
Academic Editor: Joan Josep Cerdà

Received: 20 December 2024

Revised: 4 January 2025

Accepted: 9 January 2025

Published: 10 January 2025

Citation: Kim, D.H.; Kim, H.S.; Jung,

Y.; Hong, J.-Y.; Jeon, Y.-P.; Lee, J.U.

Plasma Treatment of Metal Surfaces

for Enhanced Bonding Strength of

Metal–Polymer Hybrid Structures.

Polymers 2025, 17, 165. https://

doi.org/10.3390/polym17020165

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Plasma Treatment of Metal Surfaces for Enhanced Bonding
Strength of Metal–Polymer Hybrid Structures
Dong Hyun Kim 1, Han Su Kim 1, Yunki Jung 1, Jin-Yong Hong 2,3 , Young-Pyo Jeon 2,3,* and Jea Uk Lee 1,*

1 Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University,
Yongin 17104, Republic of Korea; spy04032@khu.ac.kr (D.H.K.); hansu@khu.ac.kr (H.S.K.);
yunki0930@khu.ac.kr (Y.J.)

2 Hydrogen & C1 Gas Research Center, Korea Research Institute of Chemical Technology (KRICT),
Daejeon 34114, Republic of Korea; jyhong@krict.re.kr

3 Advanced Materials and Chemical Engineering, University of Science and Technology (UST),
Daejeon 34113, Republic of Korea

* Correspondence: ypjeon@krict.re.kr (Y.-P.J.); leeju@khu.ac.kr (J.U.L.)

Abstract: The adhesion between metals and polymers plays a pivotal role in numerous
industrial applications, especially within the automotive and aerospace sectors, where
there is a growing demand for materials that are both lightweight and durable. This study
introduces an innovative technique to improve the adhesion between a metal and a poly-
mer in hybrid structures through the synergistic use of anodization and plasma treatment.
By forming a nanoporous oxide layer on aluminum surfaces, anodization enhances the
interface for polymer binding. Plasma treatment further augments the surface proper-
ties by increasing the concentration of functional groups, thus allowing better polymer
infiltration during the 3D printing process. Comprehensive analyses, including X-ray
photoelectron spectroscopy, energy dispersive X-ray spectroscopy, and contact angle mea-
surements confirm the substantial enhancement in the bonding strength achieved through
this method. Additionally, cross-sectional analysis via focused ion-beam etching provides
a detailed view of polymer integration into the treated layers. The findings suggest sig-
nificant potential for these surface modification strategies to advance the development of
lightweight, robust composites suitable for use in sectors such as automotive, aerospace,
and consumer electronics.

Keywords: anodization; plasma treatment; 3D printing; metal–polymer hybrid; bonding
strength

1. Introduction
Adhesion between metals and polymers is critically important in various industrial

applications, particularly in the automotive and aerospace sectors where the demand for
lightweight yet durable materials is ever-increasing [1,2]. Achieving robust metal–polymer
adhesion can significantly enhance product performance by reducing the weight and
material costs while maintaining or improving the mechanical properties [3]. Among the
various techniques to improve adhesion, metal anodizing has stood out as a highly effective
method. This process not only prepares the metal surface by creating a nanoporous oxide
layer, but it also facilitates stronger bonding with polymers, making it an indispensable
technique in advanced manufacturing.

Metal anodizing is an electrochemical passivation process that enhances the natural
oxide layer on metal surfaces, offering several advantages, making it a versatile process
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for different applications [4,5]. The anodizing process enhances corrosion resistance, im-
proves surface hardness, and allows for better paint adhesion. Moreover, the creation of a
controlled nanoporous structure on the metal surface provides an excellent substrate for
polymer infiltration, which is crucial for improving the shear strength in metal–polymer
joints. Various studies have demonstrated the effectiveness of anodized surfaces in applica-
tions ranging from electronics to construction, illustrating the process’s adaptability and
efficacy in enhancing the properties of a material [6,7].

This process is applicable to a variety of metals, including aluminum, titanium, zinc,
magnesium, niobium, and zirconium. Among these, aluminum alloys are the most widely
used due to their extensive application in industries such as aerospace, architecture, elec-
tronics, and automotive engineering. Aluminum alloys, classified into series ranging from
AL2xxx to AL8xxx [8–10], are modified with elements like zinc, magnesium, silicon, man-
ganese, and copper to meet specific functional requirements. These modifications allow
for the precise tailoring of the material properties for distinct industrial uses. In particular,
AL6061 alloys demonstrate superior corrosion resistance, excellent formability, and a high
strength-to-weight ratio [11,12].

Following metal anodizing, post-treatment processes are vital to further optimize the
joint properties and ensure long-term performance. Techniques such as chemical etching
and sealing can enhance the surface characteristics, thereby improving the durability and
strength of the metal–polymer adhesion. In this context, injection molded direct joining
(IMDJ) emerges as a key technology [13–15]. It enables the direct integration of metals
and polymers without additional adhesives, streamlining the manufacturing process and
reducing potential failure points. Understanding the role of post-anodizing treatments
and optimizing IMDJ parameters are crucial steps in advancing the application of metal–
polymer hybrid structures in industry.

This study explored the enhancement of the bonding strength in metal–polymer hy-
brid structures through plasma treatment of metal surfaces and IMDJ processes. Utilizing
anodization, a nanoporous oxide layer was formed on aluminum substrates, facilitating
improved adhesion with polymers [16]. Plasma treatment further modified the surface,
increasing the density of functional groups, which enhances the polymer infiltration dur-
ing three-dimensional (3D) printing (Figure 1). The synergy of anodization and plasma
treatment resulted in a significant increase in the bonding strength, as evidenced by X-
ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy, and contact angle
measurements. Additionally, this study conducted an internal structural analysis of metal–
polymer hybrids using cross-sectional images of the metal surface etched with a focused
ion beam.
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2. Experimental Methods
2.1. Materials

The aluminum alloy used in this study was AL6061-T6 (t3.0, Sungshin Jungmil, In-
cheon, Republic of Korea), composed of 97.6% aluminum, 0.8% magnesium, 0.7% iron,
0.4% silicon, and 0.4% copper, in accordance with the ASTM B209 standard [17]. The
surface treatment of the aluminum alloy involved the sequential immersion in ethanol
(98%, Samchun Chemical, Seoul, Republic of Korea), C-4000 (KG Chemical, Ulsan, Republic
of Korea), NaOH (98%, Samchun Chemical, Seoul, Republic of Korea), and H2SO4 (95%,
Samchun Chemical, Seoul, Republic of Korea). For the anodization process, a H3PO4

(85%, Samchun Chemical, Seoul, Republic of Korea) solution was used as the electrolyte.
Platinum (Premion, 0.1 mm, 99.99%) served as the counter electrode, and the aluminum
alloy functioned as the working electrode. The polymer filament material used for adhesion
included polylactic acid (PLA, Cubicon, Seongnam, Republic of Korea).

2.2. Surface Treatment of Aluminum Alloys

The aluminum specimens first underwent sonication in ethanol for 30 min to remove
surface impurities. Following sonication, the specimens were thoroughly rinsed with
deionized (DI) water and sequentially immersed in C-4000, NaOH, and H2SO4 solutions
for defined durations to perform surface pretreatment prior to anodization. After each
immersion step, the specimens were rinsed with DI water before proceeding to the next
stage. Once the pretreatment was complete, the rinsed specimens were dried in a convection
oven at 80 ◦C for 6 h.

The pretreated aluminum specimens were then subjected to anodization in an H3PO4

solution. A constant current was applied using a power supply (EA-PS 2384-05 B, KMI
system, Seongnam, Republic of Korea) set to 80 V and 0.1 A, with the pretreated aluminum
acting as the working electrode and a platinum plate serving as the counter electrode. The
anodization process was conducted for 15 min. After anodization, the specimens were
rinsed with deionized (DI) water and dried in an oven at 80 ◦C for 6 h.

Surface activation via plasma treatment was performed using a plasma generation
device (ArP Series, APP, Hwaseong, Republic of Korea), consisting of an RF power genera-
tor and a plasma head unit producing a plasma beam. The output power was adjusted to
achieve various exposure times, ranging from 10 to 60 min. Six plasma-treated samples
(P10 to P60) were prepared, with each sample corresponding to its respective treatment
duration. The P10 sample, exposed to plasma for 10 min, was used as a reference in the
subsequent analysis and discussion.

2.3. Preparation of Metal–Polymer Hybrid Structures

Upon completion of the surface treatment of the aluminum samples, the polymer
injection was precisely applied onto the treated surfaces using a 3D printer (Core 200,
Making Tool, New Delhi, India). This process resulted in the formation of a structurally
robust single-lap-joint configuration, characterized by a significant bonding area measuring
5.0 × 10.0 mm. For further details regarding the metal–polymer hybrid fabrication process
and the shear strength measurements, refer to Table 1 which provides comprehensive
information categorized by factors and corresponding levels.
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Table 1. Factors and levels applied during the processes of generating metal–polymer
hybrid structures.

Factor Level

3D Printing

Nozzle temperature (◦C) 210
Bed temperature (◦C) 100

Chamber temperature (◦C) 60
Printing speed (mm/min) 5000

Adhesion method/Area (m2) Single lap joint/5.0–10.0
Measuring speed (MPa/min) 5

2.4. Bonding Strength Measurement

In accordance with the international standard ISO 19095-2:2015 [18], test specimens
were fabricated following the overlapped specimen guidelines, specifically designed as
type B. The bonding strength test was subsequently performed, as illustrated in Figure 2.
Using a precision shear testing machine (AGS-X series, Shimadzu, Kyoto, Japan), the shear
strength measurement was conducted at a controlled rate of 5 MPa/min. A total of seven
samples were prepared, including both anodized and plasma-treated variations. Each
sample underwent a comprehensive shear strength test, with ten repetitions performed for
each. To ensure accuracy, the final shear strength values were calculated as the average of
the eight test results, with the highest and lowest values excluded.
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2.5. Characterization

A field emission scanning electron microscope (FE-SEM, LEO SUPRA 55; GENESIS
2000, Carl Zeiss, EDAX, Jena, Germany) was used to examine the surface morphology
before and after anodization and plasma surface treatment. Additionally, energy dispersive
X-ray (EDX) mapping integrated with an FE-SEM was employed to analyze the surface
composition. For the SEM analysis, we used an accelerating voltage of 10.00 kV thermal
field emission type electron gun and followed the standard sample preparation techniques
to ensure the accuracy of the surface morphology analysis. The hydrophilicity of the
surface, resulting from the anodization and plasma treatment, was evaluated by measuring
the water contact angle (WCA). For each aluminum sample subjected to anodization and
plasma treatment, WCA measurements were performed by dispensing 1.5 µL of water,
using a contact angle measurement system (Phoenix 300, SEO Co., Ltd., Suwon, Republic of
Korea). Furthermore, changes in the surface composition of the aluminum, induced by the
anodization and plasma treatment, were analyzed using X-ray photoelectron spectroscopy
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(XPS, K-Alpha, Thermo Electron, Warriewood, Australia). During XPS analysis, a Kα

radiation source with a power of 2000 eV was used for generating the photoelectrons. The
survey results were obtained in the CAE (constant energy) mode using two different pass
energies and energy steps. For the wide peak scan, the pass energy was set at 200 eV and
the energy step size at 1 eV. For the narrow peak scan, a pass energy of 50 eV and an energy
step size of 0.1 eV were applied. The aluminum (Al) samples were classified into three
groups: bare Al, anodized Al, and Al treated with plasma for 10 min (P10), to assess surface
changes before and after the anodization and plasma treatment.

3. Results and Discussion
3.1. Surface Characterization of Anodized and Plasma-Treated Aluminum

Figure 3 shows the surface morphology of untreated Al, pretreated Al, anodized Al,
plasma-treated Al alloys as observed by the FE-SEM. Figure 3a reveals various impurities,
including intermetallic particles of different sizes, which appeared as circular structures
on the bare metal surface. Additionally, contaminants such as environmental residues
and minerals were identified on the untreated Al alloy surface. These findings underscore
the importance of the pretreatment and anodizing processes in modifying the surface
characteristics of the AL 6061 alloy.

Figure 3b shows the surface morphology of the pretreated Al sample. Despite the
presence of dust during analysis, it is clear that surface impurities, such as intermetallic
particles and contaminants, were effectively removed. Additionally, shallow crater-like
features were visible, caused by the etching effect of the basic pretreatment solution (NaOH)
on the alloy surface. At higher magnification, a wavy boundary was observed on the surface,
resulting from excessive etching with a basic solution, followed by exposure to an acidic
solution, which caused the boundaries to blur. These changes demonstrate the effectiveness
of the pretreatment process in removing impurities and reshaping the surface morphology.

Figure 3c illustrates the nano-porous surface structure resulting from the anodization
of the pretreated aluminum sample. The cathodic oxidation process involves the reaction
between Al3+ ions on the aluminum surface and O2− ions from the electrolyte, leading to
the formation of a dense Al2O3 oxide layer. As the oxide layer develops, electrical resistance
increases, hindering the migration of both anions and cations, thereby suppressing further
growth. The oxide film can be divided into an inner barrier layer and an outer anion-
containing layer. During the oxide film’s growth, the electric field induces the formation
of O2− and OH− oxygen bubbles within the outer layer of the film. The porous structure
depicted in Figure 3c results from the escape of these oxygen bubbles from the oxide film,
leading to the development of a well-defined nano-porous surface. This process demon-
strates the formation of a controlled nano-porous structure via anodization, highlighting
the intentional modification of surface characteristics. The observed nano-porous structure
confirms the successful and precise execution of the anodization process, demonstrating its
effectiveness in engineering specific surface features for various applications.

Figure 3d presents the image corresponding to sample P10, which was exposed to
plasma treatment for 10 min, after the anodization process. No significant changes in
structural integrity or pore size were observed following the anodization process. However,
closer inspection reveals that some branches experienced disruption and breakage due
to the intense ion bombardment during plasma exposure. The broken areas observed
in Figure 3d suggest that plasma surface treatment can induce physical damage to the
nano-porous structure formed by anodization, though such damage does not result in
substantial alterations to the overall structure.
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In previously reported studies on the anodic oxidation of the aluminum alloy, the
“honeycomb”-like ordered porous layer expanded while the cell walls thinned, as the
anodizing time increased. Eventually, some nanopores merged into larger pits, forming a
“bird’s nest”-like structure [19]. Furthermore, more aggressive anodizing conditions, such
as the use of phosphoric acid and elevated temperatures, resulted in extensive dissolution
of the nanopore walls, leading to the collapse of the top part of the oxide during anodizing.
This process produced a “bird’s nest”-like structure atop the honeycomb, characterized
by microscale pits containing nanopores, which facilitated the penetration of 3D printed
polymer into the aluminum surface pores [20]. In our experiments, although the plasma
treatment was not performed simultaneously with anodization, its application to the
anodized aluminum surface led to the collapse of pore walls, resulting in micro-pits



Polymers 2025, 17, 165 7 of 16

resembling the “bird’s nest” structure described in the literature. While the chemical
changes of the Al surface induced by the plasma treatment will be discussed later, the
formation of micropits due to structural collapse may promote polymer penetration during
the 3D printing process, potentially improving the strength of metal–polymer adhesion.

The FE-SEM images in Figure 4a–c provide EDX analysis results showing the elemental
composition of three distinct samples: untreated Al, anodized Al, and fully processed
samples subjected to both anodization and plasma treatment. Figure 4a presents the EDX
mapping of bare Al, where prominent purple markings represent aluminum elements, with
only trace amounts of other elements detected. Notably, anodization and plasma treatment
result in a significant increase in the oxygen content, represented by orange markings on
the surface (Figure 4b,c).
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The elemental composition, presented as atomic percentages and determined through
EDX mapping analysis, is summarized in Table 2. In the untreated Al sample, the elements
detected and their respective atomic percentages were as follows: Al (76.97%), O (11.34%),
C (11.69%), and P (0%). After anodization, the atomic percentages of Al and C decreased
significantly, from 76.97% to 45.1% for Al and from 11.69% to 3.14% for C, respectively. In
contrast, the oxygen content (O) increased substantially, from 11.34% to 51%. The trace
presence of phosphorus (P), used as part of the anodizing electrolyte, was measured at
0.75%. Samples subjected to plasma surface treatment displayed similar trends to those of
the anodized sample, with a reduction in the Al content and a slight increase in the O and
C contents.

Table 2. The atomic percentage of Al, C, O, and P obtained from each Al sample in EDX mapping.

Element
Atomic Percentage (%)

Bare Al Anodized Al Plasma-Treated Al

Al 76.97 45.10 44.07
C 11.69 3.14 3.70
O 11.34 51.02 51.54
P 0 0.75 0.69

EDX analysis confirmed that the proportions of Al and C decreased, while the pro-
portion of O increased significantly, as an oxide layer formed on the Al surface during the
anodic oxidation process and plasma treatment. To bond heterogeneous polymers to a
porous metal surface, the size and structure of the pores, along with the surface elemental
composition, play a critical role [21–25]. The aluminum surface, rich in hydroxyl groups,
can chemically interact with the polymer, enhancing the bonding strength. The proportion
of hydroxyl groups on the aluminum surface is higher when phosphoric acid is used as
the electrolyte compared to other electrolytes, such as sulfuric acid [26]. Therefore, in
addition to the physical bonding between the metal and polymer, the Al sample, with
a high concentration of oxygen on its surface, can achieve closer contact with the poly-
mer. The enhanced contact facilitates more efficient thermal energy transfer between the
heterojunctions, minimizing energy loss.

Figure 5 illustrates the contact angle measurements and provides a comparison to
validate the hydrophilicity of the surface following various aluminum surface treatments.
The untreated Al initially exhibited an average contact angle of 68.6◦, indicating a relatively
hydrophobic surface. However, after electrochemical treatment, the contact angle of the
anodized Al decreased markedly to 15.4◦, signifying a transition to a hydrophilic surface.
Further anodization, followed by plasma surface treatment, reduced the contact angle to
nearly 0◦ due to the introduction of oxygen-rich functional groups on the surface. This
outcome suggests the formation of a superhydrophilic surface, which exceeds conventional
hydrophilic surface treatment [27]. Such a surface facilitates the complete spreading of
contacting liquids and promotes the deeper penetration of injected polymer fluids.

Figure 6 presents the XPS analysis, comparing untreated Al, anodized Al, and Al sam-
ples subjected to subsequent plasma treatment, all showing wide scan peaks. Anodization
notably induced a sharp increase in the O1s content on the surface, accompanied by a
substantial reduction in the C1s peak compared to those of the untreated Al. However, a
comparison of the XPS spectra before and after plasma treatment revealed no significant
differences in the broad peak. These results suggest that while anodization substantially
modified the surface’s elemental composition, plasma treatment did not have a pronounced
effect on the elemental composition of the Al surface. This observation is consistent with
the results of the EDX elemental analysis conducted through FE-SEM.
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The XPS analysis, focusing on the narrow and deconvoluted peaks in Figure 7, more
clearly elucidates the differences in peak characteristics compared to the wide-peak analysis,
observed before and after the surface treatments. Figure 7a, which presents a magnified
view of the O1s peak, shows an increase in peak intensity and a shift towards lower binding
energy as the surface treatment progresses. Figure 7b–d provides a detailed analysis of the
O1s deconvoluted peaks for each sample, which is further supported by the data in Table 3.
Table 3 offers information on the energy levels and bonding states of each orbital, aiding in
the interpretation of the chemical bonding characteristics on the Al surface.

Figure 7b presents the deconvoluted O1s peak of the bare aluminum surface, revealing
the presence of only hydroxyl (–OH) groups on the surface, with no evidence of additional
surface structures. Figure 7c,d illustrates the deconvoluted O1s peaks of the anodized and
plasma-treated Al surfaces, respectively. In Figure 7c, an XPS analysis of the Al surface
after anodization, clarifies a rightward shift of the entire O1s peak along with changes in its
deconvoluted components. Notably, 39.4% of oxygen double bonds (=O) have appeared,
while the proportion of the –OH functional group at 531.9 eV has decreased from 100% to
60.6%. Figure 7d highlights the impact of plasma treatment, showing a significant increase
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in the –OH functional groups in the O1s spectrum. The content of the –OH groups rise
from 60.6% to 91.2%, indicating plasma-induced surface activation, characterized by a
substantial increase in the surface energy. These detailed XPS findings underscore the
transformative effects of anodization and plasma treatment on the Al surface chemistry,
highlighting shifts in the functional groups and surface energy values. These changes are
critical for understanding material behavior and optimizing potential applications.
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Table 3. Chemical bonding information and binding energy values of O1s orbitals.

Element
Specific Information Binding Energy

(eV)Orbital Bond

O
O(1s) 531.7

O1(–OH) 531.9
O2(=O) 530.8

Figure 8 shows the C1s orbital peaks for all three samples, along with the correspond-
ing deconvolution graphs for each sample. Table 4 offers C1s orbital information on the
energy levels and bonding states of each orbital. Figure 8a reveals a clear trend across the
three sample types, indicating a reduction in the presence of hydrophobic carbon on the
surface, attributed to both the anodization and plasma surface treatment. Figure 8b depicts
the C1s deconvolution peak for the bare aluminum sample. The untreated aluminum
surface lacks a porous anodized layer and contains a minimal amount of carboxyl groups
(O=C–O), a characteristic functional group in the C1s spectrum. Figure 8c demonstrates
a synergistic effect between the nanoporous layer and the increased content of carboxyl
groups following anodization.

Compared to the pre-plasma treatment state, there was a significant increase in the
carboxyl group content after exposure to the plasma beam. Figure 8d demonstrates an
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increase in the percentage of carboxyl groups from 19.6% to 34.1% following plasma
treatment, as evidenced by a pronounced rise in the shoulder peak. These observed changes
in the C1s peaks highlight the significant impact of anodization and plasma treatment on
surface chemistry, particularly in increasing the presence of oxygen-containing functional
groups. This transition is crucial for improving surface wettability (water contact angle of
15.4◦ for the anodized Al and nearly 0◦ for the plasma-treated Al, Figure 5) and enhancing
the material’s suitability for subsequent applications.
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Table 4. Chemical bonding information and binding energy values of C1s orbitals.

Element
Specific Information Binding Energy

(eV)Orbital Bond

C

C(1s) 288
C1(C–C, C-H) 285

C2(C–O) 286.5
C3(O=C–O) 289

3.2. Bonding Strength Measurements of Metal–Polymer Hybrids

Surface-treated aluminum–polymer hybrid samples with a contact area of 5 × 10 mm2

were fabricated using 3D printing, in accordance with ISO 19095-2:2015 international
standards. Figure 9 presents a bar graph illustrating the bonding strength values of PLA–Al
hybrid samples, with the Al subjected to plasma surface treatment for durations exceeding
10 min. The plasma treatment was conducted in 10 min increments, up to a total of
60 min. Notably, the bonding strength increased significantly after 10 min of plasma
treatment, reaching 19.81 MPa, nearly doubling the strength of the sample without plasma
treatment, which was 10.89 MPa. Observing the upward trend in the bonding strength,
a notable 15 MPa was recorded after just 2.5 min of plasma treatment, with the strength
gradually increasing to reach its peak value after 10 min of treatment. Introducing surface
activation by increasing the polarity for a porous structure on the Al surface through plasma
treatment resulted in a significant improvement in the bonding strength. This chemical
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modification enhanced the penetration capability of the injected polymer fluid during the
fabrication process.

However, prolonged exposure to the plasma beam reduced the bonding strength.
When the treatment duration exceeded 30 min, the bonding strength was measured to be
lower than that of the untreated samples. The underlying cause of this behavior was eluci-
dated through the FE-SEM and XPS analyses of the over-treated Al surface. Examination of
Figure 10 shows that the O1s deconvolution peak of the chemically over-treated Al shifted
to a higher binding energy (eV). The oxygen present in –OH and =O appeared in an H2O
state, having already reacted with the small amount of –OH. Additionally, the content of
the carboxyl group (O=C-O), which contributes to surface activation, decreased in the C1s
deconvolution peak from 34.1% after 10 min of plasma treatment to 21.5% after 20 min of
plasma treatment. These observations confirm the factors responsible for the decline in
bonding strength observed in Figure 9 as the plasma beam exposure time increased.
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3.3. Internal Structural Analysis of Metal–Polymer Hybrid Structures

Figure 11 presents cross-sectional images of the Al surface etched with a focused
ion beam (FIB-SEM). These images reveal the formation of a porous Al layer through
anodization, as well as the infiltration of the PLA polymer into both the anodized and
plasma-treated layers. The FIB-SEM image in Figure 11a shows the internal structure and
depth of the anodized Al layer, highlighting distinct regions where polymer infiltration
can occur. These permeable regions were formed by bubble escape during the H3PO4

anodization process. The anodized layer exhibits an average depth between 1.8 and 2.0 µm.
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Figure 11b,c illustrates the internal structure of the anodized Al–PLA polymer hybrids,
developed by 3D printing of PLA filament onto Al surfaces without and with plasma
surface treatment. Notably, the infiltration depth of the PLA polymer increased significantly
following plasma treatment, from approximately 326 nm to 659 nm, nearly doubling. This
enhanced penetration can be attributed to a substantial increase in the surface functional
group content [28–30], as confirmed by the XPS analysis after plasma treatment. The higher
functional group density improves the polymer fluid’s mobility on the aluminum surface,
facilitating deeper penetration into the anodized layer.

3.4. 3D Printing Applications of Metal–Polymer Hybrid Structures

Figure 12a presents an image of a PLA polymer that was successfully 3D printed
onto an anodized Al surface. The complex text of Kyung Hee University’s logo (KHU)
was printed with high precision and stability, facilitated by the nanopores created through
anodic oxidation and the surface functional groups introduced via plasma post-treatment.
This approach is anticipated to enable a wide range of metal–polymer hybrid applications
across mobility, military, medical, and industrial sectors by integrating polymers with
diverse structures, irrespective of shape and size, onto surface-treated Al substrates.

The adhesive properties of the 3D printed metal–polymer hybrids could be further im-
proved through, e.g., plasma treatment on the anodized aluminum surface, well-control of
the 3D printing conditions, and diversification of the 3D printed polymer resins [31,32]. As
a simple example, Figure 12b,c shows photographs of a 3D printed metal–polymer hybrid
sample with an enlarged 3D printing area (25.0 × 10.0 mm), which is stably supporting
10 weights of 10 g (total 100 g).
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4. Conclusions
In conclusion, this study demonstrates the significant enhancement of bonding

strength in metal–polymer hybrid structures achieved through the combined anodiza-
tion and plasma treatment of Al surfaces. The anodization process increased the oxygen
content on the Al surface from 11.34% to 51.02%, facilitating the formation of a nanoporous
oxide layer that supports enhanced polymer infiltration. The subsequent plasma treatment
further augmented the surface chemistry by increasing the content of hydroxyl groups from
60.6% to 91.2%, as evidenced by XPS analysis, resulting in a superhydrophilic surface with a
contact angle approaching 0◦. The bonding strength of Al–PLA hybrid structures improved
significantly after 10 min of plasma treatment, reaching 19.81 MPa, nearly doubling the
strength of the sample without plasma treatment, which was 10.89 MPa. However, an
extended plasma treatment duration beyond 30 min resulted in decreased bonding strength,
attributed to the reduction in carboxyl group content and the formation of micropits on
the Al surface. These findings highlight the critical role of controlled surface modifications
in optimizing the adhesion properties and mechanical performance of metal–polymer hy-
brids. This research provides valuable insights for the development of lightweight, durable
materials applicable in the automotive, aerospace, and electronic industries.
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