SC-ResNeXt: A Regression Prediction Model for Nitrogen Content in Sugarcane Leaves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Description
2.2. Sample Measurement
2.3. Dataset Preparation
2.4. Experimental Environment
2.5. SC-ResNeXt
2.5.1. ResNeXt
2.5.2. CBAM
2.5.3. Self-Attention
2.5.4. Evaluation Metrics
3. Results
3.1. Backbone Comparison Experiments
3.2. Ablation Study
3.3. Comparison with Other Algorithms
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. FAOSTAT. Available online: https://www.fao.org/faostat/en/#home (accessed on 24 October 2024).
- Wu, K.; Wang, S.; Song, W.; Zhang, J.; Wang, Y.; Liu, Q.; Yu, J.; Ye, Y.; Li, S.; Chen, J.; et al. Enhanced sustainable green revolution yield via nitrogen-responsive chromatin modulation in rice. Science 2020, 367, eaaz2046. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhuang, M.; Liang, X.; Lam, S.K.; Chen, D.; Malik, A.; Li, M.; Lenzen, M.; Zhang, L.; Zhang, R.; et al. Localized nitrogen management strategies can halve fertilizer use in Chinese staple crop production. Nat. Food 2024, 5, 825–835. [Google Scholar] [CrossRef]
- Wang, C.; Shen, Y.; Fang, X.; Xiao, S.; Liu, G.; Wang, L.; Gu, B.; Zhou, F.; Chen, D.; Tian, H.; et al. Reducing soil nitrogen losses from fertilizer use in global maize and wheat production. Nat. Geosci. 2024, 17, 1008–1015. [Google Scholar] [CrossRef]
- Liu, X.; Beusen, A.H.W.; van Grinsven, H.J.M.; Wang, J.; van Hoek, W.J.; Ran, X.; Mogollón, J.M.; Bouwman, A.F. Impact of groundwater nitrogen legacy on water quality. Nat. Sustain. 2024, 7, 891–900. [Google Scholar] [CrossRef]
- Chen, X.; Cui, Z.; Fan, M.; Vitousek, P.; Zhao, M.; Ma, W.; Wang, Z.; Zhang, W.; Yan, X.; Yang, J.; et al. Producing more grain with lower environmental costs. Nature 2014, 514, 486–489. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.Y.; Zheng, L.; Lu, L.; Li, L. Improvement in the H2SO4-H2O2,Digestion Method for Determining Plant Total Nitrogen. Chin. Agric. Sci. Bull. 2014, 30, 159–162. [Google Scholar]
- Iatrou, M.; Karydas, C.; Iatrou, G.; Pitsiorlas, I.; Aschonitis, V.; Raptis, I.; Mpetas, S.; Kravvas, K.; Mourelatos, S. Topdressing Nitrogen Demand Prediction in Rice Crop Using Machine Learning Systems. Agriculture 2021, 11, 312. [Google Scholar] [CrossRef]
- Shankar, T.; Malik, G.C.; Banerjee, M.; Dutta, S.; Praharaj, S.; Lalichetti, S.; Mohanty, S.; Bhattacharyay, D.; Maitra, S.; Gaber, A.; et al. Prediction of the Effect of Nutrients on Plant Parameters of Rice by Artificial Neural Network. Agronomy 2022, 12, 2123. [Google Scholar] [CrossRef]
- Janani, M.; Jebakumar, R. Detection and classification of groundnut leaf nutrient level extraction in RGB images. Adv. Eng. Softw. 2023, 175. [Google Scholar] [CrossRef]
- Li, R.; Wang, D.; Zhu, B.; Liu, T.; Sun, C.; Zhang, Z. Estimation of nitrogen content in wheat using indices derived from RGB and thermal infrared imaging. Field Crops Res. 2022, 289, 108735. [Google Scholar] [CrossRef]
- Cheng, Q.; Wu, B.; Ye, H.; Liang, Y.; Che, Y.; Guo, A.; Wang, Z.; Tao, Z.; Li, W.; Wang, J. Inversion of maize leaf nitrogen using UAV hyperspectral imagery in breeding fields. Int. J. Agric. Biol. Eng. 2024, 17, 144–155. [Google Scholar] [CrossRef]
- Wang, D.; Li, R.; Liu, T.; Liu, S.; Sun, C.; Guo, W. Combining vegetation, color, and texture indices with hyperspectral parameters using machine-learning methods to estimate nitrogen concentration in rice stems and leaves. Field Crops Res. 2023, 304. [Google Scholar] [CrossRef]
- Kolhar, S.; Jagtap, J. Plant trait estimation and classification studies in plant phenotyping using machine vision—A review. Inf. Process. Agric. 2023, 10, 114–135. [Google Scholar] [CrossRef]
- Matthew Shanahan, K.B. The State of Mobile Internet Connectivity 2023; GSMA: London, UK, 2023. [Google Scholar]
- Li, A.; Wu, Q.; Yang, S.; Liu, J.; Zhao, Y.; Zhao, P.; Wang, L.; Lu, W.; Huang, D.; Zhang, Y.; et al. Dissection of genetic architecture for desirable traits in sugarcane by integrated transcriptomics and metabolomics. Int. J. Biol. Macromol. 2024, 280, 136009. [Google Scholar] [CrossRef]
- Meena, M.R.; Appunu, C.; Kumar, R.A.; Manimekalai, R.; Vasantha, S.; Krishnappa, G.; Kumar, R.; Pandey, S.K.; Hemaprabha, G. Recent Advances in Sugarcane Genomics, Physiology, and Phenomics for Superior Agronomic Traits. Front. Genet. 2022, 13, 854936. [Google Scholar] [CrossRef] [PubMed]
- VanHook, A.M. Nitrogen assimilation gets a HY5. Sci. Signal. 2016, 9, ec59. [Google Scholar] [CrossRef]
- Sulistyo, S.B.; Wu, D.; Woo, W.L.; Dlay, S.S.; Gao, B. Computational Deep Intelligence Vision Sensing for Nutrient Content Estimation in Agricultural Automation. IEEE Trans. Autom. Sci. Eng. 2018, 15, 1243–1257. [Google Scholar] [CrossRef]
- You, H.; Zhou, M.; Zhang, J.; Peng, W.; Sun, C. Sugarcane nitrogen nutrition estimation with digital images and machine learning methods. Sci. Rep. 2023, 13, 14939. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Yang, C.; Wang, J.; Cui, X.; Suo, X.; Fan, X.; Ji, P.; Gao, L.; Zhang, Y. Automatic Modeling Prediction Method of Nitrogen Content in Maize Leaves Based on Machine Vision and CNN. Agronomy 2024, 14, 124. [Google Scholar] [CrossRef]
- Xu, G.; Zhang, F.; Shah, S.G.; Ye, Y.; Mao, H. Use of leaf color images to identify nitrogen and potassium deficient tomatoes. Pattern Recognit. Lett. 2011, 32, 1584–1590. [Google Scholar] [CrossRef]
- Xiong, X.; Zhang, J.; Guo, D.; Chang, L.; Huang, D. Non-Invasive Sensing of Nitrogen in Plant Using Digital Images and Machine Learning for Brassica Campestris ssp. Chinensis L. Sensors 2019, 19, 2448. [Google Scholar] [CrossRef]
- Ahmad, M.U.; Ashiq, S.; Badshah, G.; Khan, A.H.; Hussain, M.; Sarfraz, S. Feature Extraction of Plant Leaf Using Deep Learning. Complexity 2022, 2022, 6976112. [Google Scholar] [CrossRef]
- Lee, K.-J.; Lee, B.-W. Estimation of rice growth and nitrogen nutrition status using color digital camera image analysis. Eur. J. Agron. 2013, 48, 57–65. [Google Scholar] [CrossRef]
- Sun, Y.; Tong, C.; He, S.; Wang, K.; Chen, L. Identification of Nitrogen, Phosphorus, and Potassium Deficiencies Based on Temporal Dynamics of Leaf Morphology and Color. Sustainability 2018, 10, 762. [Google Scholar] [CrossRef]
- Bo, H.; Ze, Z.; Qiang, Z.; Yiru, M.; Xiang, Y.; Xin, L. The Nitrogen Content in Cotton Leaves: Estimation Based on Digital Image. Chin. Agric. Sci. Bull. 2022, 38, 49–55. [Google Scholar] [CrossRef]
- Yang, H.; Li, G.; Ma, J.; Wang, H.; Yang, J.; Yang, J. Diagnose Leaf Nutrition Level of Red Delicious Apple with Image Digital. Gansu Agric. Sci. Technol. 2022, 53, 59–63. [Google Scholar] [CrossRef]
- Barman, U.; Saikia, M.J. Smartphone Contact Imaging and 1-D CNN for Leaf Chlorophyll Estimation in Agriculture. Agriculture 2024, 14, 1262. [Google Scholar] [CrossRef]
- Kamboj, A.; Khokhar, K.K.; Chand, M.; Vikas; Kumar, S.; Singh, U.; Rani, M. Assessment of Method and Application Schedule of Fertilizer N and K on Growth and Productivity of Summer Planted Sugarcane Crop (Saccharum officinarum L.) under Wide Spacing. Int. J. Plant Soil Sci. 2023, 35, 34–46. [Google Scholar] [CrossRef]
- Xie, S.N.; Girshick, R.; Dollár, P.; Tu, Z.W.; He, K.M. Aggregated Residual Transformations for Deep Neural Networks. In Proceedings of the 30th IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 5987–5995. [Google Scholar]
- Woo, S.H.; Park, J.; Lee, J.Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. In Proceedings of the 15th European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need. In Proceedings of the 31st Annual Conference on Neural Information Processing Systems (NIPS), Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
Total Nitrogen (g/kg) | Total Phosphorus (mg/kg) | Total Potassium (mg/kg) | Organic Carbon (g/kg) | pH | |
---|---|---|---|---|---|
Values | 0.97 | 63.92 | 102.72 | 11.46 | 5.12 |
Items | Detail |
---|---|
Operating System | Linux |
CPU | Intel Core i9-14900K |
GPU | NVIDIA GeForce RTX 4090 (24G) |
Acceleration Env | CUDA 12.6 |
Language | Python 3.10.4 |
Framework | Pytorch 2.3.0 |
Metrics | Definition | Formula | Purpose |
---|---|---|---|
MAE (Mean Absolute Error) | The average of the absolute differences between predicted values and actual values. | MAE provides a clear indication of the magnitude of prediction errors. | |
MSE (Mean Square Error) | The average of the squared differences between true values and predicted values. | MSE is used to measure the deviation between the model’s predictions and the actual values. | |
RMSE (Root Mean Square Error) | The square root of the mean square error. | RMSE represents the sample standard deviation of the differences between predicted values and observed values. | |
R2 (Coefficient of Determination) | Reflects the accuracy of the model in fitting the data. | An R2 value closer to 1 indicates a better fit of the model to the data. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Z.; Sun, C.; Dou, J.; He, B.; Zhou, M.; You, H. SC-ResNeXt: A Regression Prediction Model for Nitrogen Content in Sugarcane Leaves. Agronomy 2025, 15, 175. https://doi.org/10.3390/agronomy15010175
Lu Z, Sun C, Dou J, He B, Zhou M, You H. SC-ResNeXt: A Regression Prediction Model for Nitrogen Content in Sugarcane Leaves. Agronomy. 2025; 15(1):175. https://doi.org/10.3390/agronomy15010175
Chicago/Turabian StyleLu, Zihao, Cuimin Sun, Junyang Dou, Biao He, Muchen Zhou, and Hui You. 2025. "SC-ResNeXt: A Regression Prediction Model for Nitrogen Content in Sugarcane Leaves" Agronomy 15, no. 1: 175. https://doi.org/10.3390/agronomy15010175
APA StyleLu, Z., Sun, C., Dou, J., He, B., Zhou, M., & You, H. (2025). SC-ResNeXt: A Regression Prediction Model for Nitrogen Content in Sugarcane Leaves. Agronomy, 15(1), 175. https://doi.org/10.3390/agronomy15010175