Significant Influence of Bound Rubber Thickness on the Rubber Reinforcement Effect
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation of NR/CB Composites
2.3. Preparation of Recycled CBs and Their Corresponding Rubber Composites
2.4. Characterization
3. Results and Discussion
3.1. Characterization of the Recycled CBs
3.2. Properties of Rubber Composites
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, D.; Tang, Z.; Fang, S.; Wu, S.; Guo, B. The use of inverse vulcanised polysulfide as an intelligent interfacial modifier in rubber/carbon black composites. Carbon 2021, 184, 409–417. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, Y. Improving thermal oxidative aging resistance and anti-reversion property of natural rubber by adding a crosslinking agent. J. Appl. Polym. Sci. 2021, 139, 51882. [Google Scholar] [CrossRef]
- Hoshikawa, Y.; Kawaguchi, R.; Nomura, K.; Akahane, H.; Kyotani, T. Quantitative analysis of the formation mechanism of tightly bound rubber by using carbon-coated alumina nanoparticles as a model filler. Carbon 2021, 173, 870–879. [Google Scholar] [CrossRef]
- Yu, W.W.; Xu, W.Z.; Xia, J.H.; Wei, Y.C.; Luo, M.C. Toughening natural rubber by the innate sacrificial network. Polymer 2020, 194, 122419. [Google Scholar] [CrossRef]
- Bishai, A. Mechanical and dielectric properties of styrene-butadiene rubber polyester short-fiber composites, part III: Composites loaded with fast extrusion furnace carbon black. Int. J. Polym. Mater. 2003, 52, 31–48. [Google Scholar] [CrossRef]
- Li, Q.; Ma, Y.; Wu, C.; Qian, S. Effect of carbon black nature on vulcanization and mechanical properties of rubber. J. Macromol. Sci. Part B 2008, 47, 837–846. [Google Scholar] [CrossRef]
- Sivaselvi, K.; Varma, V.; Harikumar, A.; Jayaprakash, A.; Gopal, K. Improving the mechanical properties of natural rubber composite with carbon black (N220) as filler. Mater. Today Proc. 2021, 42, 921–925. [Google Scholar] [CrossRef]
- Dou, Y.; Gu, H.; Sun, S.; Yao, W.; Guan, D. Synthesis of a grape-like conductive carbon black/Ag hybrid as the conductive filler for soft silicone rubber. RSC Adv. 2022, 12, 1184–1193. [Google Scholar] [CrossRef]
- Stickney, P.B.; Falb, R.D. Carbon black-rubber interactions and bound rubber. Rubber Chem. Technol. 1964, 37, 1299–1340. [Google Scholar] [CrossRef]
- Lay, M.; Rusli, A.; Abdullah, M.; Hamid, Z.; Shuib, R. Converting dead leaf biomass into activated carbon as a potential replacement for carbon black filler in rubber composites. Compos. Part B Eng. 2020, 201, 108366. [Google Scholar] [CrossRef]
- Alan, K.T.; Lau, T.S.; Bhattacharyya, S.D.; Zhang, M.Q.; Mabel, M.P.H. Physical properties of rice husk fiber/natural rubber composites. Adv. Mater. Res. 2011, 410, 90–93. [Google Scholar]
- Tiana, Q.F.; Zhang, C.H.; Tang, Y.; Liu, L.; Niu, L.Y.; Ding, T.; Li, X.H.; Zhang, Z.J. Preparation of hexamethyl disilazane-surface functionalized nano-silica by controlling surface chemistry and its “agglomeration-collapse” behavior in solution polymerized styrene butadiene rubber/butadiene rubber composites. Compos. Sci. Technol. 2021, 201, 108482. [Google Scholar] [CrossRef]
- Singh, M.; Gharpure, A.; Vander, W.R.L.; Kollar, J.; Herd, C.R. Effect of Fuel Composition on Carbon Black Formation Pathways. Appl. Sci. 2022, 5, 2569. [Google Scholar] [CrossRef]
- Lei, J. Influence of protein hydrolysis on the mechanical properties of natural rubber composites reinforced with soy protein particles. Ind. Crops Prod. 2015, 65, 102–109. [Google Scholar]
- Jasse, B. Fourier transform photoacoustic spectroscopy of polymers. Appl. Spectrosc. Rev. 2006, 29, 171–231. [Google Scholar]
- Han, J.J.; Zhang, X.L.; Guo, W.H.; Wu, C.F. Effect of modified carbon black on the filler-elastomer interaction and dynamic mechanical properties of SBR vulcanizates. J. Appl. Polym. Sci. 2006, 100, 3707–3712. [Google Scholar] [CrossRef]
- Yoon, B.; Ji, Y.K.; Hong, U.; Min, K.O.; Suhr, J. Dynamic viscoelasticity of silica-filled styrene-butadiene rubber/polybutadiene rubber (SBR/BR) elastomer composites. Compos. Part B 2020, 187, 107865. [Google Scholar] [CrossRef]
- Chen, J.H.; Chen, K.S.; Tong, L.Y. On the pyrolysis kinetics of scrap automotive tires. J. Hazard. Mater. 2001, 84, 43–55. [Google Scholar] [CrossRef]
- Hassan, A.A.; Zhang, Z.; Formela, K.; Wang, S. Thermo-oxidative exfoliation of carbon black from ground tire rubber as potential reinforcement in green tires. Compos. Sci. Technol. 2021, 214, 108991. [Google Scholar] [CrossRef]
- Yeoh, O.H. Characterization of elastic properties of carbon-black-filled rubber vulcanizates. Rubber Chem. Technol. 2012, 63, 792–805. [Google Scholar] [CrossRef]
- Arroyo, M.; López-Manchado, M.A.; Herrero, B. Organo-montmorillonite as substitute of carbon black in natural rubber compounds. Polymer 2003, 44, 2447–2453. [Google Scholar] [CrossRef]
- Li, Y.M.; Jin, Y.Z.; Su, W.; Pi, L.; Chen, K.H.; Yan, L.; Chen, G. Nano-TiO2 anchored carbon nanohelices as reinforcing/anti-aging fller for styrene-butadiene rubber. Mater. Chem. Phys. 2022, 285, 126119. [Google Scholar] [CrossRef]
- Qin, X.; Xu, H.; Zhang, G.; Wang, J.; Matyjaszewski, K. Enhancing the performance of rubber with nano ZnO as activators. ACS Appl. Mater. Interfaces 2020, 12, 48007–48015. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Luo, Z.; Zhong, J.; Liu, C.; Li, P. Influence of aramid fiber on the fatigue performance of carbon black/styrene butadiene rubber composites. Fuhe Cailiao Xuebao/Acta Mater. Compos. Sin. 2018, 35, 2177–2184. [Google Scholar]
- Damampai, K.; Pichaiyut, S.; Stöckelhuber, K.W.; Das, A.; Nakason, C. Ferric Ions Crosslinked Epoxidized Natural Rubber Filled with Carbon Nanotubes and Conductive Carbon Black Hybrid Fillers. Polymers 2022, 14, 4392. [Google Scholar] [CrossRef] [PubMed]
- Dwivedi, C.; Manjare, S.; Rajan, S.K. Recycling of waste tire by pyrolysis to recover carbon black: Alternative & environment-friendly reinforcing filler for natural rubber compounds. Compos. Part B Eng. 2020, 200, 108346. [Google Scholar]
- Martínez, J.D.; Uribe, N.C.; Murillo, R.; Garcia, T.; López, J.M. Carbon black recovery from waste tire pyrolysis by demineralization: Production and application in rubber compounding. Waste Manag. 2019, 85, 574–584. [Google Scholar] [CrossRef] [PubMed]
- Aderikha, V.N.; Shapovalov, V.A. Effect of filler surface properties on structure, mechanical and tribological behavior of PTFE-carbon black composites. Wear 2010, 268, 1455–1464. [Google Scholar] [CrossRef]
- Chiang, T.C.; Liu, H.L.; Tsai, L.C.; Jiang, T.; Tsai, F.C. Improvement of the mechanical property and thermal stability of polypropylene/recycled rubber composite by chemical modification and physical blending. Sci. Rep. 2020, 10, 2432. [Google Scholar] [CrossRef]
- Saleh, T.A.; Danmaliki, G.I. Adsorptive desulfurization of dibenzothiophene from fuels by rubber tyres-derived carbons: Kinetics and isotherms evaluation. Process Saf. Environ. Prot. 2016, 102, 9–19. [Google Scholar] [CrossRef]
- Hood, Z.D.; Xusn, Y.; Li, Y.; Naskar, A.K.; Paranthaman, M.P. Conversion of waste tire rubber into high-value-added carbon supports for electrocatalysis. Electrochem. Soc. 2018, 165, H881–H888. [Google Scholar] [CrossRef]
- Andideh, M.; Ghoreishy, M.H.R.; Soltani, S.; Sourki, F.A. Surface modification of oxidized carbon fibers by grafting bis (triethoxysilylpropyl) tetrasulfide (TESPT) and rubbersizing agent: Application to short carbon fibers/SBR composites. Compos. Part A 2021, 141, 106201. [Google Scholar] [CrossRef]
- Yao, X.L.; Wang, Z.P.; Ma, L.X.; Miao, Z.L.; Su, M.L.; Han, X.Y.; Yang, J. Temperature dependence of rubber hyper-elasticity based on different constitutive models and their prediction ability. Polymers 2022, 14, 3521. [Google Scholar] [CrossRef]
- Chollakup, R.; Suethao, S.; Suwanruji, P. Mechanical properties and dissipation energy of carbon black/rubber composites. Compos. Adv. Mater. 2021, 30, 37–569. [Google Scholar] [CrossRef]
- Ma, L.; Zhai, Y.H.; Wan, C.Y.; Zhang, Z.; Zhang, C.P.; Wang, S.F. Efficient thermo-oxidative reclamation of green tire rubber and silanized-silica/rubber interface characterization. Polym. Degrad. Stab. 2022, 196, 109827. [Google Scholar] [CrossRef]
- Manu, W.A.K.; Herd, C.R.; Chowdhury, M.; Busfield, J.J.C.; Tunnicliffe, L.B. The influence of colloidal properties of carbon black on static and dynamic mechanical properties of natural rubber. Polymers 2022, 14, 1194. [Google Scholar] [CrossRef]
- Hanafi, I.; Freakley, P.K. Effect of multifunctional additive on filler dispersion in carbon-black- and silica-filled natural rubber compounds. J. Macromol. Sci. Part D Rev. Polym. Process. 1997, 36, 873–889. [Google Scholar]
- Rattanasom, N.; Prasertsri, S. Relationship among mechanical properties, heat ageing resistance, cut growth behaviour and morphology in natural rubber: Partial replacement of clay with various types of carbon black at similar hardness level. Polym. Test. 2009, 28, 270–276. [Google Scholar] [CrossRef]
- Xu, J.Q.; Yu, J.X.; Xu, J.L.; Sun, C.L.; He, W.Z.; Huang, J.M.; Li, G.M. High-value utilization of waste tires: A review with focus on modified carbon black from pyrolysis. Sci. Total Environ. 2020, 742, 140235. [Google Scholar] [CrossRef]
- Li, Y.M.; Jin, Y.Z.; Pi, L.; Zheng, X.L.; Su, W.; Wang, C.; Chen, J. Improvement of the thermal and mechanical properties of nature rubber composites by helical carbon nanofibers/ZnO hybrid. Compos. Nanocompos. 2022, 57, 1098–1110. [Google Scholar] [CrossRef]
- Chen, J.; Hu, M.Y.; Qing, L.; Liu, P.; Li, L.; Li, R.; Yue, C.X.; Lin, J.H. Study on boundary layer and surface hardness of carbon black in natural rubber using atomic force microscopy. Polymers 2022, 14, 4642. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Tunnicliffe, L.B.; Thomas, A.G.; Busfield, J.J. The glass transition, segmental relaxations and viscoelastic behaviour of particulate-reinforced natural rubber. Eur. Polym. J. 2015, 67, 232–241. [Google Scholar] [CrossRef]
- Abitha, V.K.; Ajay, V.R.; Sabu, T. Carbon black distribution driven by its concentration and its effect on physico-mechanical properties of styrene butadiene rubber and butadiene rubber miscible rubber blends. J. Appl. Polym. Sci. 2022, 6, 140. [Google Scholar]
- Natarajan, R.; Amrishkumar, P.; Gurulingamurthy, H.; Nikhil, K.S. Structure-property relationship of highly crosslinked rubber-iron oxide composite based on chloroprene rubber (CR) as well as on nitrile rubber (NBR); a comparative study using different models. J. Macromol. Sci. Part A 2020, 58, 1826328. [Google Scholar]
- Plagge, J.; Lang, A. Filler-polymer interaction investigated using graphitized carbon blacks: Another attempt to explain reinforcement. Polymer 2021, 218, 123513. [Google Scholar] [CrossRef]
- Song, S.H. Study on silica-based rubber composites with epoxidized natural rubber and solution styrene butadiene rubber. Polym. Polym. Compos. 2021, 29, 1422–1429. [Google Scholar] [CrossRef]
- Tian, X.; Han, S.; Wang, K.; Shan, T.; Li, Z.; Li, S.; Wang, C. Waste resource utilization: Spent FCC catalyst-based composite catalyst for waste tire pyrolysis. Fuel 2022, 328, 125236. [Google Scholar] [CrossRef]
- Fan, Y.; Fowler, G.D.; Zhao, M. The past, present and future of carbon black as a rubber reinforcing filler—A review. J. Clean. Prod. 2020, 247, 119115. [Google Scholar] [CrossRef]
- Al-Salem, S.M.; Lettieri, P.; Baeyens, J. Kinetics and product distribution of end of life tyres (ELTs) pyrolysis: A novel approach in polyisoprene and SBR thermal cracking. J. Hazard. Mater. 2009, 172, 1690–1694. [Google Scholar] [CrossRef]
- Buckley, C.P.; Jones, D.C. Glass-rubber constitutive model for amorphous polymers near the glass transition. Polymer 1995, 36, 3301–3312. [Google Scholar] [CrossRef]
- Arrighi, V.; McEwen, I.J.; Qian, X.; Prieto, M.B.S. The glass transition and interfacial layer in styrene-butadiene rubber containing silica nanofiller. Polymer 2003, 44, 6259–6266. [Google Scholar] [CrossRef]
- Calabrese, M.A.; Chan, W.Y.; Av-Ron, S.H.M.; Olse, B.D. Development of a Rubber Recycling Process Based on a Single-Component Interfacial Adhesive. ACS Publ. 2021, 3, 4849–4860. [Google Scholar]
- Kim, M.; Lim, J.W.; Kim, K.H.; Dai, G.L. Bipolar plates made of carbon fabric/phenolic composite reinforced with carbon black for PEMFC. Compos. Struct. 2013, 96, 569–575. [Google Scholar] [CrossRef]
- Zhang, Y.C.; Dai, K.; Tang, J.H.; Xu, J.; Li, Z.M. Anisotropically conductive polymer composites with a selective distribution of carbon black in an in situ microfibrillar reinforced blend. Mater. Lett. 2010, 64, 1430–1432. [Google Scholar] [CrossRef]
- William, U.Y.; Natalia, C.U.; Carlos, A.V.I.; Juan, D.M. Incorporating the recovered carbon black produced in an industrial-scale waste tire pyrolysis plant into a natural rubber formulation. J. Environ. Manag. 2021, 287, 112292. [Google Scholar]
- Dana, P.; Hans, D.; Serge, K.; Christian, R. Heat-treatment of carbon blacks obtained by pyrolysis of used tires. Effect on the surface chemistry, porosity and electrical conductivity. J. Anal. Appl. Pyrolysis 2003, 67, 55–76. [Google Scholar]
- Ruben, G.H.; Yesmin, P.B.; Miguel, A.M.R. High yield and simple one-step production of carbon black nanoparticles from waste tires. Heliyon 2019, 5, e02139. [Google Scholar]
Samples | phr |
---|---|
NR | 100 |
CB (N115/N330/N550/N660) | 50 |
S | 2.5 |
SA | 3 |
DM | 0.6 |
ZnO | 5 |
Materials | C | O | S | N | C=C/C-C | C-O | C=O | COOH | |
---|---|---|---|---|---|---|---|---|---|
Content (%) Elements | |||||||||
N330a | 97.16 | 2.46 | 0.38 | - | 67.70 | 13.99 | 10.49 | 7.82 | |
N330b | 95.44 | 3.02 | 0.59 | 0.95 | 58.72 | 27.95 | 5.09 | 8.23 | |
N330c | 97.37 | 2.22 | 0.41 | - | 63.06 | 27.23 | 3.22 | 6.49 |
Samples | NR/115a | NR/N330a | NR/N550a |
---|---|---|---|
Thickness | 7–9 nm | 5–6 nm | 2–4 nm |
Samples | Tensile Strength (MPa) | Elongation at Break (%) | Modulus at 300% Elongation (MPa) | Hardness (Shore A) |
---|---|---|---|---|
NR/N115a | 25.26 ± 0.50 | 471.90 ± 10.00 | 17.29 ± 0.50 | 74.20 ± 0.50 |
NR/N115b | 15.68 ± 0.40 | 371.73 ± 8.00 | 12.23 ± 0.50 | 62.80 ± 0.50 |
NR/N115c | 9.60 ± 0.40 | 295.94 ± 8.00 | 9.17 ± 0.30 | 60.20 ± 0.50 |
NR/N330a | 24.18 ± 0.50 | 448.19 ± 10.00 | 16.28 ± 0.50 | 72.80 ± 0.50 |
NR/N330b | 13.64 ± 0.40 | 369.05 ± 8.00 | 10.81 ± 0.30 | 64.50 ± 0.50 |
NR/N330c | 5.02 ± 0.50 | 267.79 ± 5.00 | 5.01 ± 0.30 | 60.50 ± 0.30 |
NR/N550a | 21.02 ± 0.50 | 434.10 ± 10.00 | 16.12 ± 0.50 | 66.20 ± 0.50 |
NR/N550b | 13.55 ± 0.40 | 351.02 ± 5.00 | 11.31 ± 0.40 | 62.40 ± 0.50 |
NR/N550c | 5.47 ± 0.40 | 260.78 ± 5.00 | 5.46 ± 0.50 | 62.20 ± 0.50 |
NR/N660a | 19.95 ± 0.30 | 418.31 ± 10.00 | 11.28 ± 0.40 | 64.80 ± 0.50 |
NR/N660b | 12.37 ± 0.50 | 332.12 ± 5.00 | 11.01 ± 0.50 | 62.10 ± 0.50 |
NR/N660c | 7.98 ± 0.30 | 251.22 ± 5.00 | 7.41 ± 0.50 | 54.80 ± 0.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Hu, M.; Li, Y.; Li, R.; Qing, L. Significant Influence of Bound Rubber Thickness on the Rubber Reinforcement Effect. Polymers 2023, 15, 2051. https://doi.org/10.3390/polym15092051
Chen J, Hu M, Li Y, Li R, Qing L. Significant Influence of Bound Rubber Thickness on the Rubber Reinforcement Effect. Polymers. 2023; 15(9):2051. https://doi.org/10.3390/polym15092051
Chicago/Turabian StyleChen, Jian, Maoyuan Hu, Yuming Li, Rui Li, and Long Qing. 2023. "Significant Influence of Bound Rubber Thickness on the Rubber Reinforcement Effect" Polymers 15, no. 9: 2051. https://doi.org/10.3390/polym15092051
APA StyleChen, J., Hu, M., Li, Y., Li, R., & Qing, L. (2023). Significant Influence of Bound Rubber Thickness on the Rubber Reinforcement Effect. Polymers, 15(9), 2051. https://doi.org/10.3390/polym15092051