On Structural and Molecular Order in Cellulose Acetate Butyrate Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Calculations from the Supplier Data
2.3. Molecular Weight Determination by SEC
2.4. Film Preparation
2.5. Multi-Frequency Temperature Modulated Differential Scanning Calorimetry (TOPEM DSC)
2.6. Atomic Force Microscopy (AFM)
2.7. X-ray Diffraction (XRD)
2.8. Field Emission Scanning Electron Microscopy (FE-SEM)
2.9. Fourier Transform Infrared Spectroscopy (FT-IR)
3. Results and Discussion
3.1. Film Formability Is Related to Molecular Weight and Hydroxyl Groups
3.2. Structural Morphology Investigations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The European Commission. A european strategy for plastics in a circular economy. In COM(2018) 28 Final; The European Commission: Luxembourg, 2018. [Google Scholar]
- From, M.; Larsson, P.T.; Andreasson, B.; Medronho, B.; Svanedal, I.; Edlund, H.; Norgren, M. Tuning the properties of regenerated cellulose: Effects of polarity and water solubility of the coagulation medium. Carbohydr. Polym. 2020, 236, 116068. [Google Scholar] [CrossRef] [PubMed]
- Szcześniak, L.; Rachocki, A.; Tritt-Goc, J. Glass transition temperature and thermal decomposition of cellulose powder. Cellulose 2008, 15, 445–451. [Google Scholar] [CrossRef]
- Eastman, E-325 Eastman Cellulose Esters for Formulated Products. Eastman Chemical Company. 2021, pp. 1–40. Available online: https://www.eastman.com/Literature_Center/ (accessed on 1 February 2022).
- Vatanpour, V.; Pasaoglu, M.E.; Barzegar, H.; Teber, O.O.; Kaya, R.; Bastug, M.; Khataee, A.; Koyuncu, I. Cellulose acetate in fabrication of polymeric membranes: A review. Chemosphere 2022, 295, 133914. [Google Scholar] [CrossRef] [PubMed]
- Molenveld, K.; Slaghek, T.M. Recent developments in biodegradable cellulose-based plastics. In Biodegradable Polymers in the Circular Plastics Economy; Wiley: Hoboken, NJ, USA, 2022; pp. 273–298. [Google Scholar]
- Zugenmaier, P. Crystalline Cellulose and Derivatives: Characterization and Structures; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Jedvert, K.; Heinze, T. Cellulose modification and shaping—A review. J. Polym. Eng. 2017, 37, 845. [Google Scholar] [CrossRef]
- Shelton, M.C.; Posey-Dowty, J.D.; Guillermo, L.; Perdomo, R.; Dixon, D.W.J.; Lucas, P.L.; Wilson, A.K.; Walker, K.R.; Lawniczak, J.E.; Foulk, R.G.; et al. Low molecular weight cellulose mixed esters and their use as low viscosity binders and modifiers in coating compositions. U.S. Patent 8,003,715, 23 August 2011. [Google Scholar]
- Bhattacharya, D.; McCreight, K. Determination of the impact of cellulose ester molecular weight on the drying behavior of automotive refinish basecoats. Prog. Org. Coat. 2008, 62, 199–205. [Google Scholar] [CrossRef]
- Crépy, L.; Chaveriat, L.; Banoub, J.; Martin, P.; Joly, N. Synthesis of cellulose fatty esters as plastics-influence of the degree of substitution and the fatty chain length on mechanical properties. ChemSusChem 2009, 2, 165–170. [Google Scholar] [CrossRef]
- Bras, J.; Vaca-Garcia, C.; Borredon, M.-E.; Glasser, W. Oxygen and water vapor permeability of fully substituted long chain cellulose esters (lcce). Cellulose 2007, 14, 367–374. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, J.; Feng, Y.; He, J.; Zhang, J. Effect of molecular structure on the gas permeability of cellulose aliphatate esters. Chin. J. Polym. Sci. 2013, 32, 1–8. [Google Scholar] [CrossRef]
- Sprockel, O.L.; Prapaitrakul, W.; Shivanand, P. Permeability of cellulose polymers: Water vapour transmission rates. J. Pharm. Pharmacol. 1990, 42, 152–157. [Google Scholar] [CrossRef]
- Kosaka, P.M.; Kawano, Y.; Salvadori, M.C.; Petri, D.F.S. Characterization of ultrathin films of cellulose esters. Cellulose 2005, 12, 351–359. [Google Scholar] [CrossRef]
- Song, K. Effects of casting solvents on structure and properties of cellulose acetate butyrate films. Korea Polym. J. 1996, 4, 72–78. [Google Scholar]
- Biswas, A.; do Socorro Rocha Bastos, M.; Furtado, R.F.; Kuzniar, G.; Boddu, V.; Cheng, H.N. Evaluation of the properties of cellulose ester films that incorporate essential oils. Int. J. Polym. Sci. 2020, 2020, 4620868. [Google Scholar] [CrossRef]
- Huang, A.; Li, X.; Liang, X.; Zhang, Y.; Hu, H.; Yin, Y.; Huang, Z. Solid-phase synthesis of cellulose acetate butyrate as microsphere wall materials for sustained release of emamectin benzoate. Polymers 2018, 10, 1381. [Google Scholar] [CrossRef] [PubMed]
- Tsioptsias, C. Glass chemical transition: An unknown thermal transition observed in cellulose acetate butyrate. Carbohydr. Polym. 2021, 259, 117754. [Google Scholar] [CrossRef] [PubMed]
- Hooshmand, S.; Aitomäki, Y.; Skrifvars, M.; Mathew, A.P.; Oksman, K. All-cellulose nanocomposite fibers produced by melt spinning cellulose acetate butyrate and cellulose nanocrystals. Cellulose 2014, 21, 2665–2678. [Google Scholar] [CrossRef]
- Huang, A.; Wei, L.; Zhao, Z.; Wei, G.; Zhang, Y.; Huang, Z.; Li, X.; Hu, H.; Qin, X.; Yang, M. A comparative analysis of the preparation of cellulose acetate butyrate and the characteristics of applying in pearlescent coating film. Polym. Bull. 2020, 77, 2873–2887. [Google Scholar] [CrossRef]
- Lee, R.J.; Jawad, Z.A.; Chua, H.B.; Ahmad, A.L. Blend cellulose acetate butyrate/functionalised multi-walled carbon nanotubes mixed matrix membrane for enhanced CO2/N2 separation with kinetic sorption study. J. Environ. Chem. Eng. 2020, 8, 104212. [Google Scholar] [CrossRef]
- Kosaka, P.; Kawano, Y.; Fantini, M.; Petri, D. Structure and properties of maleated linear low-density polyethylene and cellulose acetate butyrate blends. Macromol. Mater. Eng. 2006, 291, 531–539. [Google Scholar] [CrossRef]
- Sato, H.; Suttiwijitpukdee, N.; Hashimoto, T.; Ozaki, Y. Simultaneous synchrotron saxs/waxd study of composition fluctuations, cold-crystallization, and melting in biodegradable polymer blends of cellulose acetate butyrate and poly(3-hydroxybutyrate). Macromolecules 2012, 45, 2783–2795. [Google Scholar] [CrossRef]
- Davé, V.; Glasser, W.G. Cellulose-based fibres from liquid crystalline solutions: 5. Processing and morphology of cab blends with lignin. Polymer 1997, 38, 2121–2126. [Google Scholar] [CrossRef]
- Davé, V.; Glasser, W.G.; Wilkes, G.L. Evidence for cholesteric morphology in films of cellulose acetate butyrate by transmission electron microscopy. Polym. Bull. 1992, 29, 565–570. [Google Scholar] [CrossRef]
- Hou, H.; Reuning, A.; Wendorff, J.H.; Greiner, A. Tuning of the pitch height of thermotropic cellulose esters. Macromol. Chem. Phys. 2000, 201, 2050–2054. [Google Scholar] [CrossRef]
- Tsioptsias, C.; Nikolaidou, E.G.; Ntampou, X.; Tsivintzelis, I.; Panayiotou, C. Thermo-chemical transition in cellulose esters and other polymers. Thermochim. Acta 2022, 707, 179106. [Google Scholar] [CrossRef]
- Boy, R.E., Jr.; Schulken, R.M., Jr.; Tamblyn, J.W. Crystallinity in secondary cellulose esters. J. Appl. Polym. Sci. 1967, 11, 2453–2465. [Google Scholar] [CrossRef]
- Glasser, W.G.; Samaranayake, G.; Dumay, M.A.; Davé, V. Novel cellulose derivatives. III. Thermal analysis of mixed esters with butyric and hexanoic acid. J. Polym. Sci. Part B 1995, 33, 2045–2054. [Google Scholar] [CrossRef]
- Miller, K.S.; Krochta, J.M. Oxygen and aroma barrier properties of edible films: A review. Trends Food Sci. Technol. 1997, 8, 228–237. [Google Scholar] [CrossRef]
- Tamblyn, J.; Morey, D.; Wagner, R. Viscosity–molecular weight relations for cellulose acetate butyrate. Ind. Eng. Chem. 1945, 37, 573–577. [Google Scholar] [CrossRef]
- Yu, N.; Gray, G. Analysis of the positions of substitution of acetate and butyrate groups in cellulose acetate-butyrate by the reductive-cleavage method. Carbohydr. Res. 1998, 312, 225–231. [Google Scholar] [CrossRef]
- Knopp, M.M.; Löbmann, K.; Elder, D.P.; Rades, T.; Holm, R. Recent advances and potential applications of modulated differential scanning calorimetry (mdsc) in drug development. Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm. Sci. 2016, 87, 164–173. [Google Scholar] [CrossRef]
- Verdonck, E.; Schaap, K.; Thomas, L.C. A discussion of the principles and applications of modulated temperature dsc (mtdsc). Int. J. Pharm. 1999, 192, 3–20. [Google Scholar] [CrossRef]
- Lee, S.; Han, J.; Jeong, Y.; Kwon, M. Strain-induced enthalpy relaxation in poly(lactic acid). Macromolecules 2010, 43, 25–28. [Google Scholar] [CrossRef]
- Lizundia, E.; Petisco, S.; Sarasua, J.-R. Phase-structure and mechanical properties of isothermally melt-and cold-crystallized poly (l-lactide). J. Mech. Behav. Biomed. Mater. 2013, 17, 242–251. [Google Scholar] [CrossRef] [PubMed]
- Piana, U.; Pizzoli, M.; Buchanan, C.M. Thermodynamic parameters relative to the melting of cellulose tributyrate. Polymer 1995, 36, 373–380. [Google Scholar] [CrossRef]
Sample/Eastman Name | Acetyl (wt%) | Butyryl (wt%) | Hydroxyl (wt%) | Viscosity (Sec) |
---|---|---|---|---|
CAB-321-0.1 | 17.5 | 32 | 1.3 | 0.1 |
CAB-500-5 | 3.0 | 51 | 1.0 | 5 |
CAB-171-15 | 29.0 | 18 | 1.1 | 19 |
CAB-551-0.01 | 2.0 | 52 | 2.0 | 0.02 |
CAB-381-0.1 | 13.5 | 38 | 1.5 | 0.1 |
CAB-381-20 | 13.5 | 37 | 1.8 | 20 |
CAB-381-2 | 13.5 | 38 | 1.3 | 2 |
CAB-381-0.5 | 13.5 | 38 | 1.5 | 0.5 |
Sample | Mn (kDa) | Mw (kDa) | Mz (kDa) | MMD |
---|---|---|---|---|
CAB-321-0.1 | 16.2 | 24.0 | 35.3 | 1.5 |
CAB-500-5 | 46.5 | 88.3 | 145.7 | 1.9 |
CAB-171-15 | 57.4 | 104.8 | 177.0 | 1.8 |
CAB-551-0.01 | 12.2 | 17.8 | 25.8 | 1.5 |
CAB-381-0.1 | 16.6 | 24.5 | 36.3 | 1.5 |
CAB-381-20 | 55.3 | 113.7 | 194 | 2.1 |
CAB-381-2 | 38.4 | 66.7 | 108.3 | 1.7 |
CAB-381-0.5 | 24.2 | 41.9 | 67.7 | 1.7 |
Sample | DSOH | DSAc | DSBu | Munit | DP |
---|---|---|---|---|---|
CAB-321-0.1 | 0.24 | 1.28 | 1.42 | 316 | 76 |
CAB-500-5 | 0.20 | 0.24 | 2.48 | 346 | 255 |
CAB-171-15 | 0.19 | 2.03 | 0.76 | 301 | 348 |
CAB-551-0.01 | 0.41 | 0.16 | 2.54 | 347 | 51 |
CAB-381-0.1 | 0.29 | 1.03 | 1.76 | 329 | 75 |
CAB-381-20 | 0.34 | 1.01 | 1.68 | 322 | 353 |
CAB-381-2 | 0.25 | 1.03 | 1.76 | 329 | 203 |
CAB-381-0.5 | 0.29 | 1.03 | 1.76 | 329 | 127 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nejström, M.; Andreasson, B.; Sjölund, J.; Eivazi, A.; Svanedal, I.; Edlund, H.; Norgren, M. On Structural and Molecular Order in Cellulose Acetate Butyrate Films. Polymers 2023, 15, 2205. https://doi.org/10.3390/polym15092205
Nejström M, Andreasson B, Sjölund J, Eivazi A, Svanedal I, Edlund H, Norgren M. On Structural and Molecular Order in Cellulose Acetate Butyrate Films. Polymers. 2023; 15(9):2205. https://doi.org/10.3390/polym15092205
Chicago/Turabian StyleNejström, Malin, Bo Andreasson, Johanna Sjölund, Alireza Eivazi, Ida Svanedal, Håkan Edlund, and Magnus Norgren. 2023. "On Structural and Molecular Order in Cellulose Acetate Butyrate Films" Polymers 15, no. 9: 2205. https://doi.org/10.3390/polym15092205
APA StyleNejström, M., Andreasson, B., Sjölund, J., Eivazi, A., Svanedal, I., Edlund, H., & Norgren, M. (2023). On Structural and Molecular Order in Cellulose Acetate Butyrate Films. Polymers, 15(9), 2205. https://doi.org/10.3390/polym15092205