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Abstract: Straw return and plastic film mulching are two critical management measures that not only
maintain high and stable crop yields, but also have a significant impact on the ecological environment.
However, there is still a lack of research on the comprehensive effects of straw return and different film
mulching treatments on the ecological environment. Thus, a 2-year field experiment was conducted
and six treatments, which included two main treatments, namely straw return (SR) and non-straw
return (NR), and three sub-treatments, namely no film mulching (CK), plastic film mulching (PM) and
fully biodegradable film mulching (BM), were applied in a garlic cropping system. Based on the life
cycle assessment method, six endpoint damage categories, resource consumption, global warming
potential, environmental acidification, eutrophication, human health, and ecotoxicity, were assessed.
Furthermore, we also evaluated the costs and economic benefits of the six treatments and optimized
the treatment of used mulch and straw off-farm. The results indicated that the environmental impacts
of the six endpoint damages in the garlic cropping system were ranked as ecotoxicity, eutrophication,
environmental acidification, global warming potential, human health, and resource consumption.
The SR-BM treatment had the lowest life cycle environmental impact composite index at 27.68 per
unit area, followed by SR-PM at 27.75. All six endpoint damage categories for the PM and BM
treatments were lower than the CK treatment per t of yield, with the SR-BM treatment being the
most economically efficient, yielding at 3691.03 CNY·t−1 and exceeding that of the SR-CK treatment
by 7.26%. Fertilizer inputs were the primary contributor to resource consumption, global warming
potential, environmental acidification, eutrophication, and ecotoxicity, accounting for about 72.80%
of these five environmental impacts. Crop protection significantly affected human health, and garlic
mulching helped minimize pesticide use, thereby reducing potential health impacts. Compared to
straw incineration and waste mulch power generation, straw power generation and waste mulch
recycling granulation offered positive environmental benefits and were more effective offset strategies.
In conclusion, straw return with biodegradable mulch is a synergistic cultivation measure that offers
both environmental and economic benefits. For straw return with plastic film mulch, environmental
impacts can be reduced by waste mulch recycling granulation.

Keywords: straw return; fully biodegradable plastic film mulching; life cycle assessment;
environmental effect; economic benefit

1. Introduction

Amid the severe challenges facing the global ecological environment, the importance of
the sustainable development of agriculture has become increasingly evident, as agriculture
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is a fundamental industry for human survival [1]. Traditional agricultural practices often
depend heavily on the extensive use of chemical fertilizers and pesticides or methods like
“flood irrigation”, etc. While these practices have somewhat boosted crop yields, they
have also led to problems such as excessive energy consumption, soil degradation, and
environmental pollution [2]. How to minimize the negative impact on the environment
while ensuring crop yields and increasing farmers’ income has become a critical issue in
the agricultural sector that needs to be addressed urgently [3].

Straw return and film mulching are key management practices in modern agricultural
production [4]. Straw return to the field, as an effective soil improvement method, can
significantly boost the soil organic matter content, improve soil structure and function, increase
soil fertility and enhance crop yield [5]. It is estimated that over 40 billion tons of straw are
returned to the fields in China each year [6]. Research has shown that straw return to
the field can increase the total and effective nitrogen content in soil by 10.3% and 9.6%,
respectively, enrich soil organic matter, reduce evaporation loss from the soil surface, protect
the soil surface from the impact of rainfall, and promote the formation of soil agglomeration
structure. These effects, in turn, enhance the decomposition and transformation of organic
matter in the soil, ultimately improving both the yields and quality of agricultural crops [7].
Furthermore, as a key technology for conservation and climate-smart agriculture, straw return
can enhance carbon sequestration and emission reduction capacity of farmland systems [8].
However, studies have also indicated that returning straw to the field can increase pathogenic
microorganisms and weeds, hindering the sowing of the next crop and reducing yields by
“dead seed”, among other negative effects [9]. Under high temperature conditions, straw
decay will produce ammonia, hydrogen sulfide, and other harmful gases, which are toxic
to crops. Additionally, the crushing and returning of straw to the field releases significant
amounts of dust, contributing to environmental pollution [10]. Mulching, as the fourth
largest agricultural production method in China, enhances water-use efficiency by 58.0%
and increases average crop yields by 45.5%, making a significant contribution to ensuring
food security [11]. According to statistics, the global use of mulch has increased significantly,
reaching 2 million tons annually, with 29 million ha-1 of mulch coverage [12]. Although the
use of mulch enhances crop yields, its environmental impact throughout its lifecycle cannot
be overlooked. Film mulching helps increase the carbon input from both crop roots and plays
a vital role in soil carbon sequestration [13]. Currently, there is no consensus on the effect
of mulching on carbon emission from farmland. Some studies indicate that mulching has
increased the SOC content, while others claim that mulching accelerates the decomposition
of SOC and stimulates the process of nitrification and denitrification of the soil, which may
lead to higher CO2 emission from farmland soils [14]. Currently, the number of studies on
the environmental impacts of individual straw return or mulching treatments is gradually
increasing. However, there is still a lack of research on the environmental impacts of the
interactions between straw return and plastic film mulching.

Studies have shown that the use of plastic films for mulching may cause problems with
residual contamination [15]. Mulch residues can cause soil compaction, impede crop root
development, destroy soil aggregates, and affect soil water and nutrient transport, thereby
affecting crop growth and reducing crop yields [16]. Residual films in the soil can release
phthalates (PAEs) under the effect of mechanical abrasion and light aging, etc., which affects
soil health [17]. The management of mulch has become a growing global concern due to
the negative impacts of mulch residues [2]. Despite the Chinese government’s emphasis on
increasing efforts to recycle plastic films, it faces significant practical challenges. On one
hand, recycling and processing waste plastic films requires substantial labor input, which
increases costs and work intensity [18]. On the other hand, due to the inadequacies in the
current system, the end-of-life treatment for used mulch primarily involves incineration
for electricity generation or secondary generation. However, the environmental impacts
of different treatment methods may vary considerably under different circumstances and
remain uncontrolled [19]. The scientific treatment of waste plastic films has become a
crucial focus for advancing the sustainable development of modern agriculture.
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The key to sustainable mulch management lies in the integration of national policies,
regulations, and recycling technologies [20]. To address waste film pollution, the Chinese
government has implemented the Measures for the Management of Agricultural Films, which
actively promote the use of thick films (the policy requires a thickness of more than 0.01 mm)
and fully biodegradable films [21,22]. This initiative seeks to establish a recycling system
for discarded mulch films and significantly reduce the amount of mulch films remaining
in the soil, thereby reducing its pollution on the environment. Fully biodegradable plastic
mulch is composed of low-permeability polysaccharides, which can be converted to water and
CO2 through soil microbial mineralization, offering an innovative solution for the treatment
of waste plastic films [23]. Biodegradable mulch can increase soil temperature, enhance
water content, improve soil nutrient availability, and increase crop yield, with no significant
difference compared to plastic films [24,25]. Compared to plastic mulch, fully biodegradable
mulch enhances soil aeration, decreases the abundance of soil methanogenic bacteria, and
increases the abundance of methane oxidizing bacteria, thereby reducing CH4 emissions from
rice fields [26]. Additionally, using fully biodegradable mulch can increase the abundance
and diversity of ammonia-oxidizing bacteria (AOB) as well as the concentration of N2O, and
significantly reduce N2O emissions [27]. However, current research on the environmental
impacts of fully biodegradable mulch primarily focuses on greenhouse gas emissions [28].
The full life-cycle environmental impacts of biodegradable plastic film mulching, such as
resource consumption, environmental acidification, eutrophication, and human health, are
still unclear [21]. Existing studies on the environmental impacts of plastic films during the
production or use stage are more abundant, and few studies address the treatment stage after
the use of waste film mulch. Additionally, the differences in the full life-cycle environmental
impacts of fully biodegradable plastic films and plastic films remain unclear.

Life Cycle Assessment (LCA) is a systematic approach used to evaluate and compare
the environmental impacts of various products, technologies, and solutions. It has been
extensively applied across various fields, including printing plastic films, waste recycling, and
rural environmental management [29–31]. Several studies have utilized the LCA method to
assess the environmental impact of agricultural straw and mulch. Zhao et al. [32] found that
compared to incineration and removal, the amount of energy consumption of straw returned
to the field is at an intermediate level, with the least amount of greenhouse gas emissions,
making it an efficient method to dispose straw. However, straw returned to the field can
cause an increase in the number of pests and diseases and an increase in pesticide inputs, and
the methods of returning the straw to the field should be continuously improved to reduce
the occurrence of pests and diseases. Choi et al. [33] found that the environmental impact of
fully biodegradable mulch films is lower than that of conventional plastic films throughout
their life cycle. Additionally, incinerating used plastic films generates higher greenhouse gas
emissions compared to recycling or landfill methods. Current research offers valuable insights
into the environmental impact of plastic film mulch methods but lacks local Chinese data
regarding the impacts of agricultural straw, different mulches, and their interactions across
multiple environmental categories using the LCA approach.

In summary, considering the reliance of the current agricultural system on straw
return and film mulching, the study conducted a two-year field trial in garlic season to
determine the environmental impacts across the six endpoint categories: resource con-
sumption, global warming potential, environmental acidification, eutrophication, human
health, and ecotoxicity under straw return and different film mulch treatments based on an
innovative life cycle assessment (LCA) methodology. Furthermore, the study evaluated
the costs and economic benefits under straw return and different film mulch treatments,
which aimed to explore which cultivation measure could maximize the economic and
environmental benefits of garlic cropping system. The study analyzed the environmental
impacts of used mulch and straw off-farm, so as to explore the best modes of offsetting
and mitigating the environmental impacts of straw and waste mulch. This study provided
both scientific methodology and empirical data to support policy formulation regarding
resource utilization of farmland waste in China.
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2. Materials and Methods
2.1. Experimental Area and Cropping Systems

The experiment was conducted in 2022 and 2023 at the Experimental Demonstration
Site of the Xuzhou Institute of Agricultural Science, Xuzhou City, Jiangsu Province, China
(117◦24′ E, 34◦17′ N) (Figure 1a). The test site experienced a temperate monsoon climate
with an annual temperature of 14 ◦C, annual sunshine hours of 2284 to 2495 h, a sunshine
rate of 52% to 57%, an average annual frost-free period of 200 to 220 days, and an average
annual precipitation of 800 to 930 mm. The crop rotation pattern before the experiment was
rice–garlic rotation, the previous crop was rice, the soil texture was sandy loam, and the
organic matter content of the top soil (0–20 cm) was 16.96 g kg−1 by potassium dichromate
oxidation. Total nitrogen was 0.92 g kg−1 by sulfuric acid + catalyst ablation Kjeldahl nitro-
gen determination, alkaline dissolved nitrogen was 107.33 mg kg−1 by alkaline dissolution
diffusion, available phosphorus was 5.22 mg kg−1 by molybdenum–antimony antimicro-
bial colorimetry, available potassium was 219.00 mg kg−1 by a flame photometer, and the
pH was 8.60 by the electrode method (Mettler Toledo, SG2). Weather data for the garlic
season in both years were obtained from the Agricultural Experimental Meteorological
Station of Xuzhou City. The total annual rainfall during the crop growing season in 2022
and 2023 was 478.20 mm and 725.8 mm, respectively.
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Figure 1. Experimental area (a), system boundary (b), four life cycle phases (c), LCA analysis (d),
and economic analysis (e). The environment quantitative models and four phases damage evaluated
in the present study (c). Note: SR-CK: straw return without film mulching; SR-PM: straw return
with plastic film mulching; SR-BM: straw return with biodegradable film mulching; NR-CK: straw
non-return without film mulching; NR-PM: straw non-return with plastic film mulching; and NR-BM:
straw non-return with biodegradable film mulching.

The two-year experiment was conducted using split-zone experimental treatments,
with straw returned to the field as the main treatments, namely straw return (SR) and non-
straw return (NR), and different mulching as the sub-treatments, namely no film mulching
(CK), plastic film mulching (PM), and fully biodegradable film mulching (BM) that were
set in a garlic cropping system (Figure 1b), each replicated three times. The plot area was
630 m2, and the plastic film used in the experiment was transparent polyethylene plastic
film (PE), with a thickness of 0.01 mm and a width of 200 cm. The fully biodegradable
mulch film was provided by Nanjing Bochuang Youjie New Material Technology Co. and
produced according to GB/T 35795-2017 standard [34]. The fully biodegradable film,
composed primarily of polybutylene terephthalate (PBAT), was white and translucent,
with the same thickness of 0.01 mm and a width of 200 cm. The degradation products of
the biodegradable film included water, CO2, and the mineralized inorganic salts of the
elements contained in the film [35,36]. The garlic variety used was Xu Garlic 917, provided
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by the Agricultural Science Research Institute of Xuzhou, Jiangsu Xuhuai region. The garlic
was sown in mid-to-early October. Prior to sowing, the soil was deeply tilled to a depth
of 30 cm, followed by rotary tillage to prevent the rice straw from the previous crop from
returning to the field and interfering with garlic germination. Garlic base organic fertilizer
was applied at 6000 kg·ha−1, compound fertilizer (15–5–25) was applied at 600 kg·ha−1,
and compound fertilizer (12–18–22) was applied at 750 kg·ha−1. During the garlic bud
differentiation and shoot elongation stages, compound fertilizer (15–5–25) was applied at
285 kg·ha−1 and 300 kg·ha−1, respectively. During the bulb expansion phase, 3 kg·ha−1

of foliar fertilizer (Potassium dihydrogen phosphate, KH2PO4) was sprayed. The garlic
was harvested in early May. The field management strategies, such as irrigation and drug
application during the garlic season, were in line with local conventional management practices.

2.2. Life Cycle Assessment (LCA)

An LCA approach was used to quantify the environmental impacts of garlic cultivation
with different straw return and film mulch. In accordance with the ISO 14040/14044 stan-
dard series [37,38], this study followed a four-step LCA procedure including objective and
scope definition, life cycle inventory analysis, impact evaluation, and interpretation [39].

2.2.1. Goal and Scope Definition

The objective of this study was to quantify the environmental impacts of six cultivation
practices within the garlic ecosystem across six endpoint damages: resource consumption,
global warming potential, environmental acidification, eutrophication, human health, and
ecotoxicity. Additionally, the study aimed to identify the key factors for each endpoint damage
category. This study defines two functional units of environmental impacts based on 1 ha
area and based on 1 t of garlic production. The scope of LCA in the garlic production chain
encompasses all material and energy inputs and outputs from ‘cradle to farm gate’, including
potential environmental impacts associated with the disposal of non-returned straw and waste
plastic films at the end of their useful life (end of growing season). In this study, the entire life
cycle of garlic production was categorized into four stages, as shown in Figure 1:

(1) Energy exploitation: resource consumption and pollutant emissions resulting from
the extraction and production of various energy resources.

(2) Production of materials: resource consumption and pollutant emissions from the manu-
facturing of agricultural materials such as fertilizers, pesticides, and agricultural films.

(3) Farming production: resource consumption and pollutant emissions generated by
various types of agricultural production material inputs throughout the process of
growing garlic from sowing to harvesting.

(4) Agricultural waste disposal: resource consumption and pollutant emissions from the
collection and treatment of straw and waste film mulch after garlic harvest.

2.2.2. Life Cycle Inventory (LCI) Analysis

Life Cycle Inventory (LCI) analysis mainly refers to the process of identifying all
inputs and outputs, as well as the process of performing operations throughout the entire
life cycle of a product system. This process typically consists of three steps: classification
and characterization, standardization, and weighted assessment. In LCI analysis, life cycle
inventory data were listed in the order of field operations (Table 1).

During the energy exploitation phase, data on pollution emissions from the extraction and
production of various energy resources were obtained from actual research and the Ecoinvent
3.5 (International Life Cycle Inventory Database 3.5) database [40]. In the material production
phase, data on agricultural machinery, biodegradable films, ordinary plastic films, and fertilizers
were obtained from actual field inputs, with their pollutant emission coefficients derived from
CLCD 0.7 (China Life Cycle Database 0.7) and Ecoivent 3.5. Since each use of agricultural
machinery reduces its lifespan, this study quantified the lifetime of agricultural machinery
based on its usage as shown in the Table S1. The fuel consumption of agricultural machinery
was calculated based on engine power and operating hours. The mileage and fuel consumption
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of agricultural transportation to farmland were obtained from measured data. Pollution from
diesel combustion, electricity use, fertilizer and pesticide application, agricultural labor, straw
return to the field, and mulching were considered during the farming production phase. N2O
emissions, NH3-N volatilization, NO3

−-N leaching and runoff, and P (phosphorus) runoff loss
due to fertilizer application were based on the IPCC guidelines [41] and previous works of
literature [42–44]. Additionally, fertilizer application can lead to the accumulation of heavy
metals in agricultural soils, thereby harming the environment [45]. In the previous studies,
Cu, As, Cd, Pb, Zn, Cr, and Hg metals were selected and their emission factors were specified
in this study. The pesticide residue pollutants entering the atmosphere, water, and soil were
calculated as 10%, 1%, and 43% of the input amount of the active ingredient of the pesticide,
respectively [46]. For each site operation in Table S2, the method of operation (mechanical or
manual) and facilities were listed to accurately estimate the corresponding emissions. In the
agricultural waste disposal stage, for straw not returned to the field and waste plastic mulch, this
study considered the most common previous treatments of straw incineration and incineration
of waste mulch for electricity generation, respectively [47,48]. After harvesting the previous
rice crop, rice straw from plots where straw was not returned to the field was collected and
transported to a waste incineration plant for burning. After the garlic harvest, waste plastic
film was collected by a film picker in the plots covered with plastic film treatments, which was
then transported to the nearest waste-to-energy plant. Relevant data were primarily obtained
from actual transportation records and the Ecoinvent 3.5 database. In this study, in addition
to the methods of straw incineration and waste mulch power generation in the fourth stage,
the methods of straw power generation and waste mulch recycling granulation were evaluated
separately for comparison. The data on straw power generation were mainly derived from
previous studies [49–52]. The waste mulch recycling granulation was 90% and the conversion
efficiency of recycled plastic pellets to virgin material substitutes was about 66% [53,54]. The
environmental impacts caused by recycled pellets were primarily based on previous studies [55]
and the Ecoinvent 3.5 database as shown in Table S2.

Table 1. Inventory items for garlic production under the six cultivation methods in a two-year field trial.

Items Unit SR-CK SR-PM SR-BM NR-CK NR-PM NR-BM

Tillage

Deep plowing kg·ha−1·year−1 3 3 3 3 3 3
Rotary-harrow kg·ha−1·year−1 3.19 3.19 3.19 3.19 3.19 3.19

Diesel oil L·ha−1·year−1 158.796 158.796 158.796 63.54 63.54 63.54
Straw kg·ha−1·year−1 7500 7500 7500 0 0 0

Seeding

Garlic seeds kg·ha−1·year−1 2100 2100 2100 2100 2100 2100
Garlic seed dressing kg·ha−1·year−1 3.39 3.39 3.39 3.39 3.39 3.39

Labor person·ha−1·year−1 60 60 60 60 60 60

Plastic film mulching

Biodegradable film kg·ha−1·year−1 0 0 72 0 0 72
PE film kg·ha−1·year−1 0 72 0 0 72 0
Labor person·ha−1·year−1 0 78 78 0 78 78

Fertilization

Organic fertilizer kg·ha−1·year−1 6000 6000 6000 6000 6000 6000
Nitrogen kg·ha−1·year−1 267.75 267.75 267.75 267.75 267.75 267.75

Phosphorus (P2O5) kg·ha−1·year−1 194.25 194.25 194.25 194.25 194.25 194.25
Potassium (K2O) kg·ha−1·year−1 461.25 461.25 461.25 461.25 461.25 461.25

Labor person·ha−1·year−1 15 15 15 15 15 15

Crop Protection

Insecticide kg/ha·year−1 4.5 4.5 4.5 4.5 4.5 4.5
Fungicide kg/ha·year−1 4.5 4.5 4.5 4.5 4.5 4.5
Herbicide kg/ha·year−1 3 1.8 1.8 3 1.8 1.8

Drone spraying kWh·ha−1·year−1 16.875 13.5 13.5 16.875 13.5 13.5

Irrigation

Irrigation water m3·ha−1·year−1 96.75 90 90 96.75 90 90
Electricity kWh ·ha−1·year−1 30.88 28.8 28.8 30.88 28.8 28.8
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Table 1. Cont.

Items Unit SR-CK SR-PM SR-BM NR-CK NR-PM NR-BM

Crop Harvesting

Labor person·ha−1·year−1 247.5 247.5 247.5 247.5 247.5 247.5

Discarded plastic film collection

Picker machine kg/ha·year−1 0 8.95 0 0 8.95 0
Diesel oil L·ha−1·year−1 0 18.4 0 0 18.4 0

Note: SR-CK: straw return without film mulching; SR-PM: straw return with plastic film mulching; SR-BM: straw
return with biodegradable film mulching; NR-CK: straw non-return without film mulching; NR-PM: straw
non-return with plastic film mulching; and NR-BM: straw non-return with biodegradable film mulching.

2.2.3. Impact Assessment

The LCA impact assessment consists of three parts: characterization, normalization,
and weighting. This study utilized six environmental potential impact categories from
CML2001 [56], which included resource consumption, global warming potential, environmen-
tal acidification, eutrophication, human health, and ecosystem. Normalization parameters
and weights were derived from previous studies, which are shown in the Table S3 [57].

2.2.4. Interpretation

In the interpretation phase, the environmental impacts of straw return and mulch
treatments will be examined. Conclusions and recommendations will be formulated based
on the respective environmental impact potentials.

2.3. Cost–Benefit Analysis

Economic profit is a determinant of farmers’ production behavior and agricultural
practices [58]. In this study, a cost–benefit analysis was selected to assess the economic
attributes of the six treatments. Table 2 presents the raw data of the input–output details
and economic parameters of the six cultivation methods.

Table 2. Cost and benefit for garlic production under six cultivation methods in a two-year field trial.

Unit SR-CK SR-PM SR-BM NR-CK NR-PM NR-BM

Cost

Machine CNY ha−1·year−1 2025 2025 2025 1125 1125 1125
seed CNY ha−1·year−1 7800 7800 7800 7800 7800 7800

Fertilizer CNY ha−1·year−1 11,625 11,625 11,625 11,625 11,625 11,625

Film CNY ha−1·year−1 0 1200 2400 0 1200 2400
Irrigation CNY ha−1·year−1 525 525 525 525 525 525
Pesticide CNY ha−1·year−1 2400 2400 2400 2400 2400 2400

Labor CNY ha−1·year−1 7500 11,910 9300 9750 14,160 11,550
Allowance CNY ha−1·year−1 2175 2175 3075 2175 2175 3075

Output

Yield in 2022 kg ha−1 25,699.65
± 707.88 b

25,911.46
± 319.94 ab

24,913.19
± 1387.53 ab

23,263.89
± 2933.46 ab

26,822.92
± 646.69 a

24,392.36
± 429.67 ab

Yield in 2023 kg ha−1 15,407.99
± 4078.83 b

27,199.07
± 6921.76 a

25,101.27
± 6386.71 a

17,939.81
± 4605.66 b

27,777.78
± 7059.81 a

26,909.72
± 6844.66 a

Note: SR-CK: straw return without film mulching; SR-PM: straw return with plastic film mulching; SR-BM: straw
return with biodegradable film mulching; NR-CK: straw non-return without film mulching; NR-PM: straw
non-return with plastic film mulching; and NR-BM: straw non-return with biodegradable film mulching. Different
lowercase letters indicate that there are significant differences among the treatments by LSD’s new multiple range
test (p < 0.05). Values are expressed as mean ± standard error (SE; n = 3).

3. Results
3.1. Six Endpoint Damage Categories per Hectare

Figure 2 presents the damage categories (based on unit area scale) for six endpoints
per hectare under straw return and film mulching. When considering the contribution of
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the four phases to the six endpoint damage categories per hectare, Phase 2 (production of
materials) emerged as the key contributor to energy consumption and ecosystem endpoint
damage, representing 67.16% and 71.73% of the total endpoint results, respectively. This
was due to the fact that agricultural production of fertilizers, organic fertilizers, pesticides,
and mulch films (plastic films and biodegradable plastic films) consumes large amounts of
energy in the form of raw coal, crude oil, and natural gas. As a result, the energy consump-
tion endpoint damage category reflected high values. Additionally, heavy metal elements
(e.g., cadmium, lead, mercury) and chemical additives (plasticizers) used in the production
process of agricultural materials were released into the environment along with the emission
of exhaust gases and wastewater. This exacerbated soil and water pollution, causing adverse
effects on the ecosystem. Phase 3 (farming production) was the main contributor to global
warming potential, environmental acidification, eutrophication, and human health, account-
ing for 52.84%, 70.04%, 56.20%, and 95.63% of the total endpoint results, respectively. This was
due to the fact that agricultural activities such as tillage, fertilizer, and pesticide application
and film mulching during crop production generated substantial greenhouse gas emissions
and could lead to the formation and release of toxic chemicals containing heavy metals.
Phase 1 (energy exploitation) made the most substantial contribution to resource consumption
among the six endpoint damage categories. This was due to the fact that diesel and electricity
production consumes a large amount of fossil energy sources such as coal, oil, and natural gas,
as well as water and mineral resources. Additionally, inefficient extraction practices for energy
and primary raw materials in China further intensified the energy consumption issues in
Phase 1 (energy exploitation). Phase 4 (agricultural waste disposal) impacted all six endpoint
damage categories, but only minimally, contributing 3.45%, 6.50%, 10.34%, 5.24%, 4.37%, and
0.54% to the total endpoint results, respectively.
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Figure 2. The comparison of six endpoint damage categories per hectare (area-scaled functional
unit) among the six cultivation methods. Note: SR-CK: straw return without film mulching;
SR-PM: straw return with plastic film mulching; SR-BM: straw return with biodegradable film
mulching; NR-CK: straw non-return without film mulching; NR-PM: straw non-return with plastic
film mulching; and NR-BM: straw non-return with biodegradable film mulching. (a) The comparison
of resource consumption damage per hectare (area-scaled functional unit) among the six cultivation
methods; (b) The comparison of global warming potential damage per hectare (area-scaled functional
unit) among the six cultivation methods; (c) The comparison of environmental acidification damage
per hectare (area-scaled functional unit) among the six cultivation methods; (d) The comparison of
eutrophication damage per hectare (area-scaled functional unit) among the six cultivation methods;
(e) The comparison of human health damage per hectare (area-scaled functional unit) among the six
cultivation methods; (f) The comparison of ecotoxicity damage per hectare (area-scaled functional
unit) among the six cultivation methods.
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3.2. The Impact of Straw Return or Plastic Film Mulch on the Six Endpoint Damages per Hectare

Figure 3 presented the percentage effects (based on unit area scale) of straw return or film
mulch on the six endpoint damage types. Compared to the SR-CK and NR-CK treatments, the
impact potentials per hectare for the three endpoint damage categories of resource consump-
tion, global warming potential, and environmental acidification were significantly higher for
SR-PM, SR-BM, NR-PM, and NR-BM, while they were significantly lower for the eutrophica-
tion and ecotoxicity categories. The mean of the six endpoint damages per hectare increased
by 3.27% in the SR-PM treatment compared to the SR-CK treatment under the straw return.
Specifically, the SR-PM treatment had a greater impact on the damage categories of resource
consumption and global warming potential, with resource consumption and global warming
potential values under the SR-PM treatment being 15.15% and 6.43% higher than those in the
SR-CK treatment, respectively. The mean values of the six endpoint damages were reduced by
1.88% in the SR-BM treatment compared to SR-CK. The resource consumption, global warm-
ing potential, and environmental acidification impact potentials in the SR-BM treatment were
higher by 1.82%, 0.57%, and 0.09%, respectively, while the eutrophication, human health, and
ecotoxicity impact potentials were reduced by 1.92%, 6.71%, and 5.13% compared to SR-CK.
The mean values of the six endpoint damages per hectare in the NR-PM treatment increased
by 3.41% under the non-returned straw conditions compared to NR-CK, where the resource
consumption and global warming potential values in the NR-PM treatment were higher than
NR-CK by 16.82% and 5.98%, respectively. The mean values of the six endpoint impairments
in the NR-BM treatment were reduced by 1.73% compared to NR-CK, with eutrophication,
human health, and ecotoxicity impact values reduced by 1.77%, 6.47%, and 1.73%, respectively.
Compared to the NR-CK, NR-PM and NR-BM treatments, per hectare, the SR-CK, SR-PM
and SR-BM treatments exhibited significantly higher impact potentials for the two endpoint
damage categories of resource consumption and environmental acidification, and significantly
lower impact potentials for the four endpoint damage categories of global warming potential,
eutrophication, human health and ecotoxicity. The global warming potential, eutrophication,
human health and ecotoxicity impact values per hectare of the SR-BM treatment were reduced
by 6.96%, 4.53%, 3.64% and 1.03% compared to NR-BM.
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or BM mulching films compared to CK in different straw returning. (b) The percentage increase in SR
system compared to NR system in different mulching films. Note: SR-CK: straw return without film
mulching; SR-PM: straw return with plastic film mulching; SR-BM: straw return with biodegradable
film mulching; NR-CK: straw non-return without film mulching; NR-PM: straw non-return with
plastic film mulching; and NR-BM: straw non-return with biodegradable film mulching.

3.3. Life Cycle Environment Impact Indexes and Evaluation Results of Straw Returning or Film
Mulching on the Six Endpoint Damages per Hectare

Table 3 presented the standardized post-impact index and weighted post-impact index
(based on unit area scales) of the impact potential of the six endpoint damage categories per
hectare under straw return and film mulching. The environmental impacts of the six endpoint
damages on garlic cropping system were ranked as ecotoxicity, eutrophication, environmental
acidification, global warming potential, human health, and resource consumption. Among them,
the highest impact potential value of ecotoxicity in the NR-CK treatment was 27.8, the highest
impact potential values of eutrophication, environmental acidification, global warming potential,
and human health in the NR-PM treatment were 1.20, 0.34, 0.22, and 0.03, the highest impact
potential value of resource consumption in the SR-PM treatment was 0.01. Phase 2 (production
of materials) was a major contributor to the environmental impacts of ecotoxicity, while Phase 3
(farming production) was a major contributor to eutrophication, environmental acidification, and
global warming potential. The composite index of life cycle environmental impact per hectare
was significantly lower for the SR-PM, SR-BM, NR-PM, and NR-BM treatments, with values of
27.75, 27.68, 28.18, and 28.11, respectively, compared to the SR-CK and NR-CK treatments.

Table 3. Weighted analysis of life cycle environmental impact potential values of the garlic system
among six cultivation methods.

Impact Category Stage SR-CK SR-PM SR-BM NR-CK NR-PM NR-BM

Resource consumption

Phase 1 7.03 × 10−4 8.69 × 10−4 6.92 × 10−4 3.37 × 10−4 5.03 × 10−4 3.26 × 10−4

Phase 2 3.36 × 10−3 3.66 × 10−3 3.38 × 10−3 3.34 × 10−3 3.66 × 10−3 3.38 × 10−3

Phase 3 1.02 × 10−3 1.24 × 10−3 1.11 × 10−3 7.01 × 10−4 9.23 × 10−4 7.89 × 10−4

Phase 4 8.48 × 10−5 2.92 × 10−4 3.77 × 10−4 2.92 × 10−4

Total 5.08 × 10−3 5.85 × 10−3 5.17 × 10−3 4.67 × 10−3 5.46 × 10−3 4.78 × 10−3

Global warming potential

Phase 1 4.11 × 10−3 4.40 × 10−3 4.02 × 10−3 2.12 × 10−3 2.41 × 10−3 2.03 × 10−3

Phase 2 8.02 × 10−2 8.10 × 10−2 8.05 × 10−2 8.02 × 10−2 8.10 × 10−2 8.05 × 10−2

Phase 3 1.10 × 10−1 1.15 × 10−1 1.11 × 10−1 1.04 × 10−1 1.08 × 10−1 1.05 × 10−1

Phase 4 6.76 × 10−3 2.33 × 10−2 3.00 × 10−2 2.33 × 10−2

Total 1.95 × 10−1 2.07 × 10−1 1.96 × 10−1 2.09 × 10−1 2.22 × 10−1 2.10 × 10−1

Environmental acidification

Phase 1 2.11 × 10−3 1.99 × 10−3 1.80 × 10−3 1.12 × 10−3 1.00 × 10−3 8.11 × 10−4

Phase 2 5.73 × 10−2 5.75 × 10−2 5.79 × 10−2 5.73 × 10−2 5.75 × 10−2 5.79 × 10−2

Phase 3 2.15 × 10−1 2.16 × 10−1 2.15 × 10−1 2.05 × 10−1 2.07 × 10−1 2.05 × 10−1

Phase 4 3.96 × 10−3 6.57 × 10−2 6.96 × 10−2 6.57 × 10−2

Total 2.74 × 10−1 2.80 × 10−1 2.74 × 10−1 3.29 × 10−1 3.35 × 10−1 3.30 × 10−1

Eutrophication

Phase 1 3.21 × 10−3 3.49 × 10−3 3.15 × 10−3 1.47 × 10−3 1.74 × 10−3 1.41 × 10−3

Phase 2 4.53 × 10−1 4.38 × 10−1 4.31 × 10−1 4.53 × 10−1 4.38 × 10−1 4.31 × 10−1

Phase 3 6.58 × 10−1 6.64 × 10−1 6.58 × 10−1 6.28 × 10−1 6.34 × 10−1 6.28 × 10−1

Phase 4 7.25 × 10−3 1.20 × 10−1 1.27 × 10−1 1.20 × 10−1

Total 1.11 × 100 1.11 × 100 1.09 × 100 1.20 × 100 1.20 × 100 1.18 × 100

Human health

Phase 1
Phase 2
Phase 3 2.41 × 10−2 2.25 × 10−2 2.25 × 10−2 2.41 × 10−2 2.25 × 10−2 2.25 × 10−2

Phase 4 1.86 × 10−3 9.20 × 10−4 2.78 × 10−3 9.20 × 10−4

Total 2.41 × 10−2 2.44 × 10−2 2.25 × 10−2 2.50 × 10−2 2.53 × 10−2 2.34 × 10−2

Ecotoxicity

Phase 1
Phase 2 1.98 × 101 1.98 × 101 1.98 × 101 1.98 × 101 1.98 × 101 1.98 × 101

Phase 3 7.75 × 100 6.34 × 100 6.34 × 100 7.75 × 100 6.34 × 100 6.34 × 100

Phase 4 2.44 × 10−2 2.77 × 10−1 3.01 × 10−1 2.77 × 10−1

Total 2.75 × 101 2.61 × 101 2.61 × 101 2.78 × 101 2.64 × 101 2.64 × 101

Note: SR-CK: straw return without film mulching; SR-PM: straw return with plastic film mulching; SR-BM: straw
return with biodegradable film mulching; NR-CK: straw non-return without film mulching; NR-PM: straw
non-return with plastic film mulching; and NR-BM: straw non-return with biodegradable film mulching.
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3.4. Six Endpoint Damage Categories per t

Figure 4 presented the six endpoint damage categories per t (based on unit yield scales)
for 2022 and 2023 under straw return and film mulching. The results showed that in 2022 and
2023, there was a significant reduction in the impact potential of the damage category for the
six endpoints per t in the SR-PM, SR-BM, NR-PM, and NR-BM treatments compared to SR-CK
and NR-CK. In terms of resource consumption, the straw-return system showed a significantly
higher impact potential compared to the straw non-returned system, with the NR-BM treatment
exhibiting the lowest average impact value at 3227.69 MJ·t−1. For global warming potential,
environmental acidification, and eutrophication, the SR system recorded significantly lower
mean values of 500.71 kgCO2-eq·t−1, 4.54 kgSO2-eq·t−1 and 0.76 kgPO4

3−-eq·t−1, respectively,
compared to the NR system. The SR-BM treatment had the lowest global warming poten-
tial, recorded at 4444.53 kgCO2-eq·t−1. The SR-PM treatment recorded the lowest values for
environmental acidification and eutrophication at 3.94 kgSO2-eq·t−1 and 0.66 kgPO4

3−-eq·t−1,
respectively. In terms of human health, CK > PM > BM was demonstrated under both straw-
returned and non-returned treatments, with the SR-BM treatment showing the lowest human
health impact potential at 125 kg1,4-DCB-eq·t−1. In terms of ecotoxicity, CK > BM > PM was
exhibited under both straw-returned and non-returned treatments, with the SR-PM treatment
showing the lowest ecosystem impact potential at 45.78 kg1,4-DCB-eq·t−1.
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Figure 4. The comparison of the six endpoint damage categories per t of yield produced (yield-scaled
functional unit) in year 2022 and 2023 among six cultivation methods. Note: SR-CK: straw return without
film mulching; SR-PM: straw return with plastic film mulching; SR-BM: straw return with biodegradable
film mulching; NR-CK: straw non-return without film mulching; NR-PM: straw non-return with plastic
film mulching; and NR-BM: straw non-return with biodegradable film mulching. (a–f). (a) The comparison
of resource consumption damage per t of yield produced (yield-scaled functional unit) in year 2022 and
2023 among six cultivation methods; (b) The comparison of global warming potential damage per t of
yield produced (yield-scaled functional unit) in year 2022 and 2023 among six cultivation methods; (c) The
comparison of environmental acidification damage per t of yield produced (yield-scaled functional unit)
in year 2022 and 2023 among six cultivation methods; (d) The comparison of eutrophication damage per
t of yield produced (yield-scaled functional unit) in year 2022 and 2023 among six cultivation methods;
(e) The comparison of human health damageper t of yield produced (yield-scaled functional unit) in year
2022 and 2023 among six cultivation methods; (f) The comparison of ecotoxicity damage per t of yield
produced (yield-scaled functional unit) in year 2022 and 2023 among six cultivation methods.

3.5. The Impact of Straw Return and Film Mulching on the Six Endpoint Damages per t

Figure 5 presented the percentage impact of different straw return and film mulch on
the six endpoints damage (based on unit yield scales) in 2022 and 2023. In 2022 and 2023, the
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impact potential for the six endpoint damage categories per t in the SR-PM, SR-BM, NR-PM,
and NR-BM treatments were significantly lower compared to SR-CK and NR-CK. The mean
values of the six endpoint damages per t were reduced by 26.31% and 26.43% in the SR-PM and
SR-BM treatments compared to SR-CK under straw return. The mean values of the six endpoint
damages per t for NR-PM and NR-BM were reduced by 24.10% and 24.54% under non-straw
returned conditions compared to the NR-CK treatment. In 2022 and 2023, there was a significant
increase in the impact potential for the resource consumption damage category, along with a
notable decrease in the impact potential for the environmental acidification damage category
per t in the SR-CK, SR-PM, and SR-BM treatments compared to NR-CK, NR-PM, and NR-BM.
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Figure 5. The percentage increase of the six endpoint damage categories per t of yield produced (yield-
scaled functional unit) in year 2022 and 2023 between different mulching films or straw returning.
Note: SR-CK: straw return without film mulching; SR-PM: straw return with plastic film mulching;
SR-BM: straw return with biodegradable film mulching; NR-CK: straw non-return without film
mulching; NR-PM: straw non-return with plastic film mulching; and NR-BM: straw non-return
with biodegradable film mulching. (a–d). (a) The percentage increase in PM or BM mulching films
compared to CK in different straw returning in 2022. (b) The percentage increase in SR system
compared to NR system in different mulching films in 2022. (c) The percentage increase in PM or BM
mulching films compared to CK in different straw returning in 2023. (d) The percentage increase in
SR system compared to NR system in different mulching films in 2023.

3.6. The Cost–Benefit Assessment of Straw Return and Film Mulching on the Six Endpoint Damages

Minimizing input costs while maximizing economic returns remains the primary goal
in agricultural production. Table 4 presented the effects of straw return and film mulch on
economic benefits (based on unit area and yield scales) in 2022 and 2023. The cost input
for PM was the highest, while CK had the lowest cost input across both straw-returned
and non-returned treatments. In 2022, economic benefits showed no significant difference
across the six treatments. However, in 2023, returns per hectare significantly increased
for the SR-PM, SR-BM, NR-PM, and NR-BM treatments compared to SR-CK and NR-CK.
Additionally, there was no significant difference between PM and BM in the SR and NR
system. The economic efficiency based on unit yield was highest for the SR-BM treatment
at 3691.03 CNY·t−1, exceeding that of the SR-CK treatment by 7.26%.
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Table 4. The cost–benefit assessment of the garlic system among the six cultivation methods.

Treatment All Cost/CNY
104·ha−1

Income in
2022/CNY 104·ha−1

Benefit in
2022/CNY 104·ha−1

Income in
2023/CNY 104·ha−1

Benefit in
2023/CNY 104·ha−1 Benefit/CNY·t−1

SR-CK 5.94 11.35 ± 0.25 b 8.38 ± 0.25 a 7.70 ± 0.82 b 4.73 ± 0.82 b 3441.23 ± 91.74 b
SR-PM 6.96 12.96 ± 0.11 ab 9.42 ± 0.11 a 13.60 ± 0.42 a 10.07 ± 0.42 a 3670.42 ± 17.57 ab
SR-BM 6.6 12.46 ± 0.49 ab 9.16 ± 0.49 a 12.75 ± 0.03 a 9.45 ± 0.03 a 3691.03 ± 25.61 a
NR-CK 6.06 11.63 ± 1.04 ab 8.53 ± 1.04 a 8.97 ± 0.86 b 5.86 ± 0.86 b 3493.18 ± 133.55 ab
NR-PM 7.08 13.41 ± 0.23 a 9.75 ± 0.23 a 13.24 ± 0.06 a 9.57 ± 0.06 a 3624.55 ± 12.07 ab
NR-BM 6.72 12.20 ± 0.15 ab 8.76 ± 0.15 a 13.45 ± 0.47 a 10.02 ± 0.47 a 3661.04 ± 27.33 ab

Note: SR-CK: straw return without film mulching; SR-PM: straw return with plastic film mulching; SR-BM: straw
return with biodegradable film mulching; NR-CK: straw non-return without film mulching; NR-PM: straw
non-return with plastic film mulching; and NR-BM: straw non-return with biodegradable film mulching. Different
lowercase letters indicate that there are significant differences among the treatments by LSD’s new multiple range
test (p < 0.05). Values are expressed as mean ± standard error (SE; n = 3).

3.7. Detailed Contribution Analysis of Inventory Items for Each of the Six Endpoint Damage
Categories per Hectare

Figure 6 showed the detailed contribution of each stockpile item, along with its associated
upstream and downstream processes to the six endpoint damage categories across the straw
return and different mulch treatments. Fertilizer inputs were the major contributors to resource
consumption, global warming potential, environmental acidification, eutrophication, and
ecosystems impacts, with respective contributions of 61.29%, 78.31%, 85.06%, 67.60%, and
71.12%. Crop protection was the primary contributor to human health, accounting for 76.63%.
Seeding was the second largest contributor to human health and ecosystems with contributions
of 19.53% and 16.10%, respectively. Waste mulch recycling disposal was the third largest
contributor to human health in the SR-PM and NR-PM treatments with contributions of 7.64%
and 7.36%, respectively. Straw disposal was the second-largest contributor to global warming
potential and environmental acidification in the NR system with 5.45% and 9.91%, respectively.
Additionally, tillage, mulching, irrigation, and harvesting were significant contributors to
resource consumption, accounting for 15.44%, 3.59%, 1.24%, and 5.89%, respectively.
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Figure 6. The relative proportion (%) of various inventory items on the six endpoint damage
categories per hectare (area-scaled functional unit). Note: SR-CK: straw return without film mulching;
SR-PM: straw return with plastic film mulching; SR-BM: straw return with biodegradable film
mulching; NR-CK: straw non-return without film mulching; NR-PM: straw non-return with plastic
film mulching; and NR-BM: straw non-return with biodegradable film mulching.

3.8. Two Options in the Disposal of Discarded Plastic Films and Straw per Hectare

Figure 7 indicates that in addition to the conventional straw incineration and waste
mulch power generation in Phase 4, straw power generation and waste mulch recycling
granulation were also evaluated to explore options for reducing environmental impacts.
Compared to SI and MPG, SPG and MRG were more favorable offset strategies in terms of
resource consumption, global warming potential, environmental acidification, eutrophica-
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tion, and ecotoxicity, yielding positive environmental benefits. In the SR-PM system, the
MRG model significantly reduced the impact potential across the six endpoint damage cat-
egories per hectare compared to the MPG. The human health impact potential of the MRG
model was decreased by 6.34% compared to MPG. In the NR-PM system, the SPG + MRG
model significantly reduced the impact potential across the six endpoint damage categories
per hectare compared to the SI + MPG model. In the SPG + MRG model, the impact
potentials for global warming potential and environmental acidification were reduced by
33.35% and 31.58%, respectively, compared to SI + MPG.
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Figure 7. The comparison of the six endpoint damage categories per hectare (area-scaled functional unit)
between the four waste disposal methods: straw incineration, straw power generation, waste mulch
power generation, and recycling granulation in Phase 4 (a–f). The positive environmental benefit in
straw and waste mulch power were generated from the electricity recovery converted by heat energy
and waste mulch recycling granulation being reused. The percentage decrease of the six endpoint
damage categories hectare (area-scaled functional unit) with the improvement of the new method in the
SR-PM and NR-PM treatments (g). Note: SR-PM: straw return with plastic film mulching; NR-PM: straw
non-return with plastic film mulching; SI: straw incineration; SPG: straw power generation; MPG: waste
mulch power generation; and MRG: waste mulch recycling granulation.

4. Discussion
4.1. Endpoint Damage Categories per Hectare or per t of Yield Produced Influenced by Different
Straw Return and Film Mulching

China is the world’s leading rice producer and the largest exporter of garlic [59].
Therefore, balancing agricultural productivity with the environmental impacts of produc-
tion cycles is crucial. Straw return and mulching, key management practices in modern
agricultural production, have been extensively implemented in arid and semi-arid regions,
particularly for crops such as maize, cotton, and vegetable crops [9]. Mulching can sig-
nificantly increase garlic yield by conserving water, raising soil temperature, inhibiting
weed growth, and enhancing the physical and chemical properties of the soil [24]. The
results of study aligned with this finding, showing that garlic yield was 38.37% and 32.26%
higher under the PM and BM treatments compared to the CK treatments. Previous research
has also demonstrated that mulching helped to inhibit water evaporation, promotes water
movement from deep soil to the surface, increased surface soil moisture, and promotes
crop growth [60]. At the same time, returning straw to the field can boost soil microbial
biomass and enzyme activity, improve soil structure, and enhance crop yields [10]. There
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was no significant difference in crop yield observed between the PM and BM treatments
for both SR and NR systems. It was consistent with previous studies [61], and the possible
reason for this was that both BM and PM served similar roles in heat and moisture retention
during the pre-growth period of garlic. In the later stages of garlic growth, the degrading
properties of the biodegradable membranes helped mitigate issues such as root rot, soil
structure degradation, and poor permeability that were caused by high soil temperatures
resulting from the failure of ordinary plastic membranes to degrade [62]. At the same time,
the late degradation of biodegradable film can enhance garlic’s absorption of soil water
and nitrogen, creating favorable conditions for garlic growth [63].

This study broadened life cycle assessments compared to previous research, incor-
porating factors such as primary energy production, agricultural equipment losses, and
disposal of used mulch and straw off-farm. The study results indicated that the six end-
point damages had a greater impact on the garlic life cycle environment were ecosystems,
eutrophication, environmental acidification, and global warming potential. Notably, the
NR system per hectare significantly increased the damage potentials of the three endpoint
categories of global warming potential, environmental acidification, and eutrophication
compared to the SR system. This was because direct straw incineration in the NR system
releases large amounts of greenhouse gases, which can trigger warming. At the same time,
the straw incineration also produced acid gases such as SO2 and NOx, which combined
with atmospheric water vapor to form acid rain that falls to the ground and acidifies soil
and water bodies [64]. Moreover, nutrients such as N and P contained in straw were
released into the atmosphere in gaseous form when burned. These nutrients later settle
on soil or water bodies, increasing nutrient levels and causing water eutrophication [65].
Therefore, in order to protect the environment and promote sustainable development,
straw incineration was replaced with more eco-friendly and sustainable straw utilization
methods, such as returning straw to the field, energizations, and resuscitations. Straw
pyrolysis, as an important form of comprehensive utilization of straw, had a positive impact
on the environment. Straw pyrolysis could reduce a large amount of particulate matter,
harmful gases, and carbon emissions from straw incineration. Some studies have shown
that straw pyrolysis can adsorb heavy metals and organic pollutants in soil and purify the
soil and water environment [66]. The SR-BM treatment caused the least damage to the six
endpoints under the straw return system. This was due to higher pesticide application
in the SR-CK treatment, which led to increased potentials for environmental acidification,
eutrophication, human toxicity, and ecotoxicity. In the SR-PM treatment, producing plastic
films and incinerating used films consumed significant energy, while film incineration
released toxic gases such as dioxins and polycyclic aromatic hydrocarbons (PAHs), which
posed serious health hazards. Additionally, plastic film mulching during the phase of
farming production produced more carbon emissions, aligning with findings from previ-
ous studies [61]. Enhanced soil hydrothermal processes in film mulching accelerated the
decomposition of organic matter, resulting in increased emissions of greenhouse gases.
Therefore, the SR-BM treatment was a stable and eco-friendly cultivation practice that
helped stabilize and increase garlic yield per unit hectare. Secondly, when considering
plastic film mulch, the environmental impact of plastic mulch should be carefully assessed,
particularly during production and waste disposal stages.

4.2. Low-Energy, High-Efficiency Garlic Cultivation Model

Higher crop yields and economic efficiency remained the primary goals pursued in
agricultural production [67]. To scientifically assess the combined benefits of different
treatments in agricultural production applications, both endpoint damage categories per
hectare (based on the area scale), in addition to endpoint damage categories per t (based
on the area scale), and economic returns per t of yield (based on the yield scale) were
assessed. This approach highlighted the importance of boosting crop yields with minimal
environmental impacts in order to ensure food security, enhance farm household incomes,
and promote sustainable crop production. The results of this study showed that all six
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endpoint damage categories per t of yield were lower in the PM and BM treatments than
the CK treatment, primarily due to the fact that the increase in yield in film mulching
was greater than the endpoint damage categories per hectare of yield in film mulching.
Compared to the NR-PM and NR-BM treatments, the impact potentials of the damage
categories of energy consumption per t in the SR-PM and SR-BM treatment were signifi-
cantly higher, while the impact potentials of the damage categories of GWP, environmental
acidification, and eutrophication were significantly lower. This indicated that the SR-PM
and SR-BM treatments can be regarded as potential high-yield strategies that produced
more yield with less environmental impact. Additionally, the SR-BM treatment offered the
highest economic benefit per unit yield, which was due to the fact that biodegradable mulch
does not need to be picked up after use during the garlic cultivation cycle. This reduced
the cost of mulch removal and recycling. Furthermore, the natural polymer materials
(e.g., starch, cellulose, etc.) in biodegradable mulch can be decomposed by microorganisms
into beneficial substances and can improve the structure of the soil, which can be used as
fertilizer to promote crop yield [68]. It has also been demonstrated that the external costs of
plastic films, resulting from environmental contamination due to improper disposal, must
be considered [69]. Therefore, the SR-BM system is a cultivation model that combines low
energy consumption per unit of production with high yield potential and high efficiency.
Compared with PE film, an important limiting factor for the large-scale popularization
and application of biodegradable film was its high cost. The price of raw materials, film
thickness, processing technology, and other factors of biodegradable films have resulted in
production costs that were much higher than PE films, which could become a barrier for
small-scale farmers. Therefore, there is a need to reduce costs through innovations in raw
materials and processing methods for biodegradable mulch. At the same time, although
Xuzhou City, where the experiment is located, gave a subsidy of 900 CNY ha-1 to small
farmers using biodegradable film, the price of biodegradable film was still twice as much
as that of PE film, and the government should increase the cost compensation or subsidy.

4.3. Major Contributions to the Endpoint Categories

Determining the contributions of different resource inputs per hectare to the six end-
point damage categories is useful for exploring strategies to mitigate environmental impacts.
The current study revealed that fertilizer inputs were the largest contributors to resource
consumption, global warming potential, environmental acidification, eutrophication, and
ecotoxicity, accounting for about 72.80% of the five environmental impacts (Figure 6). The
result aligned with previous studies, which demonstrated that >50% of the total environ-
mental impacts under different treatments came from fertilizer [45,70]. This was primarily
because fertilizers, as agricultural inputs, require a large amount of energy consumption in
the industrial manufacturing process, such as crude coal, crude oil, and natural gas, as well
as inputs of diesel and electricity. Therefore, improving fertilizer production technology and
increasing fertilizer utilization are effective ways to reduce the environmental impact of the
upstream chain. Nitrogen fertilizer application was also a key factor that causes greenhouse
gas emissions in cropping production systems. Additionally, the application of nitrogen
fertilizer under straw return and film mulching can significantly increase CH4 and N2O
emissions. This was mainly due to the fact that the application of fertilizer increased the
nitrogen content of the soil, which provided essential raw materials such as H2 and CO2 for
the methanogenic bacteria. Additionally, the straw return and film mulching reduced the
frequency of O2 exchange between the field soil and the outside world, and the soil aeration
was poor, leading to poor soil aeration and creating an anaerobic environment favorable
for the growth of methanogenic bacteria [71]. Furthermore, the straw return increased the
effective carbon substrate concentration, which promotes N2O emissions [32]. Fertilizer
application can also cause environmental acidification and eutrophication in cropping
production systems by affecting NH3 volatilization and N2O emissions, which is consistent
with previous studies [72]. This means that replacing chemical fertilizers with organic
fertilizers to reduce NOx emissions and resource consumption in agricultural fields can
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be considered as a potential strategy to mitigate environmental impacts [73]. Bu et al. [71]
found that substituting organic fertilizers for chemical fertilizers was an effective approach
to improving soil fertility and reducing the intensity of greenhouse gas emissions from
paddy fields. Substituting organic fertilizers for chemical fertilizers can significantly reduce
ammonia volatilization and N2O emission from paddy fields, providing a sustainable
solution to reduce emissions, increase efficiency, and stabilize production in rice–duck
symbiosis [74]. Additionally, replacing chemical fertilizers with locally composted organic
fertilizers (to minimize long-distance transport) may be environmentally beneficial, as it
reduces environmental pollution from transportation [75].

Crop protection was a major contributor to human health, mainly due to heavy metal
particles volatilized into the air from pesticide production in industry and pesticide residues
entering the air from agricultural practices [76]. In the SR and NR systems, the BM treatments
reduced human health impact potentials compared to CK, mainly due to the effectiveness
of BM in controlling weeds and reducing pesticide inputs [77]. However, the human health
impact potential in the PM treatment remained higher than CK due to the fact that the
incineration treatment of waste mulch during Phase 4 not only completely offset the benefits
of reduced pesticide inputs, but also generated larger quantities of soot and ash that are
hazardous to human health. These include pollutants like PM2.5/10, CO, acid gases, and
NOx, which contribute to severe air pollution and environmental burdens [78]. Therefore, it is
important to explore feasible disposal methods for waste mulch that could offset or mitigate
the environmental impacts of waste mulch power generation. Additionally, straw disposal was
the second largest contributor to the global warming potential and environmental acidification
in the NR system. Therefore, it is crucial to explore feasible methods for optimizing straw
disposal to mitigate environmental impacts.

4.4. Better Options in the Disposal of Discarded Plastic Films and Straw per Hectare for Mitigation
of Plastic Film and Straw Pollution
4.4.1. Discarded Plastic Films

As a key tool in agricultural production in China, effectively preventing and control-
ling residual pollution is crucial for managing agricultural and rural pollution and the
promotion of green agricultural development [79]. While plastic mulch plays an important
role in safeguarding China’s food security, it’s long-term, large-scale and high-intensity
application, coupled with delays in recycling practices among farmers, results in mulch film
residual pollution problems [49]. Waste mulch recycling and processing enterprises can
utilize various resource recovery methods, including regeneration granulation, fuel extrac-
tion, fuel power generation, and wood-plastic production. Currently, waste mulch reuse
methods primary include incineration for power generation and recycling granulation. This
study showed that compared to waste mulch power generation, recycling granulation of
waste mulch was a more favorable offset strategy in terms of resource consumption, global
warming potential, environmental acidification, eutrophication, and ecotoxicity, producing
positive environmental benefits. This is primarily because recycling discarded plastic films
reduced white pollution and enables recycled plastic films to be reused in new products.
The results differ from the study of Zhang et al. [69], mainly due to the inconsistency in
the life cycle boundaries of plastic film mulch. China is a major user of agricultural films,
generating a substantial number of used films every year. Currently, there are two main
technologies in China to prevent and control pollution from used agricultural films. The
first is product substitution technology. The adoption of biodegradable films to replace PE
films for agricultural use is an inevitable trend in development. The second is the waste
agricultural film recycling technology. This involves adopting machinery (artificial) to
remove used agricultural films from the soil and then, according to specific situations,
using appropriate recycling technology to achieve resource recycling, to solve the “last
kilometer” problem. The recycling and reuse of used agricultural films can establish a
true closed-loop agricultural film circular economy industry chain of “agricultural films,
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used agricultural films, renewable resources”. This process helps reduce environmental
pollution and promotes the green and sustainable development of agriculture.

4.4.2. Straw

China has a large total agricultural output and abundant straw resources. In 2022, China’s
annual crop straw production was approximately 700 million tons, with 301 million tons of
collectible resources [5]. Transforming straw into valuable assets and vigorously promoting
its comprehensive utilization as high-quality renewable biological resources are conducive to
improving agricultural waste management, minimizing the adverse impact of agricultural
production waste on the agricultural production environment, as well as promoting the
green development of agriculture [15,69]. Therefore, the study also evaluated the method
of straw incineration for power generation compared to direct straw incineration. Straw
incineration for power generation, as a method of energy utilization, is the common method
of straw treatment in China, alongside its use in fertilizer and feed, accounting for 8.3%
of the total straw utilization [80]. This study found that compared to straw incineration,
straw incineration for power generation produced positive environmental benefits in resource
consumption, global warming potential, environmental acidification, eutrophication, human
health, and ecotoxicity. The six endpoint damage categories under the SPG + MRG model were
significantly reduced; especially the impact potentials of the two endpoint damage categories,
global warming potential and environmental acidification, were reduced compared to that
of SI + MPG by 33.35% and 31.58%. This was due to the fact that straw power generation
produced electricity, which helped to reduce the reliance on fossil fuels. It has also been
demonstrated that straw incineration for electricity generation instead of direct incineration
significantly reduces atmospheric particulate matter levels. Specifically, particulate matter
emissions were reduced by about 99% relative to direct combustion, while NOx emissions
were relatively low [52]. Therefore, the approach of waste mulch recycling granulation
and straw power generation is the most effective strategy for offsetting and mitigating all
six endpoint damage categories per hectare.

4.5. Limitations and Implications

Although the study employed a scientific and systematic LCA method to evaluate
the endpoint damage categories of various mulch covers and straw return, the current
LCA method still has limitations. Firstly, due to the lack of information in the database,
plant equipment, construction facilities, etc. were not considered to cause a certain amount
of resource consumption and pollutant emission. As a result, the study’s findings were
significantly lower than those of the actual production. Secondly, the carbon sequestration
effect under various farmland management techniques (e.g., straw return to the field,
mulching, organic and inorganic fertilizer application, etc.) were not considered. Some
studies have shown that straw return to the field can increase the soil organic matter,
promote the soil microbial activity, and increase carbon fixation. Additionally, combining
straw return with nitrogen fertilizers can affect the soil carbon and nitrogen ratio, enhance
the microbial utilization of nitrogen, and reduce N2O emissions. Film mulch can change
soil microbial communities and ecological functions, thereby accelerating organic carbon
mineralization [81]. Thirdly, since most of the collected inventory data were based on
foreign research results, there was a certain deviation from the actual situation in China,
leading to unavoidable uncertainty. Therefore, future efforts should focus on enhancing
China’s LCA database to cover all scenarios across the entire industrial chain, enabling a
comprehensive and integrated evaluation of the life of different agricultural production
systems in China.

This study indicated that while most of the used plastic film was collected and trans-
ferred for waste disposal, some plastic film residues have been remained in the topsoil.
Although the system boundary of LCA does not account for soil-based plastic film residues,
these residues present a potentially complex environmental threat [82]. Some studies have
shown that crop yields can decrease by over 11.3% when the amount of residual film ex-
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ceeds 240 kg ha-1. At the same time, the residual film in the soil can adsorb heavy metals,
antibiotics and other pollutants, change the soil physical and chemical properties (e.g., pH
and weight etc.), affect the development of soil animals such as earthworms, reduce the
activity of key microorganisms involved in the soil nutrient cycling process, and ultimately
harm the soil environment. The research, development and testing of fully biodegradable
mulch films offer potential solutions to residual film pollution. Currently, the composition
of fully biodegradable mulch film products is mainly based on polyesters such as PBAT
(polybutylene terephthalate adipate), PLA (polylactic acid), and PBS (polybutylene succinate),
which are degraded into water and carbon dioxide without releasing toxic chemicals into
the environment [83]. However, studies have shown that biodegradable mulches still release
microplastics into the soil system, which may alter soil microbial communities and ecological
functions [84]. Therefore, it is essential to develop double-degradable agricultural films, such
as light biodegradable agricultural films, to ensure timely and complete degradation. The
production process of double-degradable agricultural films is complex and costly, making the
simplification of production and cost reduction a key challenge for their future application.
In addition, the negative impacts of microplastics from biodegradable films on crop yield,
soil aggregate nutrients, water cycling, and C, N, and P transformation are similar to those
of non-biodegradable plastics [83]. Therefore, the mechanism of action of microplastics in
biodegradable films remains a key focus of current research, aimed at further minimizing
their environmental impacts on sustainable agriculture.

This study thoroughly explored the environmental impacts of returning straw to the
field, straw incineration, and straw power generation. However, in order to more accurately
assess the optimal utilization of straw, future studies could consider its potential use as
feed or feedstock.

5. Conclusions

In terms of unit area, the results indicated that the environmental impacts of the six
endpoint damages in garlic cropping system were ranked as ecotoxicity, eutrophication,
environmental acidification, global warming potential, human health, and resource con-
sumption. The SR-BM treatment had the lowest life cycle environmental impact composite
index at 27.68 per unit area, primarily due to the significant reduction damage in Phase 4.
The six endpoint damage categories per t of yield were the lowest under the SR-BM treat-
ment and had the highest economic benefits at 3691.03 CNY·t−1, exceeding that of SR-PM
by 0.56%. This was mainly because the yield increased under the mulch treatment out-
weighed the endpoint damage categories per hectare of yield, and BM reduced the cost of
mulch pickup and recycling treatment compared to PM. Therefore, the SR-BM system can
be used as a highly productive and eco-friendly cultivation practice for garlic. Fertilizer
inputs were the largest contributor to resource consumption, global warming potential,
environmental acidification, eutrophication, and ecotoxicity, accounting for about 72.80%
of the five environmental impacts. Crop protection also significantly affected human health,
and garlic mulching helped minimize pesticide use, thereby reducing potential health
impacts. Compared to straw incineration and waste mulch power generation, straw power
generation, and waste mulch recycling granulation offered positive environmental benefits
and were more effective offset strategies. In conclusion, straw return with biodegradable
mulch is a synergistic cultivation measure that offers both environmental and economic
benefits. For straw return with plastic film mulch, environmental impacts can be reduced
by waste mulch recycling granulation.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/agronomy14122993/s1, Table S1: The operative methods (machinery or manual)
and facilities for each field operation; Table S2: Summary of the data sources within the four phases of
the life cycle for evaluating four phases’ damage categories in garlic production; Table S3: Normalized
values and weights for the six impact categories.
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