphere 2024, 15, 425. [Google Scholar] [CrossRef]
- Milic, G.; Gulan, L.; Bossew, P.; Vuckovic, B.; Zunic, Z.S. Indoor radon mapping: A survey of residential houses of Kosovo and Metohija. Rom. J. Phys. 2013, 58, S180–S188. [Google Scholar]
- World Health Organization. Handbook on Indoor Radon: A Public Health Perspective; World Health Organization: Geneva, Switzerland, 2009. [Google Scholar]
- European Commission Council Directive 2013/59/Euratom of 28 January 2013. Off. J. Eur. Union 2013, L13-1, 1–73. Available online: https://ec.europa.eu/energy/sites/ener/files/documents/CELEX-32013L0059-EN-TXT.pdf (accessed on 28 January 2024).
- Vogiannis, E.G.; Nikolopoulos, D. Radon sources and associated risk in terms of exposure and dose. Front. Public Health 2015, 2, 207. [Google Scholar] [CrossRef] [PubMed]
- BEIR VII. Biological Effects of Ionizing Radiation. Health Risks from Exposure to Low Levels of Ionizing Radiations. Phase 2 Report: “The Health Effects of Exposure to Indoor Radon”; The US National Academies Press: Washington, DC, USA, 2006. [Google Scholar]
- ICRP. International Commission on Radiological Protection. Lung Cancer Risk from Radon and Progeny and Statement on Radon; ICRP 115; Pergamon Press: Oxford, UK, 2010. [Google Scholar]
- Axelsson, G.; Andersson, E.M.; Barregard, L. Lung cancer risk from radon exposure in dwellings in Sweden: How many cases can be prevented if radon levels are lowered? Cancer Cause Control 2015, 26, 541–547. [Google Scholar] [CrossRef]
- Etiope, G.; Martinelli, G. Migration of carrier and trace gases in the geosphere: An overview. Phys. Earth Planet. Inter. 2002, 129, 185–204. [Google Scholar] [CrossRef]
- Holub, R.F.; Brady, B.T. The effect of stress on radon emanation from rock. J. Geophys. Res. 1981, 86, 1776–1784. [Google Scholar] [CrossRef]
- Gregorič, A.; Zmažek, B.; Dzeroski, S.; Torkar, D.; Vaupotič, J. Radon as an Earthquake Precursor—Methods for Detecting Anomalies. In Earthquake Research and Analysis-Statistical Studies, Observations and Planning; D’Amico, S., Ed.; InTech: Trichy, India, 2012; pp. 179–196. Available online: http://www.intechopen.com/books/earthquake-research-and-analysis-statistical-studies-observations-and-planning (accessed on 1 September 2024).
- Kristiansson, K.; Malmqvist, L. Evidence for non diffusive transport of 86Rn222 in the ground and a new physical model for the transport. Geophysics 1982, 47, 1444–1452. [Google Scholar] [CrossRef]
- Hickman, S.; Sibson, R.; Bruhn, R. Introduction to special section: Mechanical involvement of fluids in faulting. J. Geophys. Res. 1995, 100, 12831–12840. [Google Scholar] [CrossRef]
- Ulomov, V.I.; Zakharovc, A.I.; Ulomova, N.V. Tashkent earthquake of April 26, 1966, and its aftershocks. Akademii Nauk SSSR. Geophysic 1967, 177, 567–570. [Google Scholar]
- Chen, C.; Thomas, D.M.; Green, R.E. Modeling of radon transport in unsaturated soil. J. Geophys. Res. 1995, 100, 15517–15525. [Google Scholar] [CrossRef]
- Pinault, J.L.; Baubron, J.C. Signal processing of soil gas radon, atmospheric pressure, moisture, and soil temperature data: A new approach for radon concentration modeling. J. Geophys. Res. 1996, 101, 3157–3171. [Google Scholar] [CrossRef]
- Hatuda, Z. Radon content and its change in soil air near the ground surface. Mem. Coll. Sci. Univ. Kyoto Ser. B 1953, 20, 285–306. [Google Scholar]
- Al-Hilal, M.; Sbeinati, M.R.; Darawcheh, R. Radon variation and microearthquakes in western Syria. Appl. Radiat. Isotopes. 1998, 49, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Inceoz, M.; Baykara, O.; Aksoy, E.; Dogru, M. Measurements of soil gas radon in active fault systems: A case study along the North and East Anatolian fault systems in Turkey. Radiat. Meas. 2006, 41, 349–353. [Google Scholar] [CrossRef]
- Immè, G.; La Delfa, S.; Lo Nigro, S.; Morelli, D.; Patanè, G. Gas Radon emission related to geodynamic activity of Mt. Etna. Ann. Geophys. 2005, 48, 65–71. [Google Scholar]
- Terray, L.; Gauthier, P.-J.; Breton, V.; Giammanco, S.; Sigmarsson, O.; Salerno, G.; Caltabiano, T.; Falvard, A. Radon activity in volcanic gases of Mt. Etna by passive dosimetry. J. Geophys. Res. Solid Earth 2020, 125, e2019JB019149. [Google Scholar] [CrossRef]
- Planinić, J.; Radolić, V.; Vuković, B. Radon as an earthquake precursor. Nucl. Instrum. Methods Phys. Res. A 2004, 530, 568–574. [Google Scholar] [CrossRef]
- Ghosh, D.; Deb, A.; Sengupta, R. Anomalous radon emission as a precursor of the earthquake. J. Appl. Geophys. 2009, 69, 67–81. [Google Scholar] [CrossRef]
- Kuo, T.; Su, C.; Chang, C.; Lin, C.; Cheng, W.; Liang, H.; Lewis, C.; Chiang, C. Application of recurrent radon precursors for forecasting large earthquakes (Mw > 6.0) near Antung, Taiwan. Radiat. Meas. 2010, 45, 1049–1054. [Google Scholar] [CrossRef]
- Sac, M.M.; Harmansh, C.; Camgoz, B.; Sozbilir, H. Radon Monitoring as the Earthquake Precursor in Fault Line in Western Turkey. Ekoloji 2011, 20, 93–98. [Google Scholar]
- Hwa Oh, Y.; Kim, G. A radon-thoron isotope pair as a reliable earthquake precursor. Sci. Rep. 2015, 5, 13084. [Google Scholar] [CrossRef]
- Kim, J.W.; Joo, H.Y.; Kim, R.; Moon, J.H. Investigation of the relationship between earthquakes and indoor radon concentrations at a building in Gyeongju, Korea. Nucl. Eng. Technol. 2018, 50, 512–518. [Google Scholar] [CrossRef]
- Collignan, B.; Powaga, E. Impact of ventilation systems and energy savings in a building on the mechanisms governing the indoor radon activity concentration. J. Environ. Radioactiv. 2019, 196, 268–273. [Google Scholar] [CrossRef] [PubMed]
- Dimitrijević, M.D. Geology of Yugoslavia7; Geological Institute GEMINI: Belgrade, Serbia, 1997. [Google Scholar]
- The Serbian Ministry of Natural Resources and Environmental Protection. Geological Atlas of Serbia, 1:2000000; Barex: Belgrade, Serbia, 2002.
- Giardini, D.; Woessner, J.; Danciu, L.; Crowley, H.; Cotton, F.; Grünthal, G.; Pinho, R.; Valensise, L.; the SHARE Consortium. SHARE European Seismic Hazard Map for Peak Ground Acceleration, 10% Exceedance Probabilities in 50 Years; Swiss Seismological Service: Zurich, Switzerland, 2013. [Google Scholar]
- Gulan, L.; Forkapić, S.; Spasić, D.; Živković Radovanović, J.; Hansman, J.; Lakatoš, R.; Samardžić, S. Identification of high radon dwellings, risk of exposure and geogenic potential in the mining area of the “Trepča” complex. Indoor Air 2022, 32, e13077. [Google Scholar] [CrossRef] [PubMed]
- Airthings Corentium Home: Radon Detector. Corentium AS. Oslo, Norway. 2015. Available online: https://www.airthings.com/home (accessed on 31 January 2024).
- Scholz, C.H.; Sykes, L.R.; Aggarwal, Y.P. Earthquake prediction: A physical basis. Science 1973, 181, 803–810. [Google Scholar] [CrossRef]
- Martinelli, G. Fluidodynamical and chemical features of radon 222 related to total gases: Implications for earthquake predictions. In Proceedings of the IAEA Meeting on Isotopic and Geochemical Precursors of Earthquakes and Volcanic Eruptions, Vienna, Austria, 19–23 April 1993. [Google Scholar]
- Hauksson, E.; Goddard, J.G. Radon earthquake precursor studies in Iceland. J. Geophys. Res. 1981, 86, 7037–7054. [Google Scholar] [CrossRef]
- Dobrovolsky, I.P.; Zubkov, S.I.; Miachkin, V.I. Estimation of the size of earthquake preparation zones. Pure Appl. Geophys. 1979, 117, 1025–1044. [Google Scholar] [CrossRef]
- Woith, H. Radon earthquake precursor: A short review. Eur. Phys. J. Spec. Top. 2015, 224, 611–627. [Google Scholar] [CrossRef]
- Seismological Survey of Serbia. Available online: https://www.seismo.gov.rs/Locirani/Katalog.htm (accessed on 29 September 2024).
- Denman, A.R.; Crockett, R.G.M.; Groves-Kirkby, C.J.; Phillips, P.S.; Gillmore, G.K.; Woolridge, A.C. The value of seasonal correction factors in assessing the health risk from domestic radon-a case study in Northamptonshire, UK. Environ. Int. 2007, 33, 34–44. [Google Scholar] [CrossRef]
- Kurnaz, A.; Kucukomeroglu, B.; Cevik, U.; Celebi, N. Radon level and indoor gamma doses in dwellings of Trabzon, Turkey. Appl. Radiat. Isotopes. 2011, 69, 1554–1559. [Google Scholar] [CrossRef]
- Papastefanou, C.; Stoulos, S.; Manolopoulou, M.; Ioannidou, A.; Charalambous, S. Indoor radon concentrations in Greek apartment dwellings. Health Phys. 1994, 66, 270–273. [Google Scholar] [CrossRef]
- Stojanovska, Z.; Januseski, J.; Bossew, P.; Zunic, Z.S.; Tollefsen, T.; Ristova, M. Seasonal indoor radon concentration in FYR of Macedonia. Radiat. Meas. 2011, 46, 602–610. [Google Scholar] [CrossRef]
- Taşköprü, C.; İçhedef, M.; Saç, M.M. Diurnal, monthly, and seasonal variations of indoor radon concentrations concerning meteorological parameters. Environ. Monit. Assess. 2023, 95, 25. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://weatherspark.com/y/85691/Average-Weather-in-Mitrovic%C3%AB-Kosovo-Year-Round#Figures-Temperature (accessed on 31 August 2024).
- Igarashi, G.; Wakita, H. Groundwater radon anomalies associated with earthquakes. Tectonophysics 1990, 180, 237–254. [Google Scholar] [CrossRef]
Period of Measurement | 28 August 2023– 29 September 2023 | 1 October 2023– 30 March 2024 | 1 April 2024– 7 June 2024 |
---|---|---|---|
Mean ± SD (Bq/m3) | 290.3 ± 154.1 | 406.7 ± 231.8 | 303.2 ± 210.1 |
Range [Min–Max] (Bq/m3) | 621 [132–753] | 1125 [74–1199] | 1133 [72–1205] |
Threshold for radon anomaly [Mean ± 2SD] (Bq/m3) | 598.5 | 870.3 | 723.4 |
Location/Country | Coordinates N, E (°) | Date of Peak /Earthquake | D (km) | Error on D N, E (km) | H (km) | RD (km) | ML | MR | ΔRn (Bq/m3) |
---|---|---|---|---|---|---|---|---|---|
K.Mitrovica | 42.823, 20.680 | 27 September 2023 6 October 2023 | 17.4 | ±2.144, ±1.551 | 2 | 4.5 | 1.5 | 2.55 | 583 * |
Vučitrn | 42.788, 21.048 | 2 November 2023 26 November 2023 | 19.1 | ±2.039, ±1.405 | 5 | 7.2 | 2.0 | 2.64 | 678 |
K.Mitrovica | 42.891, 20.786 | 5 December 2023 13 December 2023 | 6.6 | ±2.178, ±1.715 | 2 | 4.9 | 1.6 | 1.54 | 521 |
Bosnia and Hercegovina | 44.329, 17.903 | 11 December 2023 30 December 2023 | 283 | ±1.981, ±1.583 | 12 | 127.9 | 4.9 | 5.45 | 652 |
Albania | 41.006, 19.829 | 9 January 2024 13 January 2024 | 230 | ±1.751, ±2.892 | 16 | 64 | 4.2 | 5.24 | 1008 * |
Raška | 43.299, 20.616 | 19 January 2024 27 January 2024 | 49.1 | ±1.372, ±1.302 | 3 | 11.9 | 2.5 | 3.63 | 891 |
Novi Pazar | 43.244, 20.499 | 19 January 2024 10 February 2024 | 48.7 | ±1.567 ±1.259 | 4 | 10.8 | 2.4 | 3.62 | 891 |
Nikšić, Montenegro | 43.007, 18.623 | 6 March 2024 14 March 2024 | 183 | ±1.658, ±1.929 | 12 | 231.7 | 5.5 | 5.0 | 616 |
Montenegro | 43.029, 18.629 | 6 March 2024 3 April 2024 | 182.7 | ±1.486, ±1.564 | 15 | 86.1 | 4.5 | 5.0 | 616 |
Podujevo | 42.877, 21.284 | 9 April 2024 17 April 2024 | 38.3 | ±2.064, ±1.760 | 5 | 5.4 | 1.7 | 3.37 | 599 |
Novi Pazar | 43.112, 20.628 | 9 April 2024 10 May 2024 | 30.6 | ±1.023, ±1.080 | 4 | 11.9 | 2.5 | 3.14 | 599 |
Blaževo | 43.240, 20.901 | 9 April 2024 10 May 2024 | 38 | ±1.420, ±1.263 | 6 | 13.1 | 2.6 | 3.36 | 599 |
Orahovac | 42.535, 20.837 | 10 May 2024 13 May 2024 | 40.4 | ±1.607, ±1.349 | 10 | 16 | 2.8 | 3.43 | 913 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gulan, L. Analysis of Long-Term Monitoring of Radon Levels in a Low-Ventilated, Semi-Underground Laboratory—Dose Estimation and Exploration of Potential Earthquake Precursors. Atmosphere 2024, 15, 1534. https://doi.org/10.3390/atmos15121534
Gulan L. Analysis of Long-Term Monitoring of Radon Levels in a Low-Ventilated, Semi-Underground Laboratory—Dose Estimation and Exploration of Potential Earthquake Precursors. Atmosphere. 2024; 15(12):1534. https://doi.org/10.3390/atmos15121534
Chicago/Turabian StyleGulan, Ljiljana. 2024. "Analysis of Long-Term Monitoring of Radon Levels in a Low-Ventilated, Semi-Underground Laboratory—Dose Estimation and Exploration of Potential Earthquake Precursors" Atmosphere 15, no. 12: 1534. https://doi.org/10.3390/atmos15121534
APA StyleGulan, L. (2024). Analysis of Long-Term Monitoring of Radon Levels in a Low-Ventilated, Semi-Underground Laboratory—Dose Estimation and Exploration of Potential Earthquake Precursors. Atmosphere, 15(12), 1534. https://doi.org/10.3390/atmos15121534