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Abstract: This study introduces a novel water-insoluble dispersant for coal water slurry
(CWS), namely, a poly(sodium styrene sulfonate)-grafted SiO2 nanoparticle (SiO2-g-PSSNa).
SiO2-g-PSSNa was synthesized by combining the surface acylation reaction with surface-
initiated atom transfer radical polymerization (SI-ATRP). Fourier transform infrared spec-
trometry (FTIR), X-ray photoelectron spectroscopy (XPS), energy dispersive spectrometer
(EDS), nuclear magnetic resonance spectroscopy (NMR) and thermogravimetric analysis
(TGA) verified that SiO2-g-PSSNa with the desired structure was successfully obtained.
Afterwards, the performance of SiO2-g-PSSNa as a dispersant in CWS preparation was
evaluated. The results indicated that the optimal dosage of SiO2-g-PSSNa was 0.3%. Com-
pared to the famous commercial products, PSSNa and lignosulfonate (LS), SiO2-g-PSSNa
exhibits improved viscosity reduction performance. When SiO2-g-PSSNa was used as
the dispersant, the maximum coal loading of CWS was 64.2%, which was higher than LS
(63.4%) and PSSNa (63.9%). All CWSs obtained in this study were pseudoplastic fluids and
more consistent with the Herschel–Bulkley rheological model. The turbiscan stability index
(TSI) of CWS prepared with SiO2-g-PSSNa was 0.05, which was significantly lower than
CWSs obtained from PSSNa (0.30) and LS (0.36). Therefore, SiO2-g-PSSNa also exhibits
excellent stability performance. This result was confirmed by rod penetration tests. The
underlying mechanism was also clarified by various measurements, such as contact angle,
zeta potential, EDS and low-field nuclear magnetic resonance spectra (low-field NMR).
The results reveal that SiO2-g-PSSNa can adsorbed onto the coal surface. SiO2-g-PSSNa
possesses a special branched structure, which bears a higher charge density as compared to
linear ones with approximate chemical composition. As a result, coal particles adsorbed
with SiO2-g-PSSNa exhibit more electronegativity. With the enhancement of the electrostatic
repulsive between coal particles, the apparent viscosity was lowered and the static stability
was improved. This study demonstrated that solubility in water is not an essential factor in
engineering the dispersant. Densely charged groups are probably more important.
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1. Introduction
The use of coal in an efficient and low-polluting manner is of great significance to the

world [1]. During recent decades, coal water slurry (CWS) has attracted constant attention
due to its advantages, such as low pollution, low cost, and high efficiency [2–6]. CWS
is recognized as a clean coal-based fluidized fuel and an important raw material for the
production of chemicals [7–9]. It is generally composed of pulverized coal particles with
different sizes, water, and dispersants in a small proportion [10–12]. Due to CWS being a
thermodynamically unstable system, the coal particles are prone to aggregate due to the
driving force of hydrophobic interaction [13,14]. This causes a rise in apparent viscosity
and a degradation of stability. Obviously, this is unfavorable for the transport, pumping,
and spraying of CWS. Thus, dispersants play a critical role in the CWS system, although
its proportion is very small [15,16]. Generally speaking, dispersants can absorb onto the
coal surface and endow coal particles with enhanced electronegativity and steric hindrance,
which will suppress the aggregation behavior of coal particles. As a result, the apparent
viscosity of CWS is lowered and the stability is improved.

Over the last decades, considerable efforts have been devoted to developing novel
dispersants with excellent dispersion and stability performance. One of the categories
is natural macromolecular dispersants, including lignin [17,18], humic acid (HA), tannic
acid (TA) [19,20], cellulose [21], and their derivatives [22]. Among these dispersants,
lignosulfonate (LS) is one of the most famous commercially available products. Recently,
HA received growing attention since it possesses analogous backbone structure to coal.
Zhang reported the synthesis and performance of three amphiphilic HA-based polymer
dispersants [23]. Our group developed a HA-g-poly (sodium styrene sulfonate) (HA-g-
PSSNa) dispersant, and its dispersion and stability performance were superior to the PSSNa
dispersant without an HA backbone [24]. Natural CWS dispersants have advantages, such
as cost-effectiveness, wide availability, and environmental friendliness. However, their
dispersion performance is usually limited and unsuitable for the preparation of CWS
using low-rank coal. Synthetic polymer dispersants generally exhibit improved dispersion
performance, which has been widely studied and used recently. Naphthalene sulfonic
formaldehyde condensate (NSF) and sulphonated acetone–formaldehyde (SAF) are the
most widely used market products [25,26]. In recent years, research has mainly focused on
the synthesis and performance of polycarboxylic acid (PC) and PSSNa dispersants [27,28].
For instance, Zhu reported the synthesis of PC dispersant through reversible addition–
fragmentation chain transfer polymerization (RAFT), and the dispersion mechanism was
explained at a molecular level [29,30]. Zhang synthesized a series of PSSNa dispersants
with controllable topological architecture [31]. Overall, in recent decades, plenty of CWS
dispersants with different structures have been reported. As far as we know, nearly all of
these dispersants are water-soluble polymers, which bear a large number of anionic groups.
Water-insoluble dispersants have rarely been reported.

Recently, besides developing new types of dispersants, a novel strategy to improve
the rheological behavior of CWS has been proposed, that is, introducing a second liquid or
a second particle into the CWS system. Liu’s study demonstrated that adding the second
fluid (such as diesel, solvent oil, etc.) and the second particle (such as glass bead, Teflon,
etc.) can significantly lower the apparent viscosity of CWS [32]. Inspired by Liu’s study, we
incorporated polystyrene (PS) microspheres into the CWS and found that PS microspheres
can enhance the adsorption of the NSF dispersant. Accordingly, the apparent viscosity
of CWS was lowered. Nevertheless, although this strategy is encouraging, it still cannot
avoid using dispersants. The preparation of CWS with desired performance by adding
water-insoluble particles instead of conventional water-soluble polymer dispersants is a
challenging and interesting topic.
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Therefore, in this study, we attempted to clarify whether water-insoluble particles
with a large number of charged groups can be used as dispersants for CWS. A novel water-
insoluble dispersant composed of SiO2 core and PSSNa side segments was synthesized,
named poly(sodium styrene sulfonate)-grafted-SiO2 (SiO2-g-PSSNa). SiO2 nanoparticle
was used as a precursor. PSSNa segments were grafted onto its surface by combining the
surface acylation reaction with surface-initiated atom transfer radical polymerization (SI-
ATRP) [33] after a detailed structural characterization. The performance of SiO2-g-PSSNa
used as a dispersant in CWS preparation was systematically evaluated by measuring
apparent viscosity, static stability, contact angles, zeta potential, etc. Finally, by comparing
with the other two commercial water-soluble dispersants, PSSNa and LS, the dispersing
and stabilizing mechanism of SiO2-g-PSSNa was proposed.

2. Experimental Section
2.1. Materials

Functionalized nano silica (SiO2-NH2, 20 nm, 99 wt.%) for NH2 groups was purchased
from Jiangsu Xianfeng Nano Material Technology Co., Ltd., Nanjing, China, and synthe-
sized by the surface modification reaction between SiO2 nanoparticles and KH550. The
SEM and particle size distribution are shown in Figure S1. Dichloromethane (99.9%)
was obtained from Shanghai Titan Scientific Co., Ltd., Shanghai, China. 2-Bromo-2-
methylpropionyl bromide (BIBB, 98%) and 4-vinyl benzene sulfonic acid sodium salt
hydrate (SSNa, 90%) were purchased from Adamas and used as received. 2,2′-Bipyridine
(Bpy, 99%) was purchased from Aladdin. Cu(I)Cl (98%) was purchased from Adamas.
Before use, Cu(I)Cl was treated by stirring with acetic acid until a white color was observed,
before being filtered and washed with ethanol. After drying under vacuum at room tem-
perature, pure Cu(I)Cl was obtained and stored in a sealed atmosphere. Triethylamine
(TEA, ≥99%) was obtained from Tianjin Tianli Chemical Reagent Co., Ltd., Tianjin, China.

2.2. Synthesis of Poly(sodium styrene sulfonate)-Grafted SiO2 Nanoparticle (SiO2-g-PSSNa)

SiO2-g-PSSNa was synthesized via SI-ATRP. Before polymerization, SI-ATRP initiator
SiO2-Br was synthesized by the surface acylation reaction between SiO2-NH2 and BIBB
in the presence of TEA. Briefly, SiO2-NH2 (1.2 g) and TEA (4.48 mL, 32.36 mmol) were
dissolved in 30 mL of anhydrous CH2Cl2 thoroughly. Then, BIBB (4 mL, 32.36 mmol) was
added dropwise into the suspension within 30 min at around 0 ◦C. After the addition,
the mixture was allowed to react for another 11.5 h at room temperature. Finally, the
suspension was centrifuged at 8000 rpm for 5 min. In order to remove the unreacted BIBB
and salt completely, the crude product was washed with deionized water until neutral,
and then dialyzed in water (molecular weight cut off: 500) for at least 24 h. After drying at
85 ◦C for 48 h, the SiO2-Br was obtained as a white solid. Yield: 83%.

In the following step, SiO2-Br obtained above was used as the initiator. The synthetic
procedure for SiO2-g-PSSNa is described as follows. Firstly, 0.2 g SiO2-Br was homoge-
neously dispersed into water under ultrasound. Then, Bpy (0.15 g, 0.96 mmol) and SSNa
(6 g, 29 mmol) were added under stirring. The mixture was bubbled with N2 for 20 min,
and then Cu(I)Cl (0.048 g, 0.48 mmol) was added quickly under the N2 atmosphere. After
bubbling with N2 for another 20 min, the mixture was sealed off and heated to 90 ◦C. The
polymerization was carried out at this temperature for 12 h. After polymerization, the
unreacted SSNa monomer, copper salt, and ligand were removed by dialyzing against
distilled water and ethanol sequentially. The final product of SiO2-g-PSSNa was obtained
after drying at 85 ◦C for 72 h.
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2.3. Preparation of CWS Using SiO2-g-PSSNa as a Dispersant

In this study, CWSs were prepared using Shenhua coal. The approximate and ultimate
analyses of coal were carried out according to GB/T 31391-2015 [34] and GB/T 212-2008 [35],
and the results are shown in Table S1. In order to improve the packing density of CWSs,
a bi-modal gradation technology described in the literature was employed, and the size
distribution of blended coal is shown in Figure S3 [31]. The preparation of CWS included
the following steps. Firstly, 80 g blended coal was weighed and stirred evenly. The required
quantity of water and SiO2-g-PSSNa was calculated according to the preset coal loading of
CWS and the dosage of dispersant, respectively. SiO2-g-PSSNa was uniformly dispersed
into water under ultrasound. Then, blended coal was slowly added to the SiO2-g-PSSNa
suspension under stirring. After stirring for 10 min, CWS was left to stand for another
10 min and subject to various tests.

2.4. Measurements
2.4.1. Morphological Characterization of SiO2-g-PSSNa

The morphology of SiO2-g-PSSNa was determined using an SU8100 scanning electron
microscope (SEM, Hitachi, Tokyo, Japan) and transmission electron microscopy (TEM, FEI,
Tecnai G2 F20 S-TWIN, Hillsboro, OR, USA).

2.4.2. Fourier Transform Infrared Spectrometry (FTIR)

FTIR spectra of the products were tested on a VECTOR-22 (Bruker Instruments, Karl-
sruhe, Germany) instrument with wavenumbers ranging from 4000 cm−1 to 400 cm−1. The
dried sample and KBr were mixed thoroughly at the concentration of 1 to 100 mg in a
mortar. Then, the mixture was pressed into a disc for measurement.

2.4.3. X-Ray Photoelectron Spectroscopy (XPS)

XPS were recorded on a Kratos AXIS SUPRA spectrometer (Kratos, Manchester, UK)
using a monochromatic Al Kα source operated at 150 W (10 mA, 15 KV).

2.4.4. Nuclear Magnetic Resonance Spectroscopy (NMR)
1H NMR spectrum and 13C NMR spectrum were recorded on a Bruker Avance II

600 MHz NMR spectrometer (Bruker Instruments, Karlsruhe, Germany), with D2O as
the solvent.

2.4.5. Thermogravimetric Analysis (TGA)

TGA measurements were conducted on a Q600 SDT instrument (TA, New Castle, DE,
USA). The temperature ranged from room temperature to 800 ◦C with a heating rate of
20 ◦C/min under a nitrogen atmosphere.

2.4.6. Energy Dispersive Spectrometer (EDS)

The EDS was recorded on an S8100 scanning electron microscope (SEM), which was
equipped with an EDS unit. Samples were scanned directly without spraying gold.

2.4.7. Evaluation of the Apparent Viscosity and Rheological Behavior of CWSs

The apparent viscosity as well as the rheological behavior of CWSs were measured on
an LC-HBT-1 viscometer (Lichen Instrument Factory, Shanghai, China). The viscosity at
the shear rates of 10, 20, 40, 60, 80, and 100 s−1 were respectively recorded. The apparent
viscosity of CWSs was determined as the average of ten measurements at 100 s−1.

The dependence of shear stress versus shear rate was fitted using the Herschel–Bulkley
Equation (1) and the power-law Equation (2) model, as described below [36,37].
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τ = τ0 + kγn (1)

τ = kγn (2)
where τ is the shear stress (Pa), τ0 is the yield stress (Pa), k is the consistency coefficient
(Pa·s), η is the plastic viscosity (Pa·s), γ is the shear rate (s−1), and n is the rheological index.

2.4.8. The Static Stability of CWSs

The static stability of CWSs was evaluated using rod penetration tests and a measure
of the turbiscan stability index (TSI) [38,39]. In rod penetration tests, the penetration rate
was calculated according to Equation (3):

Penetration ratio(%) = d/dt × 100% (3)

where d is the falling distance (mm), and dt is the maximum falling distance (mm).
TSI values of CWSs were monitored on a Turbiscan LAB stability analyser (Formulac-

tion, Toulouse, France). Scans were recorded every 10 min for 3 h.

2.4.9. Measurements of the Contact Angles

The contact angle between the dispersant solutions (or suspension) and the coal was
measured using a DSA100 dynamic contact angle measuring instrument (Kruss, Heidelberg,
Germany). The coal blocks were polished with sandpaper until the surface was smooth.
The distilled water, SiO2-g-PSSNa suspension, and PSSNa and LS solutions were dropped
onto the surface of the coal lump. Each sample was tested 5 times, and the standard
deviation was calculated. The concentration of the dispersant solutions (or suspension)
was approximate to that in CWS, with 63.5% coal loading and 0.3% dispersant dosage.

2.4.10. Measurements of the Zeta Potential on the Coal Particle Surface

The zeta potential of coal particles adsorbed with dispersants was determined on
a Nano-ZS90 DLS (Malvern Instruments, Malvern, UK). Then, 0.2 g blended coal was
dispersed into 30 mL deionized water or dispersant solutions. The concentration of the
dispersant solutions (or suspension) was the same as those in contact angle measurements.
The mixture was shaken in a 25 ◦C water bath for 5 h and centrifuged at 8000 rpm for
10 min; then, the supernatant was subject to zeta potential measurements. Each sample
was measured 5 times, and the standard deviation was calculated.

2.4.11. Characterization of Low-Field NMR

Low-field NMR characterizations were carried out on a MesoMR23-060H-I analyzer
(Niumag, Soochow, China). CWS samples prepared using LS and SiO2-g-PSSNa as the
dispersants were subjected to measurements, respectively.

3. Results and Discussion
3.1. Synthesis and Characterization of SiO2-g-PSSNa

The synthesis of SiO2-g-PSSNa involves two main steps, as described in Scheme 1.
Firstly, a SiO2 nanoparticle bearing SI-ATRP initiation points (SiO2-Br) was synthesized via
a surface acylation reaction. Figure S2 shows the SEM and TEM images of SiO2-g-PSSNa,
from which it can be seen that after grafting, the PSSNa segments are entangled with each
other, the SiO2 particles are coated by PSSNa chains, and the particles are agglomerated
with each other. Figure 1a,b display the FTIR spectra of SiO2-NH2 and SiO2-Br, respectively.
In comparison to Figure 1a,b, the strong absorption peak at around 1107 cm−1 was retained,
indicating that the Si-O-Si bonds were not broken during the acylation reaction. In Figure 1b,
the absorption peaks at 1720 cm−1 and 1380 cm−1, respectively, attributed to the vibration
of C=O and –CH3 groups can be detected clearly, which indicates that an acylation reaction
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was conducted. XPS and EDS measurements provided further evidence for successfully
obtaining SiO2-Br, as shown in Figure 2b and Table 1. Apparently, after the reaction, the Br
element was incorporated.
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Table 1. The elemental composition of SiO2-g-PSSNa determined by XPS and EDS, respectively.

Testing Technology Samples C (%) O (%) Si (%) N (%) Br (%) Na (%) S (%)

XPS
SiO2-NH2 33.61 47.62 18.53 0.24 - - -

SiO2-Br 46.64 39.55 13.29 0.36 0.16 - -
SiO2-g-PSSNa 65.35 24.00 1.31 0.29 0.09 4.52 4.44

SEM-EDS
SiO2-NH2 30.89 8.57 58.20 2.34 - - -

SiO2-Br 26.33 16.63 53.94 2.60 0.50 - -
SiO2-g-PSSNa 44.09 16.74 32.19 1.94 0.12 2.66 2.26

In the next step, the previously obtained SiO2-Br was used as the initiator, and SI-ATRP
was employed for the synthesis of SiO2-g-PSSNa. Figure S4 shows that after the introduc-
tion of PSSNa segments, the aqueous solution of SiO2 nanoparticles exhibits improved
stability. Figure 2c shows the FTIR spectrum of SiO2-g-PSSNa, where the absorption at
1190 cm−1 and 1040 cm−1 was caused by the antisymmetric and symmetrical vibrational
absorption of -SO3Na groups [40,41]. Meanwhile, the characteristic band of the benzene
ring at around 650~900 cm−1 can also be clearly detected. XPS and EDS give more struc-
tural information on SiO2-g-PSSNa, as shown in Figure 2c and Table 1. The elemental
composition determined by both XPS and EDS indicates that after polymerization, Na
and S elements were incorporated. Figure 3 shows the C 1s spectra of SiO2-NH2 and
SiO2-g-PSSNa. As compared to Figure 3a, the detection of binding energy attributed to
the C-SO3

−Na+ bond at 287.1 eV in Figure 3b further confirmed that PSSNa segments
were incorporated [42]. Figure 4 shows the typical 1H NMR spectrum (a) and 13C NMR
spectrum (b) of SiO2-g-PSSNa. In Figure 4a, the chemical shift of δ = 1.45 ppm is attributed
to the methyl and methylene protons in the backbone, and the chemical shifts at δ = 7.54
and 6.66 ppm are caused by protons in the benzene ring. In Figure 4b, the carbon attributed
to methylene (δ = 40.1 ppm) and benzene ring (δ = 148.7 ppm) can be clearly detected. In
any case, the chemical shift of the double-bonded proton at δ = 5.25, 5.80 ppm is absent,
indicating that the unreacted monomer was thoroughly removed and the purified polymer
dispersant was obtained.
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In addition, the zeta potentials of SiO2-NH2 and SiO2-g-PSSNa particles were com-
pared, as listed in Table 2. Table 2 implies that SiO2-NH2 nanoparticles exhibit a weak
positive charge. This phenomenon is caused by the presence of NH2 groups. After poly-
merization, the surface potential of particles became strongly negative. This is reasonable
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as PSSNa segments bear abundant -SO3Na negatively charged groups. Therefore, all the
above analyses verified that SiO2-g-PSSNa was successfully synthesized.
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Table 2. Zeta potentials of SiO2-NH2 and SiO2-g-PSSNa nanoparticles.

Samples SiO2-NH2 SiO2-g-PSSNa

Zeta potential (mV) 2.12 ± 0.9 −23.53 ± 1.69

3.2. The Thermal Decomposition Behavior of SiO2-g-PSSNa

The thermal decomposition behavior of SiO2-NH2, PSSNa and SiO2-g-PSSNa nanopar-
ticles is illustrated in Figure 5. SiO2-NH2 as an inorganic compound exhibits excellent
thermal stability. Its residue rate was 92.42%. The slight weight loss was probably caused
by the degradation of organic functional groups on the SiO2 surface. SiO2-g-PSSNa and
PSSNa show a similar thermal decomposition process. Nevertheless, the char residue rate
of SiO2-g-PSSNa was 54.57%, which was higher than that of PSSNa. This is due to the
fact that the structure of SiO2-g-PSSNa contains SiO2 core with higher thermal stability.
Therefore, TGA measurements provided further evidence that SiO2-g-PSSNa was obtained
as an organic/inorganic hybrid graft polymer. Moreover, in our study, PSSNa was not
completely degraded at 800 ◦C. This result may be attributed to the high thermal stability
of the benzene ring; while PSSNa significantly degrades at high temperatures, it does not
completely degrade [43].
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3.3. Influence of the Dosage of SiO2-g-PSSNa on the Apparent Viscosity of CWSs

Figure 6 displays the impact of SiO2-g-PSSNa dosage on the apparent viscosity of
CWSs. Evidently, with the increase in SiO2-g-PSSNa dosage, the apparent viscosity of CWS
initially decreased and then increased. As we know, the electrostatic repulsion and steric
hindrance between coal particles are the key factors affecting the viscosity of CWS. As the
SiO2-g-PSSNa dosage increased, more SiO2-g-PSSNa molecules were adsorbed onto the coal
surface, which grants coal particles enhanced electrostatic repulsion and steric hindrance
force. Accordingly, the apparent viscosity of CWS was decreased. Nevertheless, when the
adsorption of SiO2-g-PSSNa reached saturation, the excess SiO2-g-PSSNa was dispersed in
the CWS system freely. The counterions (Na+) located at the PSSNa segments of dispersed
SiO2-g-PSSNa compressed the electric double layer around the absorbed coal particles,
which caused a weakening of electrostatic repulsion [44]. Therefore, when the dosage of
SiO2-g-PSSNa exceeded a certain value, the viscosity of CWS increased conversely. Figure 6
signifies that 0.3% is the optimal dosage.
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3.4. Rheological Behavior of CWS Prepared Using SiO2-g-PSSNa as the Dispersant

Rheological behavior including both apparent viscosity and fluid type has a critical
influence on the practical application of CWS. Figure 7a shows the rheological curve of
CWS prepared using SiO2-g-PSSNa as the dispersant. In order to fully understand the
performance of this novel water-insoluble dispersant, two water-soluble commercially
available products LS and PSSNa were used for comparison. In Figure 7a, three curves
display similar patterns of change; with the increase in shear rate, the apparent viscosity
decreased gradually. At a shear rate of 100 s−1, the apparent viscosity of CWS prepared
with SiO2-g-PSSNa was 798 mPa·s, which was significantly lower than CWSs obtained
from PSSNa (853 mPa·s) and LS (1009 mPa·s). Interestingly, SiO2-g-PSSNa and PSSNa
possess approximately functional segments, whereas SiO2-g-PSSNa exhibits better viscosity-
reducing performance, although SiO2-g-PSSNa is not soluble in water. We infer that this is
probably due to SiO2-g-PSSNa possessing a branched structure, which was demonstrated
to have a higher charge density as compared to linear structures [45,46]. When SiO2-g-
PSSNa molecules are adsorbed onto the coal surface, they can grant coal particles with
more electronegativity. Accordingly, the electrostatic repulsive between coal particles was
enhanced, and the apparent viscosity of CWS was lowered. The shear stress–shear rate
curves were fitted using Herschel–Bulkley (Figure 7c) and power–law (Figure 7d) models.
Table S2 shows the obtained rheological parameters. Apparently, the rheological behavior
of all CWSs is more consistent with the Herschel–Bulkley model. The rheological indices
(n) of all CWSs were less than 1, indicating a pseudoplastic fluid.
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An increase in the CWS concentration generates significant economic and environmen-
tal benefits [47–49]. Figure 7b displays the influence of coal loading and dispersant types
on the apparent viscosity of CWSs. Obviously, the three curves exhibited similar patterns
of change; with the increase in coal loading, the apparent viscosity of the slurry increased
gradually. This is reasonable since with the increase in the coal concentration, the relative
content of water in the CWS system was lowered. As a result, the apparent viscosity was
increased. From the perspective of industrial application, the apparent viscosity generally
should be lower than 1000 mPa·s. Therefore, Figure 7b suggests that when LS, PSSNa,
and SiO2-g-PSSNa were used as the dispersants, the maximum coal loadings of CWS were
63.4%, 63.9% and 64.2%, respectively. In conclusion, Figure 7 demonstrates that failure to
dissolve in water does not decrease the dispersant’s performance. SiO2-g-PSSNa exhibits
an improved viscosity-reducing performance as compared to PSSNa and LS.

3.5. The Stability of CWSs

The static stability of CWSs prepared using different dispersants was evaluated, as
displayed in Figure 8. In order to ensure the reliability of the result, both penetration
ratio and TSI were determined. We can conclude from Figure 8a that CWSs prepared
using PSSNa and LS as dispersants exhibit approximately static stability. However, when
SiO2-g-PSSNa was used as the dispersant, CWS showed an improved stability over all time
intervals. Figure 8b confirmed the conclusion obtained in rod penetration tests. In Figure 8b,
the TSI value of CWS prepared using SiO2-g-PSSNa was 0.05, which is significantly lower
than that using PSSNa (TSI = 0.30) and LS (TSI = 0.36) as dispersants. This beneficial result
is probably due to the fact that SiO2-g-PSSNa synthesized in our study is present as a
water-insoluble particle on the coal surface. These particles can enhance the static repulsion
between the coal particles. Thus, the aggregation of the coal particles was inhibited. Just as
reported in Hu’s study, inorganic nanoparticles can be used as a stabilizer for CWS [50].
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3.6. Dispersion Mechanism of SiO2-g-PSSNa

According to the established theory, several factors affect the dispersion of coal parti-
cles in the CWS system. These factors include the adsorption of dispersants, the electrostatic
repulsion and steric hindrance between coal particles, water states, etc. Herein, in order to
fully understand the dispersion mechanism of this novel water-insoluble dispersant, the
following microscopic studies were conducted.
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3.6.1. Contact Angle and EDS Mapping Between SiO2-g-PSSNa Dispersion and
Coal Surface

Figure 9 shows the contact angles between dispersant solutions (or suspensions) and
coal surface. The contact angles of dispersant solutions (or suspensions) were all lower than
plain water, revealing that they exhibit wettability onto the coal surface. It is interesting
that the SiO2-g-PSSNa suspension shows the lowest contact angle. This result implies that
as conventional water-soluble polymer dispersants, SiO2-g-PSSNa can also absorb onto
the coal surface. The adsorption of SiO2-g-PSSNa can also be confirmed by EDS. The raw
coal and absorbed coal were subject to EDS measurements, respectively. In Figure 10a, the
signals of Na, S, and Si elements on an absorbed coal surface arising from SiO2-g-PSSNa
molecules were all enhanced as compared to raw coal (in Figure 10b). The quantitative
results are shown in Table S3, where the content of Na, S, and Si elements were significantly
higher than those of raw coal. Therefore, EDS further evidenced that SiO2-g-PSSNa is
capable of adsorbing on the coal surfaces.
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3.6.2. Zeta Potential of Adsorbed Coal Particles

To date, anionic dispersants have dominated industrial applications and research
areas [51]. According to the eDLVO theory, electric repulsion is a crucial force for the
dispersion and stabilization of coal particles. Generally, the surface of the coal is negatively
charged due to the presence of oxygen-containing groups. Figure 11 suggests the zeta
potentials of the coal surface increased after the adsorption of dispersants. Coal particles
absorbed with SiO2-g-PSSNa exhibit enhanced electronegativity. This result validates
our inference in Section 3.4 that due to the intrinsic properties of the branched-chain
compounds, the chemical structure of PSSNa consists of both hydrophobic aromatic groups
and hydrophilic sodium sulfonate groups. In the CWS system, the hydrophobic attraction
between the aromatic ring in the PSSNa segment and thick rings on the coal surface induces
the adsorption of SiO2-g-PSSNa. At this time, the ionic groups in SiO2-g-PSSNa were
oriented towards water, which provides enhanced electronegativity to the coal surface [31].
Of course, the steric potential resistance between the coal particles and dispersants should
also be considered. But overall, hydrophobicity attraction plays a major role. It has been
proven that the hydrophobic interaction energy is 2–3 orders of magnitude higher than
electrostatic interaction energy [13,52]. The enhancement of electrostatic repulsion between
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coal particles inhibits the aggregation of coal particles. Overall, the coal particles are
dispersed under the combined action of electrostatic repulsion and steric resistance.

Polymers 2025, 17, 21 13 of 19 
 

 

 

Figure 9. Contact angles of dispersant solutions on coal surfaces. 

 

Figure 10. EDS mapping of (a) SiO2‒g‒PSSNa adsorbed coal particles and (b) raw coal. 

3.6.2. Zeta Potential of Adsorbed Coal Particles 

To date, anionic dispersants have dominated industrial applications and research ar-

eas [51]. According to the eDLVO theory, electric repulsion is a crucial force for the dis-

persion and stabilization of coal particles. Generally, the surface of the coal is negatively 

charged due to the presence of oxygen-containing groups. Figure 11 suggests the zeta po-

tentials of the coal surface increased after the adsorption of dispersants. Coal particles 

absorbed with SiO2-g-PSSNa exhibit enhanced electronegativity. This result validates our 

inference in Section 3.4 that due to the intrinsic properties of the branched-chain com-

pounds, the chemical structure of PSSNa consists of both hydrophobic aromatic groups 

Figure 10. EDS mapping of (a) SiO2-g-PSSNa adsorbed coal particles and (b) raw coal.

Polymers 2025, 17, 21 14 of 19 
 

 

and hydrophilic sodium sulfonate groups. In the CWS system, the hydrophobic attraction 

between the aromatic ring in the PSSNa segment and thick rings on the coal surface in-

duces the adsorption of SiO2-g-PSSNa. At this time, the ionic groups in SiO2-g-PSSNa were 

oriented towards water, which provides enhanced electronegativity to the coal surface 

[31]. Of course, the steric potential resistance between the coal particles and dispersants 

should also be considered. But overall, hydrophobicity attraction plays a major role. It has 

been proven that the hydrophobic interaction energy is 2–3 orders of magnitude higher 

than electrostatic interaction energy [13,52]. The enhancement of electrostatic repulsion 

between coal particles inhibits the aggregation of coal particles. Overall, the coal particles 

are dispersed under the combined action of electrostatic repulsion and steric resistance. 

 

Figure 11. Zeta potentials of adsorbed coal particles in the CWS system. 

3.6.3. Water States in CWS Systems 

Low-field NMR was employed to identify the water states in CWSs prepared using 

LS and SiO2-g-PSSNa as dispersants, respectively [45,53]. The T2 spectra are depicted in 

Figure 12, and the quantitative results are listed in Table 3. In general, the aggregation of 

coal particles will cause some free water to be restricted between the particles, and the 

proportion of free water will decline accordingly. Figure 12 and Table 3 indicate that the 

free water content in CWS prepared using SiO2-g-PSSNa as a dispersant is higher than 

that of LS. This result was further confirmed when SiO2-g-PSSNa was used as a dispersant, 

the aggregation behavior of the coal particles was seriously inhibited and more free water 

was released. 

Table 3. The water state in CWS prepared using SiO2-g-PSSNa and LS as dispersants. 

Dispersants Content of Bound Water (%) Content of Free Water (%) 

LS 29.78 70.22 

SiO2-g-PSSNa 24.77 75.23 

Figure 11. Zeta potentials of adsorbed coal particles in the CWS system.

3.6.3. Water States in CWS Systems

Low-field NMR was employed to identify the water states in CWSs prepared using
LS and SiO2-g-PSSNa as dispersants, respectively [45,53]. The T2 spectra are depicted in
Figure 12, and the quantitative results are listed in Table 3. In general, the aggregation
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of coal particles will cause some free water to be restricted between the particles, and the
proportion of free water will decline accordingly. Figure 12 and Table 3 indicate that the
free water content in CWS prepared using SiO2-g-PSSNa as a dispersant is higher than
that of LS. This result was further confirmed when SiO2-g-PSSNa was used as a dispersant,
the aggregation behavior of the coal particles was seriously inhibited and more free water
was released.
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Table 3. The water state in CWS prepared using SiO2-g-PSSNa and LS as dispersants.

Dispersants Content of Bound Water (%) Content of Free Water (%)

LS 29.78 70.22
SiO2-g-PSSNa 24.77 75.23

In conclusion, the dispersion mechanism of SiO2-g-PSSNa is illustrated in Figure 13.
Different from conventional water-soluble polymer dispersants, this study provides a novel
water-insoluble dispersant. This dispersant is composed of a SiO2 core and PSSNa side
segments. It is dispersed in water rather than dissolved. When used as CWS dispersant, it is
capable of adsorption through the interaction between the aromatic rings in side segments
and on the coal surface. Due to the inherent features of branched compounds, such as
a high density of functional groups and spatial size. When SiO2-g-PSSNa is aggregated
and adsorbed onto the coal surface, it can grant a stronger electronegativity to the coal
particles than PSSNa and LS with a linear structure. The aggregation behavior of the coal
particles was inhibited by intense electrostatic repulsion. As a result, more free water was
released. Therefore, apparent viscosity was lowered. As the aggregation of coal particles
was suppressed, the static stability of the CWS was also enhanced.



Polymers 2025, 17, 21 15 of 18

Polymers 2025, 17, 21 15 of 19 
 

 

 

Figure 12. T2 spectra of CWSs prepared using LS and SiO2‒g‒PSSNa as dispersants, respectively. 

In conclusion, the dispersion mechanism of SiO2-g-PSSNa is illustrated in Figure 13. 

Different from conventional water-soluble polymer dispersants, this study provides a 

novel water-insoluble dispersant. This dispersant is composed of a SiO2 core and PSSNa 

side segments. It is dispersed in water rather than dissolved. When used as CWS disper-

sant, it is capable of adsorption through the interaction between the aromatic rings in side 

segments and on the coal surface. Due to the inherent features of branched compounds, 

such as a high density of functional groups and spatial size. When SiO2-g-PSSNa is aggre-

gated and adsorbed onto the coal surface, it can grant a stronger electronegativity to the 

coal particles than PSSNa and LS with a linear structure. The aggregation behavior of the 

coal particles was inhibited by intense electrostatic repulsion. As a result, more free water 

was released. Therefore, apparent viscosity was lowered. As the aggregation of coal par-

ticles was suppressed, the static stability of the CWS was also enhanced. 

 

Figure 13. The dispersion mechanism of SiO2‒g‒PSSNa. 

4. Conclusions 

Figure 13. The dispersion mechanism of SiO2-g-PSSNa.

4. Conclusions
A novel water-insoluble dispersant composed of a SiO2 core and PSSNa side seg-

ments was synthesized via the combination of surface acylation reaction and SI-ATRP,
namely, SiO2-g-PSSNa. The chemical structure of SiO2-g-PSSNa was verified by various
technologies, including FTIR, XPS, TGA, EDS, NMR, and Zeta potential measurements.
SiO2-g-PSSNa can be used as a powerful dispersant for CWS. Its optimal dosage is 0.3%. In
this situation, CWS prepared with SiO2-g-PSSNa as a dispersant exhibits lower apparent
viscosity and excellent stability as compared to that obtained from PSSNa and LS, which
are famous commercially available products. The coal loading can rise to 64.2% when
SiO2-g-PSSNa is used as the dispersant. Low-field NMR, SEM-EDS, contact angles and
Zeta potential measurements were employed to elucidate the dispersion mechanism of
SiO2-g-PSSNa. Similar to conventional water-soluble polymer dispersants, SiO2-g-PSSNa
can be aggregated and absorbed onto the surface of coal particles. Due to SiO2-g-PSSNa
bearing a higher charge density as compared to linear PSSNa and LS. Coal particles ab-
sorbed with SiO2-g-PSSNa exhibit higher electronegativity. Stronger electrostatic repulsion
enables CWS prepared using SiO2-g-PSSNa to have lower viscosity and better stability.
This study confirms that water-insoluble particles with a large number of charged groups
can also be used as dispersants for CWS.
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