Influence of Organically-Modified Montmorillonite and Synthesized Layered Silica Nanoparticles on the Properties of Polypropylene and Polyamide-6 Nanocomposites
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Composite Blending
2.3. Characterization
2.3.1. Thermal Properties
2.3.2. Oxygen and Water Vapor Permeability
2.3.3. Mechanical Properties Testing
3. Results and Discussion
3.1. Characterization of Nanoparticles
3.2. Nanocomposites
3.2.1. Transmission Electron Microscopy (TEM)
3.2.2. Crystallization
3.3. Permeability
3.3.1. Oxygen Permeability
3.3.2. Water Vapor Permeability
3.4. Mechanical Properties
3.4.1. Elastic Modulus
3.4.2. Yield Strength
3.5. Thermal Properties
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zou, H.; Wu, S.; Shen, J. Polymer/silica nanocomposites: Preparation, characterization, properties, and applications. Chem. Rev. 2008, 108, 3893–3957. [Google Scholar] [CrossRef] [PubMed]
- Mittal, V. Polymer Layered Silicate Nanocomposites: A Review. Materials 2009, 2, 992–1057. [Google Scholar] [CrossRef]
- Dougnac, V.N.; Alamillo, R.; Peoples, B.C.; Quijada, R. Effect of particle diameter on the permeability of polypropylene/SiO2 nanocomposites. Polymer 2010, 51, 2918–2926. [Google Scholar] [CrossRef]
- Bracho, D.; Dougnac, V.N.; Palza, H.; Quijada, R. Functionalization of Silica Nanoparticles for Polypropylene Nanocomposite Applications. J. Nanomater. 2012, 2012, 263915. [Google Scholar] [CrossRef]
- Villaluenga, J.P.G.; Khayet, M.; Lopez-Manchado, M.A.; Valentin, J.L.; Seoane, B.; Mengual, J.I. Gas transport properties of polypropylene/clay composite membranes. Eur. Polym. J. 2007, 43, 1132–1143. [Google Scholar] [CrossRef]
- Mohanty, S.; Nayak, S.K. Effect of clay exfoliation and organic modification on morphological, dynamic mechanical, and thermal behavior of melt-compounded polyamide-6 nanocomposites. Polym. Compos. 2007, 28, 153–162. [Google Scholar] [CrossRef]
- Choudalakis, G.; Gotsis, A.D. Permeability of polymer/clay nanocomposites: A review. Eur. Polym. J. 2009, 45, 967–984. [Google Scholar] [CrossRef]
- Paul, D.R.; Robeson, L.M. Polymer nanotechnology: Nanocomposites. Polymer 2008, 49, 3187–3204. [Google Scholar] [CrossRef]
- Sheng, N.; Boyce, M.C.; Parks, D.M.; Rutledge, G.C.; Abes, J.I.; Cohen, R.E. Multiscale micromechanical modeling of polymer/clay nanocomposites and the effective clay particle. Polymer 2004, 45, 487–506. [Google Scholar] [CrossRef]
- Rohlmann, C.O.; Horst, M.F.; Quinzani, L.M.; Failla, M.D. Comparative analysis of nanocomposites based on polypropylene and different montmorillonites. Eur. Polym. J. 2008, 44, 2749–2760. [Google Scholar] [CrossRef]
- Filippi, S.; Paci, M.; Polacco, G.; Dintcheva, N.T.; Magagnini, P. On the interlayer spacing collapse of Cloisite®30B organoclay. Polym. Degrad. Stab. 2011, 96, 823–832. [Google Scholar] [CrossRef]
- Sharma, S.K.; Nayak, S.K. Surface modified clay/polypropylene (PP) nanocomposites: Effect on physico-mechanical, thermal and morphological properties. Polym. Degrad. Stab. 2009, 94, 132–138. [Google Scholar] [CrossRef]
- Leszczyńska, A.; Njuguna, J.; Pielichowski, K.; Banerjee, J.R. Polymer/montmorillonite nanocomposites with improved thermal properties. Thermochim. Acta 2007, 453, 75–96. [Google Scholar] [CrossRef] [Green Version]
- Chastek, T.T.; Que, E.L.; Shore, J.S.; Lowy, R.J.; Macosko, C.; Stein, A. Hexadecyl-functionalized lamellar mesostructured silicates and aluminosilicates designed for polymer–clay nanocomposites. Part I. Clay synthesis and structure. Polymer 2005, 46, 4421–4430. [Google Scholar] [CrossRef]
- Palza, H.; Vergara, R.; Zapata, P. Composites of polypropylene melt blended with synthesized silica nanoparticles. Compos. Sci. Technol. 2011, 71, 535–540. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, S.; Chen, G.; Wu, L. Preparation and characterization of polyester/silica nanocomposite resins. Prog. Org. Coat. 2005, 54, 120–126. [Google Scholar] [CrossRef]
- Palza, H.; Vergara, R.; Zapata, P. Improving the Thermal Behavior of poly(propylene) by Addition of Spherical Silica Nanoparticles. Macromol. Mater. Eng. 2010, 295, 899–905. [Google Scholar] [CrossRef]
- Sinha Ray, S.; Okamoto, M. Polymer/layered silicate nanocomposites: A review from preparation to processing. Prog. Polym. Sci. 2003, 28, 1539–1641. [Google Scholar] [CrossRef]
- Sinha Ray, S.; Yamada, K.; Okamoto, M.; Ogami, A.; Ueda, K. New Polylactide/Layered Silicate Nanocomposites. 3. High-Performance Biodegradable Materials. Chem. Mater. 2003, 15, 1456–1465. [Google Scholar] [CrossRef]
- Choudalakis, G.; Gotsis, A.D. Free volume and mass transport in polymer nanocomposites. Curr. Opin. Colloid Interface Sci. 2012, 17, 132–140. [Google Scholar] [CrossRef]
- O'Brien, K.C.; Koros, W.J.; Barbari, T.A.; Sanders, E.S. A new technique for the measurement of multicomponent gas transport through polymeric films. J. Membr. Sci. 1986, 29, 229–238. [Google Scholar] [CrossRef]
- Saito, R.; Hosoya, T. Water vapor barrier property of organic–silica nanocomposite derived from perhydropolysilazane on polyvinyl alcohol substrate. Polymer 2008, 49, 4546–4551. [Google Scholar] [CrossRef]
- ASTM International. ASTM D 638-00: Standard Test Method for Tensile Properties of Plastics; ASTM International: West Conshohocken, PA, USA, 2002. [Google Scholar]
- Liu, M.; Zhang, X.; Zammarano, M.; Gilman, J.W.; Kashiwagi, T. Flame retardancy of poly(styrene-co-acrylonitrile) by the synergistic interaction between clay and phosphomolybdate hydrates. Polym. Degrad. Stab. 2011, 96, 1000–1008. [Google Scholar] [CrossRef]
- Bellucci, F.; Camino, G.; Frache, A.; Sarra, A. Catalytic charring-volatilization competition in organoclay nanocomposites. Polym. Degrad. Stab. 2007, 92, 425–436. [Google Scholar] [CrossRef]
- Yoon, P.J.; Hunter, D.L.; Paul, D.R. Polycarbonate nanocomposites. Part 1. Effect of organoclay structure on morphology and properties. Polymer 2003, 44, 5323–5339. [Google Scholar] [CrossRef]
- Rozanski, A.; Monasse, B.; Szkudlarek, E.; Pawlak, A.; Piorkowska, E.; Galeski, A.; Haudin, J.M. Shear-induced crystallization of isotactic polypropylene based nanocomposites with montmorillonite. Eur. Polym. J. 2009, 45, 88–101. [Google Scholar] [CrossRef]
- Guo, B.; Zou, Q.; Lei, Y.; Du, M.; Liu, M.; Jia, D. Crystallization behavior of polyamide 6/halloysite nanotubes nanocomposites. Thermochim. Acta 2009, 484, 48–56. [Google Scholar] [CrossRef]
- Fornes, T.D.; Hunter, D.L.; Paul, D.R. Nylon-6 Nanocomposites from Alkylammonium-Modified Clay: The Role of Alkyl Tails on Exfoliation. Macromolecules 2004, 37, 1793–1798. [Google Scholar] [CrossRef]
- Palza, H.; Vera, J.; Wilhelm, M.; Zapata, P. Spherulite Growth Rate in Polypropylene/Silica Nanoparticle Composites: Effect of Particle Morphology and Compatibilizer. Macromol. Mater. Eng. 2011, 296, 744–751. [Google Scholar] [CrossRef]
- Hashemifard, S.A.; Ismail, A.F.; Matsuura, T. Prediction of gas permeability in mixed matrix membranes using theoretical models. J. Membr. Sci. 2010, 347, 53–61. [Google Scholar] [CrossRef]
- Garzón, C.; Palza, H. Electrical behavior of polypropylene composites melt mixed with carbon-based particles: Effect of the kind of particle and annealing process. Compos. Sci. Technol. 2014, 99, 117–123. [Google Scholar] [CrossRef]
- Esfandiari, A.; Nazokdast, H.; Rashidi, A.S.; Yazdanshenas, M.E. Review of Polymer-Organoclay Nanocomposites. J. Appl. Sci. 2008, 8, 545–561. [Google Scholar] [CrossRef]
- Yuan, Q.; Misra, R.D.K. Impact fracture behavior of clay-reinforced polypropylene nanocomposites. Polymer 2006, 47, 4421–4433. [Google Scholar] [CrossRef]
- Fu, S.-Y.; Feng, X.-Q.; Lauke, B.; Mai, Y.-W. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos. Part B Eng. 2008, 39, 933–961. [Google Scholar] [CrossRef]
- Altan, M.; Yildirim, H. Mechanical and Antibacterial Properties of Injection Molded Polypropylene/TiO2 Nano-Composites: Effects of Surface Modification. J. Mater. Sci. Technol. 2012, 28, 686–692. [Google Scholar] [CrossRef]
- Ash, B.J.; Rogers, D.F.; Wiegand, C.J.; Schadler, L.S.; Siegel, R.W.; Benicewicz, B.C.; Apple, T. Mechanical properties of Al2O3/polymethylmethacrylate nanocomposites. Polym. Compos. 2002, 23, 1014–1025. [Google Scholar] [CrossRef]
- Százdi, L.; Pozsgay, A.; Pukánszky, B. Factors and processes influencing the reinforcing effect of layered silicates in polymer nanocomposites. Eur. Polym. J. 2007, 43, 345–359. [Google Scholar] [CrossRef]
Nanoparticles | C | H | N | Inorganic content * | BET surface |
---|---|---|---|---|---|
(wt %) | (wt %) | (wt %) | (wt %) | (m2/g) | |
LSN | 63.6 | 12.0 | - | 23.6 | 8.1 ± 0.1 |
C20A | 28.6 | 5.6 | 1.6 | 63.7 | 4.1 ± 0.4 |
C30B | 19.7 | 3.7 | 1.7 | 76.1 | 9.7 ± 0.1 |
Load (wt %) | PP/LSN | PP/C20A | PA6/C30B | ||||||
---|---|---|---|---|---|---|---|---|---|
Ton-Set (°C) | Tpeak (°C) | Residue (%) | Ton-Set (°C) | Tpeak (°C) | Residue (%) | Ton-Set (°C) | Tpeak (°C) | Residue (%) | |
0 | 425.0 | 460.0 | 2.5 | 425.0 | 460.0 | 2.5 | 381.0 | 457.3 | 3.2 |
5 | 426.7 | 463.5 | 6.9 | 427.1 | 461.4 | 6.9 | 383.1 | 459.4 | 6.9 |
10 | 431.4 | 465.5 | 10.5 | 429.2 | 462.7 | 12.0 | 384.4 | 461.2 | 12.3 |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez, M.; Palza, H.; Quijada, R. Influence of Organically-Modified Montmorillonite and Synthesized Layered Silica Nanoparticles on the Properties of Polypropylene and Polyamide-6 Nanocomposites. Polymers 2016, 8, 386. https://doi.org/10.3390/polym8110386
Gómez M, Palza H, Quijada R. Influence of Organically-Modified Montmorillonite and Synthesized Layered Silica Nanoparticles on the Properties of Polypropylene and Polyamide-6 Nanocomposites. Polymers. 2016; 8(11):386. https://doi.org/10.3390/polym8110386
Chicago/Turabian StyleGómez, Moisés, Humberto Palza, and Raúl Quijada. 2016. "Influence of Organically-Modified Montmorillonite and Synthesized Layered Silica Nanoparticles on the Properties of Polypropylene and Polyamide-6 Nanocomposites" Polymers 8, no. 11: 386. https://doi.org/10.3390/polym8110386
APA StyleGómez, M., Palza, H., & Quijada, R. (2016). Influence of Organically-Modified Montmorillonite and Synthesized Layered Silica Nanoparticles on the Properties of Polypropylene and Polyamide-6 Nanocomposites. Polymers, 8(11), 386. https://doi.org/10.3390/polym8110386