Mechanical and Electrochemical Performance of Carbon Fiber Reinforced Polymer in Oxygen Evolution Environment
Abstract
:1. Introduction
2. Experimental Investigation
2.1. Material and Specimens
2.2. Methodology
2.2.1. Accelerated Polarization Test
2.2.2. Tensile Test
2.2.3. Microstructural Observations
3. Results and Discussion
3.1. Anode Performance
3.2. Mechanical Strength and Tensile-Failure Modes
3.3. Correlation between Tensile Strength and Applied Charge Density
3.4. Service Life Discussion
4. Conclusions
- CFRP can be potentially used as an anode material which has a stable function in an ICCP system with an oxygen evolution environment. This was indicated by the stable feeding voltage and potential measured during the polarization process.
- The applied charge density significantly influenced the tensile strength of CFRP, which decreased with the charge density. Two typical tensile-failure modes, L (lateral) modes and D (edge delamination) modes, occurred during the polarization process. As the impressed current density and test durations increased, the failure mode changed from L mode to D mode.
- Using the experimental results, a theoretical model was calibrated and developed to predict the tensile strength of CFRP based on specific charge densities. The calculated tensile strengths fitted the experimental data well.
- It was shown that CFRP plates could serve well to strengthen the mechanical property as well as to protect corrosion as anode materials in reinforced concrete structures. Even with the maximum acceptable current density and reinforcement ratios, the minimum service life was conservatively predicted to be 24.6 years.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Li, C.Q.; Yang, Y.; Melchers, R.E. Prediction of reinforcement corrosion in concrete and its effects on concrete cracking and strength reduction. ACI Mater. J. 2008, 105, 3–10. [Google Scholar]
- Pedeferri, P. Cathodic protection and cathodic prevention. Constr. Build. Mater. 1996, 10, 391–402. [Google Scholar] [CrossRef]
- Bertolini, L.; Bolzoni, F.; Pedeferri, P.; Lazzari, L.; Pastore, T. Cathodic protection and cathodic preventionin concrete: Principles and applications. J. Appl. Electrochem. 1998, 28, 1321–1331. [Google Scholar] [CrossRef]
- Lambert, P.; Van Nguyen, C.; Mangat, P.S.; O’Flaherty, F.J.; Jones, G. Dual function carbon fibre fabric strengthening and impressed current cathodic protection (ICCP) anode for reinforced concrete structures. Mater. Struct. 2015, 48, 2157–2167. [Google Scholar] [CrossRef]
- Holcomb, G.; Bullard, S.; Covino, B., Jr.; Cramer, S.; Cryer, C.; McGill, G. Electrochemical Aging of Thermal-Sprayed Zinc Anodes on Concrete; Albany Research Center: Albany, OR, USA, 1996. [Google Scholar]
- Ueda, M.; Watanabe, A.; Kameyama, T.; Matsumoto, Y.; Sekimoto, M.; Shimamune, T. Performance characteristics of a new type of lead dioxide-coated titanium anode. J. Appl. Electrochem. 1995, 25, 817–822. [Google Scholar] [CrossRef]
- Hassan, M.M.; Dylla, H.; Mohammad, L.N.; Rupnow, T. Evaluation of the durability of titanium dioxide photocatalyst coating for concrete pavement. Constr. Build. Mater. 2010, 24, 1456–1461. [Google Scholar] [CrossRef]
- Hayfield, P.; Warne, M. Titanium based mesh anode in the catholic protection of reinforcing bars in concrete. Constr. Build. Mater. 1989, 3, 152–158. [Google Scholar] [CrossRef]
- Orlikowski, J.; Cebulski, S.; Darowicki, K. Electrochemical investigations of conductive coatings applied as anodes in cathodic protection of reinforced concrete. Cem. Concr. Compos. 2004, 26, 721–728. [Google Scholar] [CrossRef]
- Jing, X.; Wu, Y. Electrochemical studies on the performance of conductive overlay material in cathodic protection of reinforced concrete. Constr. Build. Mater. 2011, 25, 2655–2662. [Google Scholar] [CrossRef]
- Parvin, A.; Shah, T.S. Fiber reinforced polymer strengthening of structures by near-surface mounting method. Polymers 2016, 8, 298. [Google Scholar] [CrossRef]
- Jumaat, M.Z.; Shukri, A.A.; Obaydullah, M.; Huda, M.N.; Hosen, M.A.; Hoque, N. Strengthening of RC beams using externally bonded reinforcement combined with near-surface mounted technique. Polymers 2016, 8, 261. [Google Scholar]
- De Lorenzis, L.; Nanni, A. Bond between near-surface mounted FRP rods and concrete in structural strengthening. ACI Struct. J. 2002, 99, 123–133. [Google Scholar]
- Bournas, D.; Triantafillou, T. Flexural strengthening of reinforced concrete columns with near-surface-mounted FRP or stainless steel. ACI Struct. J. 2009, 106, 495–505. [Google Scholar]
- Ferrier, E.; Bigaud, D.; Clément, J.C.; Hamelin, P. Fatigue loading effect on RC beams strengthened with externally bonded FRP. Constr. Build. Mater. 2011, 25, 539–546. [Google Scholar] [CrossRef] [Green Version]
- Sena-Cruz, J.M.; Barros, J.A.O.; Coelho, M.R.F.; Silva, L.F. Efficiency of different techniques in flexural strengthening of RC beams under monotonic and fatigue loading. Constr. Build. Mater. 2012, 29, 175–182. [Google Scholar] [CrossRef] [Green Version]
- Rousakis, T.C.; Saridaki, M.E.; Mavrothalassitou, S.A.; Hui, D. Utilization of hybrid approach towards advanced database of concrete beams strengthened in shear with FRPs. Compos. B Eng. 2016, 85, 315–335. [Google Scholar] [CrossRef]
- Charalambidi, B.; Rousakis, T.; Karabinis, A. Fatigue behavior of large-scale reinforced concrete beams strengthened in flexure with fiber-reinforced polymer laminates. J. Compos. Constr. 2016, 20, 04016035. [Google Scholar] [CrossRef]
- Hosseini, M.M.; Dias, S.J.E.; Barros, J.A.O. Flexural strengthening of reinforced low strength concrete slabs using prestressed NSM CFRP laminates. Compos. B Eng. 2015, 90, 14–29. [Google Scholar] [CrossRef]
- Napoli, A.; Realfonzo, R. RC columns strengthened with novel CFRP systems: An experimental study. Polymers 2015, 7, 2044–2060. [Google Scholar] [CrossRef]
- Raupach, M.; Elsener, B.; Polder, R.; Mietz, J. Corrosion of Reinforcement in Concrete: Monitoring, Prevention and Rehabilitation Techniques; Woodhead Publishing: Cambridge, UK, 2014. [Google Scholar]
- Lee-Orantes, F.; Torres-Acosta, A.; Martínez-Madrid, M.; López-Cajún, C. Cathodic protection in reinforced concrete elements, using carbon fibers base composites. ECS Trans. 2007, 3, 93–98. [Google Scholar]
- Van Nguyen, C.; Lambert, P.; Mangat, P.; O’Flaherty, F.; Jones, G. The performance of carbon fibre composites as iccp anodes for reinforced concrete structures. ISRN Corros. 2012, 2012, 814923. [Google Scholar] [CrossRef]
- Zhu, J.H.; Zhu, M.; Han, N.; Liu, W.; Xing, F. Electrical and mechanical performance of carbon fiber-reinforced polymer used as the impressed current anode material. Materials 2014, 7, 5438–5453. [Google Scholar] [CrossRef]
- Zhu, J.H.; Guo, G.; Wei, L.; Zhu, M.; Chen, X. Dual function behavior of carbon fiber-reinforced polymer in simulated pore solution. Materials 2016, 9, 103. [Google Scholar] [CrossRef]
- Sun, H.; Wei, L.; Zhu, M.; Han, N.; Zhu, J.-H.; Xing, F. Corrosion behavior of carbon fiber reinforced polymer anode in simulated impressed current cathodic protection system with 3% NaCl solution. Constr. Build. Mater. 2016, 112, 538–546. [Google Scholar] [CrossRef]
- ASTM Standard. Standard Test Method for Tensile Properties of Plastics; ASTM International: West Conshohocken, PA, USA, 2010. [Google Scholar]
- ASTM Standard. Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials; ASTM International: West Conshohocken, PA, USA, 2008. [Google Scholar]
- Hara, E.; Yokozeki, T.; Hatta, H.; Ishikawa, T.; Iwahori, Y. Effects of geometry and specimen size on out-of-plane tensile strength of aligned CFRP determined by direct tensile method. Compos. A Appl. Sci. Manuf. 2010, 41, 1425–1433. [Google Scholar] [CrossRef]
- Sloan, F.E.; Talbot, J.B. Evolution of perhydroxyl ions on graphite/epoxy cathodes. J. Electrochem. Soc. 1997, 144, 4146–4151. [Google Scholar] [CrossRef]
- NACE Standard. Testing of Embeddable Impressed Current Anodes for Use in Cathodic Protection of Atmospherically Exposed Steel-Reinforced Concrete; NACE International: Houston, TX, USA, 2007. [Google Scholar]
- Ueda, T.; Dai, J. Interface bond between FRP sheets and concrete substrates: Properties, numerical modeling and roles in member behavior. Prog. Struct. Eng. Mater. 2005, 7, 27–43. [Google Scholar] [CrossRef]
- Li, L.; Guo, Y.; Liu, F. Test analysis for FRC beams strengthened with externally bonded FRP sheets. Constr. Build. Mater. 2008, 22, 315–323. [Google Scholar] [CrossRef]
- Ding, J.; Wang, F.; Huang, X.; Chen, S. The effect of CFRP length on the failure mode of strengthened concrete beams. Polymers 2014, 6, 1705–1726. [Google Scholar] [CrossRef]
- Li, G.; Zhang, A.; Jin, W. Effect of shear resistance on flexural debonding load-carrying capacity of RC beams strengthened with externally bonded FRP composites. Polymers 2014, 6, 1366–1380. [Google Scholar] [CrossRef]
- Wyatt, B. Cathodic protection of steel in concrete. Corros. Sci. 1993, 35, 1601–1615. [Google Scholar] [CrossRef]
Ingredient | Concentration (%) |
---|---|
Bisphenol-A epoxy resin | 37–38 |
Novolac epoxy resin | 19–20 |
Dicyandiamide | 5–6 |
Methyl ethyl ketone (MEK) | 36–37 |
Specimen | As 2 (mm2) | Ac 3 (mm2) | i 4 (A/m2) | q 5 (107 C/m2) | fu 6 (MPa) | Failure modes | KExp 9 | Kcal 10/KExp |
---|---|---|---|---|---|---|---|---|
I0-D25 | 653.00 | 25.24 | 0 | 0 | 727.74 | L 7 | 1.07 | — |
I0-D25# 1 | 658.75 | 25.73 | 0 | 0 | 760.30 | L | 1.11 | — |
I0.5-D25 | 617.35 | 24.83 | 0.925 | 0.200 | 510.17 | L | 0.75 | 1.19 |
I0.5-D25# | 592.43 | 26.72 | 0.963 | 0.208 | 601.65 | L | 0.88 | 1.00 |
I1-D25 | 590.40 | 25.72 | 1.837 | 0.397 | 564.80 | L | 0.83 | 0.95 |
I1-D25# | 630.96 | 25.04 | 1.722 | 0.372 | 522.46 | L | 0.77 | 1.04 |
I2-D25 | 632.64 | 25.90 | 3.156 | 0.682 | 460.45 | D 8 | 0.67 | 0.98 |
I2-D25# | 630.48 | 26.27 | 3.164 | 0.683 | 521.01 | D | 0.76 | 0.86 |
I4-D25 | 618.76 | 25.94 | 6.456 | 1.394 | 413.11 | D | 0.60 | 0.71 |
I4-D25# | 646.07 | 25.84 | 6.167 | 1.332 | 276.91 | D | 0.41 | 1.10 |
I0-D50 | 670.40 | 25.14 | 0 | 0 | 669.81 | L | 0.98 | — |
I0-D50# | 667.59 | 25.80 | 0 | 0 | 573.48 | L | 0.84 | — |
I0.5-D50 | 629.28 | 25.63 | 0.924 | 0.399 | 532.11 | L | 0.78 | 1.01 |
I0.5-D50# | 630.00 | 25.33 | 0.904 | 0.390 | 605.18 | L | 0.89 | 0.89 |
I1-D50 | 617.82 | 24.19 | 1.739 | 0.751 | 364.62 | D | 0.53 | 1.19 |
I1-D50# | 643.62 | 25.21 | 1.700 | 0.734 | 435.73 | D | 0.64 | 1.00 |
I2-D50 | 645.09 | 22.91 | 3.129 | 1.352 | 243.59 | D | 0.36 | 1.23 |
I2-D50# | 618.05 | 25.84 | 3.266 | 1.411 | 255.54 | D | 0.37 | 1.13 |
I4-D50 | 630.24 | 24.82 | 6.297 | 2.720 | 162.84 | D | 0.24 | 0.80 |
I4-D50# | 612.17 | 25.54 | 6.487 | 2.803 | 67.50 | D | 0.10 | 1.84 |
Mean | — | — | — | — | — | — | 1.06 | |
COV | — | — | — | — | — | — | 0.239 |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J.-H.; Wei, L.; Guo, G.; Zhu, A. Mechanical and Electrochemical Performance of Carbon Fiber Reinforced Polymer in Oxygen Evolution Environment. Polymers 2016, 8, 393. https://doi.org/10.3390/polym8110393
Zhu J-H, Wei L, Guo G, Zhu A. Mechanical and Electrochemical Performance of Carbon Fiber Reinforced Polymer in Oxygen Evolution Environment. Polymers. 2016; 8(11):393. https://doi.org/10.3390/polym8110393
Chicago/Turabian StyleZhu, Ji-Hua, Liangliang Wei, Guanping Guo, and Aizhu Zhu. 2016. "Mechanical and Electrochemical Performance of Carbon Fiber Reinforced Polymer in Oxygen Evolution Environment" Polymers 8, no. 11: 393. https://doi.org/10.3390/polym8110393
APA StyleZhu, J. -H., Wei, L., Guo, G., & Zhu, A. (2016). Mechanical and Electrochemical Performance of Carbon Fiber Reinforced Polymer in Oxygen Evolution Environment. Polymers, 8(11), 393. https://doi.org/10.3390/polym8110393