RNA-Seq Analysis Revealed circRNAs Associated with Resveratrol-Induced Apoptosis of Porcine Ovarian Granulosa Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Approval
2.2. Culture POGCs Treated with RSV
2.3. Library Preparation and Sequencing
2.4. Identification and Characterization of circRNAs
2.5. Differential Expression Analysis of circRNAs
2.6. Function and Pathway Term Enrichment
2.7. DE-circRNA with Potential as miRNA Sponge
2.8. Verification of the Expression Changes in CircRNAs
2.9. Statistical Data Analysis
3. Results
3.1. Summary of circRNA Sequencing Results
3.2. Differential Expression and Cluster Analysis of circRNAs
3.3. Confirmation of circRNA Expression by RT-qPCR
3.4. Functional Analysis of DE-circRNAs
3.5. DE-circRNAs with Potential as miRNA Sponge in POGCs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dias Da Silva, I.; Wuidar, V.; Zielonka, M.; Pequeux, C. Unraveling the Dynamics of Estrogen and Progesterone Signaling in the Endometrium: An Overview. Cells 2024, 13, 1236. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Zhang, J.; Gao, X.; Yao, W.; Li, Q.; Pan, Z. miR-361-5p Mediates SMAD4 to Promote Porcine Granulosa Cell Apoptosis through VEGFA. Biomolecules 2020, 10, 1281. [Google Scholar] [CrossRef] [PubMed]
- Yao, W.; Pan, Z.; Du, X.; Zhang, J.; Liu, H.; Li, Q. NORHA, a novel follicular atresia-related lncRNA, promotes porcine granulosa cell apoptosis via the miR-183-96-182 cluster and FoxO1 axis. J. Anim. Sci. Biotechnol. 2021, 12, 103. [Google Scholar] [CrossRef] [PubMed]
- Sirotkin, A.V. Effects of resveratrol on female reproduction: A review. Phytother. Res. 2021, 35, 5502–5513. [Google Scholar] [CrossRef]
- Jiang, X.; Ma, Y.; Gong, S.; Zi, X.; Zhang, D. Resveratrol Promotes Proliferation, Antioxidant Properties, and Progesterone Production in Yak (Bos grunniens) Granulosa Cells. Animals 2024, 14, 240. [Google Scholar] [CrossRef]
- Chen, M.; He, C.; Zhu, K.; Chen, Z.; Meng, Z.; Jiang, X.; Cai, J.; Yang, C.; Zuo, Z. Resveratrol ameliorates polycystic ovary syndrome via transzonal projections within oocyte-granulosa cell communication. Theranostics 2022, 12, 782–795. [Google Scholar] [CrossRef]
- Ortega, I.; Wong, D.H.; Villanueva, J.A.; Cress, A.B.; Sokalska, A.; Stanley, S.D.; Duleba, A.J. Effects of resveratrol on growth and function of rat ovarian granulosa cells. Fertil. Steril. 2012, 98, 1563–1573. [Google Scholar] [CrossRef]
- Oskarsson, A.; Spatafora, C.; Tringali, C.; Andersson, Å.O. Inhibition of CYP17A1 activity by resveratrol, piceatannol, and synthetic resveratrol analogs. Prostate 2014, 74, 839–851. [Google Scholar] [CrossRef]
- Singh, C.K.; Kumar, A.; Hitchcock, D.B.; Fan, D.; Goodwin, R.; LaVoie, H.A.; Nagarkatti, P.; DiPette, D.J.; Singh, U.S. Resveratrol prevents embryonic oxidative stress and apoptosis associated with diabetic embryopathy and improves glucose and lipid profile of diabetic dam. Mol. Nutr. Food Res. 2011, 55, 1186–1196. [Google Scholar] [CrossRef]
- Wong, D.H.; Villanueva, J.A.; Cress, A.B.; Duleba, A.J. Effects of resveratrol on proliferation and apoptosis in rat ovarian theca-interstitial cells. Mol. Hum. Reprod. 2010, 16, 251–259. [Google Scholar] [CrossRef]
- Podgrajsek, R.; Ban Frangez, H.; Stimpfel, M. Molecular Mechanism of Resveratrol and Its Therapeutic Potential on Female Infertility. Int. J. Mol. Sci. 2024, 25, 3613. [Google Scholar] [CrossRef]
- Ma, R.; Zhang, Y.; Zhang, L.; Han, J.; Rui, R. Sirt1 protects pig oocyte against in vitro aging. Anim. Sci. J. 2015, 86, 826–832. [Google Scholar] [CrossRef]
- Jeck, W.R.; Sharpless, N.E. Detecting and characterizing circular RNAs. Nat. Biotechnol. 2014, 32, 453–461. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Wang, P.; Fu, X.; Lin, W. Circular RNAs in renal cell carcinoma: Implications for tumorigenesis, diagnosis, and therapy. Mol. Cancer 2020, 19, 149. [Google Scholar] [CrossRef]
- Liu, L.; Gu, M.; Ma, J.; Wang, Y.; Li, M.; Wang, H.; Yin, X.; Li, X. CircGPR137B/miR-4739/FTO feedback loop suppresses tumorigenesis and metastasis of hepatocellular carcinoma. Mol. Cancer 2022, 21, 149. [Google Scholar] [CrossRef]
- Li, Z.; Yang, H.Y.; Dai, X.Y.; Zhang, X.; Huang, Y.Z.; Shi, L.; Wei, J.F.; Ding, Q. CircMETTL3, upregulated in a m6A-dependent manner, promotes breast cancer progression. Int. J. Biol. Sci. 2021, 17, 1178–1190. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Yu, J.; Ma, Y.; Xu, Y.; Shi, J.; Qi, Z.; Liu, X. Identification and analysis of key circRNAs in the mouse embryonic ovary provides insight into primordial follicle development. BMC Genom. 2024, 25, 139. [Google Scholar] [CrossRef]
- Guan, X.; Zong, Z.H.; Liu, Y.; Chen, S.; Wang, L.L.; Zhao, Y. circPUM1 Promotes Tumorigenesis and Progression of Ovarian Cancer by Sponging miR-615-5p and miR-6753-5p. Mol. Ther. Nucleic. Acids 2019, 18, 882–892. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, L.; Yang, L.; Cui, J.; Che, S.; Liu, Y.; Han, J.; An, X.; Cao, B.; Song, Y. miR-34a/c induce caprine endometrial epithelial cell apoptosis by regulating circ-8073/CEP55 via the RAS/RAF/MEK/ERK and PI3K/AKT/mTOR pathways. J. Cell. Physiol. 2020, 235, 10051–10067. [Google Scholar] [CrossRef]
- Niu, X.; Huang, Y.; Lu, H.; Li, S.; Huang, S.; Ran, X.; Wang, J. CircRNAs in Xiang pig ovaries among diestrus and estrus stages. Porc. Health Manag. 2022, 8, 29. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhou, Z.; He, X.; Jiang, Y.; Ouyang, Y.; Hong, Q.; Chu, M. Differentially Expressed Circular RNA Profile Signatures Identified in Prolificacy Trait of Yunshang Black Goat Ovary at Estrus Cycle. Front. Physiol. 2022, 13, 820459. [Google Scholar] [CrossRef]
- Pan, X.; Gong, W.; He, Y.; Li, N.; Zhang, H.; Zhang, Z.; Li, J.; Yuan, X. Ovary-derived circular RNAs profile analysis during the onset of puberty in gilts. BMC Genom. 2021, 22, 445. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, Y.; Han, Z.; Xu, Q.; Zhang, N.; Wang, J.; Zheng, X.; Ding, Y.; Yin, Z.; Zhang, X. Integrated analysis of lncRNA and mRNA for the apoptosis of porcine ovarian granulosa cells after polyphenol resveratrol treatment. Front. Vet. Sci. 2022, 9, 1065001. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, J.; Xie, F.; Liu, Y.; Qiu, M.; Han, Z.; Ding, Y.; Zheng, X.; Yin, Z.; Zhang, X. Identification of microRNAs implicated in modulating resveratrol-induced apoptosis in porcine granulosa cells. Front. Cell Dev. Biol. 2023, 11, 1169745. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Li, X.; Li, J.; Wang, A.; Li, F.; Hu, H.; Long, T.; Pei, X.; Li, H.; Zhong, F.; et al. Inhibition of cisplatin-induced Acsl4-mediated ferroptosis alleviated ovarian injury. Chem.-Biol. Interact. 2024, 387, 110825. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.Q.; Zhu, B.H.; Liu, X.H.; Yang, Y.M.; Duan, X.Y.; Wang, Y.; Sun, H.; Feng, M.; Li, T.; Liu, X.M. Mitoguardin 1 and 2 promote granulosa cell proliferation by activating AKT and regulating the Hippo-YAP1 signaling pathway. Cell Death Dis. 2023, 14, 779. [Google Scholar] [CrossRef]
- Safdar, M.; Liang, A.; Rajput, S.A.; Abbas, N.; Zubair, M.; Shaukat, A.; Rehman, A.U.; Jamil, H.; Guo, Y.; Ullah, F.; et al. Orexin-A Regulates Follicular Growth, Proliferation, Cell Cycle and Apoptosis in Mouse Primary Granulosa Cells via the AKT/ERK Signaling Pathway. Molecules 2021, 26, 5635. [Google Scholar] [CrossRef]
- Li, Z.; Ruan, Z.; Feng, Y.; Wang, Y.; Zhang, J.; Lu, C.; Shi, D.; Lu, F. METTL3-mediated m6A methylation regulates granulosa cells autophagy during follicular atresia in pig ovaries. Theriogenology 2023, 201, 83–94. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Y.; Chen, Y.; Li, Y.; Du, X.; Li, Y.; Li, Q. MEIS1 Is a Common Transcription Repressor of the miR-23a and NORHA Axis in Granulosa Cells. Int. J. Mol. Sci. 2023, 24, 3589. [Google Scholar] [CrossRef]
- Tang, Y.; Lin, Z.; Liu, L.; Yin, L.; Zhang, D.; Yu, C.; Yang, C.; Gong, Y.; Wang, Y.; Liu, Y. Attenuated AKT signaling by miR-146a-5p interferes with chicken granulosa cell proliferation, lipid deposition and progesterone biosynthesis. Theriogenology 2024, 214, 370–385. [Google Scholar] [CrossRef]
- Deng, X.; Ning, Z.; Li, L.; Cui, Z.; Du, X.; Amevor, F.K.; Tian, Y.; Shu, G.; Du, X.; Han, X.; et al. High expression of miR-22-3p in chicken hierarchical follicles promotes granulosa cell proliferation, steroidogenesis, and lipid metabolism via PTEN/PI3K/Akt/mTOR signaling pathway. Int. J. Biol. Macromol. 2023, 253 Pt 7, 127415. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, L.; Li, Y.; Dong, H.; Zhang, H.; Zhang, Y.; Ma, T.; Yang, L.; Gao, D.; Wang, X.; et al. Circadian clock regulates granulosa cell autophagy through NR1D1-mediated inhibition of ATG5. Am. J. Physiol. Cell Physiol. 2022, 322, C231–C245. [Google Scholar] [CrossRef]
- Xu, X.; Pan, Y.; Zhan, L.; Sun, Y.; Chen, S.; Zhu, J.; Luo, L.; Zhang, W.; Li, Y. The Wnt/β-catenin pathway is involved in 2,5-hexanedione-induced ovarian granulosa cell cycle arrest. Ecotoxicol. Environ. Saf. 2023, 268, 115720. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhao, H.; Cui, H.; Adetunji, A.O.; Min, L. Resveratrol Improves the Frozen-Thawed Ram Sperm Quality. Animals 2023, 13, 3887. [Google Scholar] [CrossRef]
- He, J.; Jin, H.; Guo, J.; Li, K.; Jia, L.; Li, Y.; Zhang, L. T-2 toxin-induced testicular impairment by triggering oxidative stress and ferroptosis. Ecotoxicol. Environ. Saf. 2023, 270, 115844. [Google Scholar] [CrossRef]
- Shaito, A.; Posadino, A.M.; Younes, N.; Hasan, H.; Halabi, S.; Alhababi, D.; Al-Mohannadi, A.; Abdel-Rahman, W.M.; Eid, A.H.; Nasrallah, G.K.; et al. Potential Adverse Effects of Resveratrol: A Literature Review. Int. J. Mol. Sci. 2020, 21, 2084. [Google Scholar] [CrossRef]
- An, X.; Zhang, Y.; Li, F.; Wang, Z.; Yang, S.; Cao, B. Whole Transcriptome Analysis: Implication to Estrous Cycle Regulation. Biology 2021, 10, 464. [Google Scholar] [CrossRef]
- Tian, J.; Fu, Y.; Li, Q.; Xu, Y.; Xi, X.; Zheng, Y.; Yu, L.; Wang, Z.; Yu, B.; Tian, J. Differential Expression and Bioinformatics Analysis of CircRNA in PDGF-BB-Induced Vascular Smooth Muscle Cells. Front. Genet. 2020, 11, 530. [Google Scholar] [CrossRef]
- Zhao, X.Y.; Wu, Y.P.; Li, H.Y.; Cao, Y.; Mei, Z.Y.; Li, J.H. Differential expression and functional analysis of circRNA in the ovaries of Yili geese at different egg-laying stages. Genes Genom. 2022, 44, 1171–1180. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Zhou, D.; Zhang, X.; Jiang, M.; Kong, X.; Xue, T.; Gao, L.; Lu, D.; Tao, C.; Wang, L. hsa_circRNA_BECN1 acts as a ceRNA to promote polycystic ovary syndrome progression by sponging the miR-619-5p/Rab5b axis. Mol. Hum. Reprod. 2023, 29, gaad036. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Wang, C.; Zhang, D.; Liu, M.; Liu, T.; Pan, B.; Che, Q.; Liu, S.; Wang, B.; Dong, X.; et al. Exosomal circ_0008285 in follicle fluid regulates the lipid metabolism through the miR-4644/ LDLR axis in polycystic ovary syndrome. J. Ovarian Res. 2023, 16, 113. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, Z.; Zi, C.; Wu, P.; Lv, X.; Chen, L.; Chen, F.; Zhang, G.; Wang, J. CircRNA expression in chicken granulosa cells illuminated with red light. Poult. Sci. 2022, 101, 101734. [Google Scholar] [CrossRef]
- Liu, G.; Wang, Y.; Zheng, Y.; Lv, J.; Li, Y.; Liu, N.; Gao, H.; Ran, H.; Tang, H.; Jiang, Z. PHB2 binds to ERβ to induce the autophagy of porcine ovarian granulosa cells through mTOR phosphorylation. Theriogenology 2023, 198, 114–122. [Google Scholar] [CrossRef]
- Wu, P.; Mo, Y.; Peng, M.; Tang, T.; Zhong, Y.; Deng, X.; Xiong, F.; Guo, C.; Wu, X.; Li, Y.; et al. Emerging role of tumor-related functional peptides encoded by lncRNA and circRNA. Mol. Cancer 2020, 19, 22. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, S.; Wang, H.; Cao, J.; Huang, X.; Chen, Z.; Xu, P.; Sun, G.; Xu, J.; Lv, J.; et al. Circular RNA circNRIP1 acts as a microRNA-149-5p sponge to promote gastric cancer progression via the AKT1/mTOR pathway. Mol. Cancer 2019, 18, 20. [Google Scholar] [CrossRef]
circRNA Name | Sequence | Product Size (bp) |
---|---|---|
novel_circ_0001244 | F: TGGATGGCATGGAGCTAACA R: AACTGGTGAATTTTCACAGCTACA | 93 |
novel_circ_0013223 | F: AGCGTCTAGACCCACAAGGT R: CAGAACCCCTCTTGGGGAGA | 146 |
novel_circ_0008566 | F: CCCGGGACCAGTGTGAATTT R: GGGGAAAAGTAGGAGGGCAG | 138 |
novel_circ_0001283 | F: CGCCATGTGCGTTGTCC R: GTCCGCCGGTCGTTGA | 149 |
novel_circ_0003143 | F: GCCCTGGCAGAGAGTTACATT R: CTCCGTCAGATCGTAACCGC | 120 |
novel_circ_0006872 | F: CGGTTGCTGGCTCAGCTT R: TCACGGCACCCCTGGT | 148 |
novel_circ_0000972 | F: GCTCCGACAGAGCTCATTAACA R: TTGATCCCATCGGAACTAGCC | 122 |
novel_circ_0010123 | F: GCCGAGCAATTGTAATGCGATA R: CCTGAAAACAATTAAAGTCGGACCA | 133 |
novel_circ_0010245 | F: CCAGAGCCAAGGGCAAACTT R: CCTGTGGTCTCCTGCATCTG | 133 |
GAPDH | F: ATTCCACCCACGGCAAGTT R: TTTGATGTTGGCGGGATCT | 110 |
Sample Name | Raw Reads | Clean Reads | Mapped Pairs Reads | Mapping Ratio (%) | Q20 (%) | Q30 (%) |
---|---|---|---|---|---|---|
CON1 | 97,446,372 | 94,245,104 | 84,846,154 | 87.07 | 98.27 | 95.09 |
CON2 | 94,450,368 | 91,312,586 | 82,848,924 | 87.72 | 98.26 | 95.04 |
CON3 | 84,355,858 | 81,398,735 | 71,745,502 | 85.05 | 98.35 | 95.26 |
LOW1 | 79,346,130 | 76,149,202 | 68,165,722 | 85.91 | 98.04 | 94.27 |
LOW2 | 95,927,666 | 89,822,719 | 80,650,420 | 84.07 | 98.17 | 94.84 |
LOW3 | 84,646,530 | 81,366,838 | 73,444,890 | 86.77 | 97.94 | 94.00 |
HIGH1 | 83,261,846 | 80,305,163 | 71,967,026 | 86.43 | 98.35 | 95.30 |
HIGH2 | 78,782,640 | 75,427,672 | 68,462,566 | 86.90 | 98.18 | 94.79 |
HIGH3 | 104,734,716 | 101,157,409 | 91,671,120 | 87.53 | 98.30 | 95.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Ye, H.; Zhou, H.; Liu, Y.; Xie, F.; Wang, Q.; Yin, Z.; Zhang, X. RNA-Seq Analysis Revealed circRNAs Associated with Resveratrol-Induced Apoptosis of Porcine Ovarian Granulosa Cells. Cells 2024, 13, 1571. https://doi.org/10.3390/cells13181571
Zhang H, Ye H, Zhou H, Liu Y, Xie F, Wang Q, Yin Z, Zhang X. RNA-Seq Analysis Revealed circRNAs Associated with Resveratrol-Induced Apoptosis of Porcine Ovarian Granulosa Cells. Cells. 2024; 13(18):1571. https://doi.org/10.3390/cells13181571
Chicago/Turabian StyleZhang, Huibin, Haibo Ye, Hanyu Zhou, Yangguang Liu, Fan Xie, Qianqian Wang, Zongjun Yin, and Xiaodong Zhang. 2024. "RNA-Seq Analysis Revealed circRNAs Associated with Resveratrol-Induced Apoptosis of Porcine Ovarian Granulosa Cells" Cells 13, no. 18: 1571. https://doi.org/10.3390/cells13181571