Antioxidant Activities and Prebiotic Activities of Water-Soluble, Alkali-Soluble Polysaccharides Extracted from the Fruiting Bodies of the Fungus Hericium erinaceus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Two Hericium erinaceus Polysaccharides
2.3. Determination of Sugar Content
2.3.1. Determination of Total Sugar
2.3.2. Determination of Reducing Sugar
2.3.3. Determination of Uronic Acid
2.4. Determination of Molecular Weight (Mw)
2.5. Determination of Monosaccharide Composition
2.6. IR Spectrum
2.7. Determination of Antioxidant Activity In Vitro
2.7.1. Scavenging Ability of DPPH [32]
2.7.2. ABTS+ Radical Scavenging Capacity Determination [33]
2.7.3. Determination of Hydroxyl Radical Scavenging Ability [34]
2.8. Effects of Hericium erinaceus Polysaccharides on Intestinal Microbial Metabolites
2.8.1. Preparation of Digestion and Fermentation
2.8.2. In Vitro Fermentation Assay of HEP-W and HEP-A
2.8.3. Determination of Gas Production
2.8.4. Determination of pH
2.8.5. Determination of Short Chain Fatty Acid Content
2.8.6. Changes in Microbiota Composition
3. Results and Discussion
3.1. Determination Results of Chemical Components of Two Kinds of Polysaccharides
3.2. Determination Results of the Molecular Weight of the Two Polysaccharides
3.3. Determination Results of Two Kinds of Polysaccharide Monosaccharide Composition
3.4. FTIR Analysis
3.5. Antioxidant Activity
3.6. Prebiotic Activities
3.6.1. Total Sugar, Reducing Sugar, and Molecular Weight of HEP-W, HEP-A after Simulated Gastrointestinal Digestion
3.6.2. Gas Production Change Chart during Fermentation
3.6.3. Diagram of pH Changes during Fermentation
3.6.4. Changes in Short-Chain Fatty Acid Content during Fermentation
3.7. Changes in Microbiota Composition
3.7.1. Alpha Diversity Index
3.7.2. Colony Composition Analysis at the Phylum Level and Family Level
3.7.3. Community Heatmap Analysis
3.7.4. Circos Diagram
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yadav, M.; Verma, M.K.; Chauhan, N.S. A Review of Metabolic Potential of Human Gut Microbiome in Human Nutrition. Arch. Microbiol. 2018, 200, 203–217. [Google Scholar] [CrossRef]
- Macfarlane, S.; Macfarlane, G.T. Composition and Metabolic Activities of Bacterial Biofilms Colonizing Food Residues in the Human Gut. Appl. Environ. Microbiol. 2006, 72, 6204–6211. [Google Scholar] [CrossRef] [PubMed]
- Flint, H.J.; Bayer, E.A.; Rincon, M.T.; Lamed, R.; White, B.A. Polysaccharide Utilization by Gut Bacteria: Potential for New Insights from Genomic Analysis. Nat. Rev. Microbiol. 2008, 6, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Jones, B.V.; Begley, M.; Hill, C.; Gahan, C.G.M.; Marchesi, J.R. Functional and Comparative Metagenomic Analysis of Bile Salt Hydrolase Activity in the Human Gut Microbiome. Proc. Natl. Acad. Sci. USA 2008, 105, 13580–13585. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.H.; Liu, X.; Shen, M.Y.; Nie, S.P.; Zhang, H.; Li, C.; Gong, D.M.; Xie, M.Y. Purification, Physicochemical Characterisation and Anticancer Activity of a Polysaccharide from Cyclocarya paliurus Leaves. Food Chem. 2013, 136, 1453–1460. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; You, L.; Fu, X.; Huang, Q.; Yu, S.; Liu, R.H. Structural Characterization and Immunomodulatory Activity of a New Heteropolysaccharide from Prunella vulgaris. Food Funct. 2015, 6, 1557–1567. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, B.; Xiao, J.; Huang, Q.; Li, C.; Fu, X. Physicochemical, Functional, and Biological Properties of Water-Soluble Polysaccharides from Rosa roxburghii Tratt Fruit. Food Chem. 2018, 249, 127–135. [Google Scholar] [CrossRef]
- Li, H.; Yu, S.J.; Wang, W.; Fan, M.Z. Regulatory effect of selenium-enriched Hericium erinaceus on intestinal flora of mice. Chin. J. Microbiol. 2010, 22, 697–700. [Google Scholar] [CrossRef]
- Mitsou, E.K.; Saxami, G.; Stamoulou, E.; Kerezoudi, E.; Terzi, E.; Koutrotsios, G.; Bekiaris, G.; Zervakis, G.I.; Mountzouris, K.C.; Pletsa, V.; et al. Effects of Rich in Β-Glucans Edible Mushrooms on Aging Gut Microbiota Characteristics: An In Vitro Study. Molecules 2020, 25, 2806. [Google Scholar] [CrossRef]
- Liu, G.Q.; Guo, L.; Xu, W.L.; Li, C.D. Research progress on active components of Hericium erinaceus. Shaanxi Agric. Sci. 2018, 64, 89–92. [Google Scholar]
- Han, W.; Dou, X.X. Extraction and purification process and antioxidant activity of polysaccharides from Hericium erinaceus. J. Xuzhou Inst. Technol. 2016, 31, 22–28. [Google Scholar] [CrossRef]
- Liu, Y.J.; Long, C.X.; He, L.; Guo, Y.F.; Li, S.; Yuan, Z.Y.; Tan, Z.J. Research progress of Sijun tea and Hericium erinaceus invigorating the spleen and nourishing the stomach. Chin. J. Microbiol. 2017, 29, 487–493. [Google Scholar] [CrossRef]
- An, M.Q.; Lai, Y.J.; Xu, Y.L.; Du, B.; Li, P. Comparison of protective effects of Hericium erinaceus extracts prepared in different ways on acute gastric- mucosal injury in rats. Food Ind. Technol. 2022, 43, 360–367. [Google Scholar] [CrossRef]
- Yan, P.; Lin, S.Q.; Li, M.H.; Sun, X.N.; Li, J.; Huang, Y.F.; Wu, Y.J. Effects of Hericium erinaceus polysaccharides on TLR3/TRIF-induced expression and viral replication in MDRV-infected RAW264.7 cells. Chin. Anim. Husb. Vet. Med. 2021, 48, 3415–3422. [Google Scholar] [CrossRef]
- Pei, X.P. Research progress on extraction methods and development and application of Hericium erinaceus polysaccharides. Anhui Agric. Sci. 2016, 44, 38–42. [Google Scholar] [CrossRef]
- Liu, S.Z.; Wu, X.C.; Hu, L.L.; Wang, J.J.; Wu, Z.J.; Zhou, X.Y.; Wu, J.W. Polysaccharide extraction process and application of Hericium erinaceus. Chin. Edible Mushrooms 2022, 41, 90–93. [Google Scholar] [CrossRef]
- Jia, S.N.; Zhu, J. Optimization of extraction process and antioxidant activity of Hericium erinaceus polysaccharides. Anhui Agric. Sci. 2017, 45, 148–150. [Google Scholar] [CrossRef]
- Hu, Y.; Cui, C.; Tao, Q.; Li, W.Z. Hot water immersion mentioned that the process optimization of ethanol precipitation improved the extraction rate of Hericium erinaceus polysaccharides. Chin. Condiments 2020, 45, 1–4+19. [Google Scholar]
- Wang, F.; Liu, X.P.; Zhang, B.C.; Zhu, Y.C.; Chen, L.L.; Wang, Y.L.; Jiang, N. Optimization of extraction process of mycelium polysaccharides from Hericium erinaceus. Food Saf. Qual. Test. Rep. 2020, 11, 771–776. [Google Scholar] [CrossRef]
- Dong, Q.; Jia, L.; Fang, J. A β-d-Glucan Isolated from the Fruiting Bodies of Hericium erinaceus and Its Aqueous Conformation. Carbohydr. Res. 2006, 341, 791–795. [Google Scholar] [CrossRef]
- Huang, Y.; Zhou, C.H.; Huang, H.H. Characterization of crude polysaccharides and comparison of antioxidant activity of Hericium erinaceus with different extraction methods. Food Ind. Technol. 2017, 38, 80–86. [Google Scholar] [CrossRef]
- Ookushi, Y.; Sakamoto, M.; Azuma, J. β-Glucans in the Water-Insoluble Residue of Hericium erinaceum. J. Appl. Glycosci. 2008, 55, 231–234. [Google Scholar] [CrossRef]
- Ookushi, Y.; Sakamoto, M.; Azuma, J. Extraction of β-Glucan from the Water-Insoluble Residue of Hericium erinaceum with Combined Treatments of Enzyme and Microwave Irradiation. J. Appl. Glycosci. 2008, 55, 225–229. [Google Scholar] [CrossRef]
- Ookushi, Y.; Sakamoto, M.; Azuma, J. Effects of Microwave Irradiation on Water-Soluble Polysaccharides of the Fruiting Body of Hericium erinaceum. J. Appl. Glycosci. 2009, 56, 153–157. [Google Scholar] [CrossRef]
- Zhang, S.F.; Wang, Y.F.; Feng, T.; Zhuang, H.N.; Song, S.Q.; Yao, L.Y.; Sun, M.; Xu, Z.M. Structural characterization of Hericium erinaceus β-glucan and its dilute solution properties. Food Sci. 2019, 40, 85–91. [Google Scholar]
- Zhuang, H.N.; Xiang, Q.R.; Feng, T. Research progress on the promotion of butyric acid production by human intestinal flora with β-glucan from the Hericium erinaceus. J. Food Biotechnol. 2023, 42, 18–24. [Google Scholar]
- Zeng, Z.H.; Zeng, H.; Cheng, Y.; Yang, L.; Shi, H.; Dai, J.Q. Determination of reducing sugars and total sugars in fermentation broth of mushroom bisporus. Chin. Edible Mushrooms 2018, 37, 40–43+49. [Google Scholar] [CrossRef]
- Li, J.; Chen, L.; Liu, H.T.; Liu, R.; Zhu, M.Q. Study on the method of deproteinization of crude polysaccharides in silver stripe. J. Tianjin Univ. Sci. Technol. 2022, 37, 18–22+27. [Google Scholar] [CrossRef]
- Ren, Z.; Qin, T.; Qiu, F.; Song, Y.; Lin, D.; Ma, Y.; Li, J.; Huang, Y. Immunomodulatory Effects of Hydroxyethylated Hericium erinaceus Polysaccharide on Macrophages RAW264.7. Int. J. Biol. Macromol. 2017, 105, 879–885. [Google Scholar] [CrossRef]
- Ma, W.J.; Li, M.L.; Wang, B.; Zhang, Y.X.; Yu, C.Q.; Ban, X.H. Ion chromatography for the monosaccharide composition of the extracellular polysaccharide of the red yeast R. mucilaginosa CICC 33013. Agro Process. 2019, 12, 71–73. [Google Scholar] [CrossRef]
- Gao, X.; Qi, J.Y.; Ho, C.T.; Li, B.; Mu, J.J.; Zhang, Y.T.; Hu, H.P.; Mo, W.P.; Chen, Z.Z.; Xie, Y.Z. Structural Characterization and Immunomodulatory Activity of a Water-Soluble Polysaccharide from Ganoderma leucocontextum Fruiting Bodies. Carbohydr. Polym. 2020, 249, 116874. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Guan, X.; Liu, W.; Zhang, X.; Yan, W.; Yao, W.; Gao, X. Characterization and Antioxidant Activity of a Polysaccharide Extracted from Sarcandra glabra. Carbohydr. Polym. 2012, 90, 524–532. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.H.; Song, Y.J.; Wang, J.H.; Ji, J. In vitro Antioxidant and Free Radical Scavenging Activities of Yacon (Smallanthus sonchifolius) Tubers. Food Sci. 2010, 31, 166–169. [Google Scholar]
- Zheng, W.; Wang, S.Y. Oxygen Radical Absorbing Capacity of Phenolics in Blueberries, Cranberries, Chokeberries, and Lingonberries. J. Agric. Food Chem. 2003, 51, 502–509. [Google Scholar] [CrossRef] [PubMed]
- Lebet, V.; Arrigoni, E.; Amado, R. Digestion Procedure Using Mammalian Enzymes to Obtain Substrates for In Vitro Fermentation Studies. LWT Food Sci. Technol. 1998, 31, 509–515. [Google Scholar] [CrossRef]
- Shi, Y.; Liu, J.; Yan, Q.; You, X.; Yang, S.; Jiang, Z. In Vitro Digestibility and Prebiotic Potential of Curdlan (1 → 3)-β-d-Glucan Oligosaccharides in Lactobacillus Species. Carbohydr. Polym. 2018, 188, 17–26. [Google Scholar] [CrossRef]
- Schwab, C.; Ruscheweyh, H.-J.; Bunesova, V.; Pham, V.T.; Beerenwinkel, N.; Lacroix, C. Trophic Interactions of Infant Bifidobacteria and Eubacterium hallii during L-Fucose and Fucosyllactose Degradation. Front. Microbiol. 2017, 8, 95. [Google Scholar] [CrossRef]
- Wang, H.S.; Ren, P.F. Oligosaccharides composed of different monosaccharides regulate human intestinal flora. Chin. J. Food Sci. 2020, 20, 44–52. [Google Scholar] [CrossRef]
- Rycroft, C.E.; Jones, M.R.; Gibson, G.R.; Rastall, R.A. A Comparative in Vitro Evaluation of the Fermentation Properties of Prebiotic Oligosaccharides. J. Appl. Microbiol. 2001, 91, 878–887. [Google Scholar] [CrossRef]
- Xiang, Q.R.; Li, W.Y.; Feng, T. Regulatory effect of dietary fiber and bisporus powder on human intestinal flora based on in vitro fermentation. Food Ind. Technol. 2023, 44, 130–137. [Google Scholar] [CrossRef]
- Cantu-Jungles, T.M.; Ruthes, A.C.; El-Hindawy, M.; Moreno, R.B.; Zhang, X.; Cordeiro, L.M.C.; Hamaker, B.R.; Iacomini, M. In Vitro Fermentation of Cookeina Speciosa Glucans Stimulates the Growth of the Butyrogenic Clostridium Cluster XIVa in a Targeted Way. Carbohydr. Polym. 2018, 183, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.W. Effect of Capsaicin on Intestinal Microbiota of Obese Mice and Its Lipid-Lowering Mechanism. Master’s Thesis, Southwest University, Chongqing, China, 2020. [Google Scholar]
- Ding, Z.C. Preparation, Physicochemical Properties and Hypoglycemic Effect of Active Polysaccharides from the Hericium erinaceus. Bachelor’s Thesis, Jiangsu University, Zhenjiang, China, 2019. [Google Scholar]
- Zhang, S.F. Structural Characterization of β-glucan from the Hericium erinaceus and Its Interaction with Starch. Master’s Thesis, Shanghai Institute of Technology, Shanghai, China, 2019. [Google Scholar]
- Jia, L.; Liu, L.; Dong, Q.; Fang, J. Structural Investigation of a Novel Rhamnoglucogalactan Isolated from the Fruiting Bodies of the Fungus Hericium erinaceus. Carbohydr. Res. 2004, 339, 2667–2671. [Google Scholar] [CrossRef] [PubMed]
- Tsiapali, E.; Whaley, S.; Kalbfleisch, J.; Ensley, H.E.; Browder, I.W.; Williams, D.L. Glucans Exhibit Weak Antioxidant Activity, but Stimulate Macrophage Free Radical Activity. Free Radic. Biol. Med. 2001, 30, 393–402. [Google Scholar] [CrossRef]
- Chen, S.K.; Tsai, M.L.; Huang, J.R.; Chen, R.H. In Vitro Antioxidant Activities of Low-Molecular-Weight Polysaccharides with Various Functional Groups. J. Agric. Food Chem. 2009, 57, 2699–2704. [Google Scholar] [CrossRef]
- Jiao, Z.G.; Zhang, C.L.; Liu, J.C.; Chen, D.L.; Wang, S.X. Effects of Different Extraction Methods on Antioxidant Activity of the Crude Hericium erinaceus Polysaccharides. J. Food Sci. Qual. 2015, 6, 4181–4187. [Google Scholar] [CrossRef]
- Chen, G.; Xie, M.; Wan, P.; Chen, D.; Ye, H.; Chen, L.; Zeng, X.; Liu, Z. Digestion under Saliva, Simulated Gastric and Small Intestinal Conditions and Fermentation in Vitro by Human Intestinal Microbiota of Polysaccharides from Fuzhuan Brick Tea. Food Chem. 2018, 244, 331–339. [Google Scholar] [CrossRef]
- Carnachan, S.M.; Bootten, T.J.; Mishra, S.; Monro, J.A.; Sims, I.M. Effects of Simulated Digestion in Vitro on Cell Wall Polysaccharides from Kiwifruit (Actinidia spp.). Food Chem. 2012, 133, 132–139. [Google Scholar] [CrossRef]
- Zhao, L.; Qin, Y.; Guan, R.; Zheng, W.; Liu, J.; Zhao, J. Digestibility of Fucosylated Glycosaminoglycan from Sea Cucumber and Its Effects on Digestive Enzymes under Simulated Salivary and Gastrointestinal Conditions. Carbohydr. Polym. 2018, 186, 217–225. [Google Scholar] [CrossRef]
- Mauricio, R.M.; Mould, F.L.; Dhanoa, M.S.; Owen, E.; Channa, K.S.; Theodorou, M.K. A Semi-Automated In Vitro Gas Production Technique for Ruminant Feedstuff Evaluation. Anim. Feed. Sci. Technol. 1999, 79, 321–330. [Google Scholar] [CrossRef]
- Li, S.; Qi, Y.; Chen, L.; Qu, D.; Li, Z.; Gao, K.; Chen, J.; Sun, Y. Effects of Panax Ginseng Polysaccharides on the Gut Microbiota in Mice with Antibiotic-Associated Diarrhea. Int. J. Biol. Macromol. 2019, 124, 931–937. [Google Scholar] [CrossRef]
- de Aquino, S.G.; Abdollahi-Roodsaz, S.; Koenders, M.I.; van de Loo, F.A.J.; Pruijn, G.J.M.; Marijnissen, R.J.; Walgreen, B.; Helsen, M.M.; van den Bersselaar, L.A.; de Molon, R.S.; et al. Periodontal Pathogens Directly Promote Autoimmune Experimental Arthritis by Inducing a TLR2- and IL-1-Driven Th17 Response. J. Immunol. 2014, 192, 4103–4111. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, H.K.; Gudmundsdottir, V.; Nielsen, H.B.; Hyotylainen, T.; Nielsen, T.; Jensen, B.A.H.; Forslund, K.; Hildebrand, F.; Prifti, E.; Falony, G.; et al. Human Gut Microbes Impact Host Serum Metabolome and Insulin Sensitivity. Nature 2016, 535, 376–381. [Google Scholar] [CrossRef]
- Scher, J.U.; Sczesnak, A.; Longman, R.S.; Segata, N.; Ubeda, C.; Bielski, C.; Rostron, T.; Cerundolo, V.; Pamer, E.G.; Abramson, S.B.; et al. Expansion of Intestinal Prevotella Copri Correlates with Enhanced Susceptibility to Arthritis. eLife 2013, 2, e01202. [Google Scholar] [CrossRef]
- Elinav, E.; Strowig, T.; Kau, A.L.; Henao-Mejia, J.; Thaiss, C.A.; Booth, C.J.; Peaper, D.R.; Bertin, J.; Eisenbarth, S.C.; Gordon, J.I.; et al. NLRP6 Inflammasome Regulates Colonic Microbial Ecology and Risk for Colitis. Cell 2011, 145, 745–757. [Google Scholar] [CrossRef] [PubMed]
- Larsen, J.M. The Immune Response to Prevotella Bacteria in Chronic Inflammatory Disease. Immunology 2017, 151, 363–374. [Google Scholar] [CrossRef] [PubMed]
- Tsai, K.-Y.; Wu, D.-C.; Wu, W.-J.; Wang, J.-W.; Juan, Y.-S.; Li, C.-C.; Liu, C.-J.; Lee, H.-Y. Exploring the Association between Gut and Urine Microbiota and Prostatic Disease Including Benign Prostatic Hyperplasia and Prostate Cancer Using 16S rRNA Sequencing. Biomedicines 2022, 10, 2676. [Google Scholar] [CrossRef]
- Kim, C.H.; Park, J.; Kim, M. Gut Microbiota-Derived Short-Chain Fatty Acids, T Cells, and Inflammation. Immune Netw. 2014, 14, 277–288. [Google Scholar] [CrossRef]
- Chu, H.; Tao, X.; Sun, Z.; Hao, W.; Wei, X. Galactooligosaccharides Protects against DSS-Induced Murine Colitis through Regulating Intestinal Flora and Inhibiting NF-κB Pathway. Life Sci. 2020, 242, 117220. [Google Scholar] [CrossRef]
- Ozato, N.; Saito, S.; Yamaguchi, T.; Katashima, M.; Tokuda, I.; Sawada, K.; Katsuragi, Y.; Kakuta, M.; Imoto, S.; Ihara, K.; et al. Blautia Genus Associated with Visceral Fat Accumulation in Adults 20–76 Years of Age. NPJ Biofilms Microbiomes 2019, 5, 28. [Google Scholar] [CrossRef]
Samples | Total Sugar (%) | Reducing Sugar (%) | Uronic Acid (%) |
---|---|---|---|
HEP-W | 76.69 ± 0.13 b | 2.91 ± 0.08 e | 3.68 ± 0.18% d |
HEP-A | 83.92 ± 0.09 a | 5.26 ± 0.15 c | 2.83 ± 0.12% e |
Samples | Mn | Mw | Mw/Mn | Area (%) |
---|---|---|---|---|
HEP-W | 441,819 b | 597,979 a | 1.35 b | 87.66 a |
1111 d | 1614 d | 1.46 a | 12.34 d | |
HEP-A | 423,167 b | 589,434 a | 1.39 b | 60.92 b |
1060 cd | 1546 c | 1.46 a | 39.08 c |
Samples | Fucose | Rhamnose + Arabinose | Glucosamine | Galactose | Glucose | Mannose | Glucuronic Acid |
---|---|---|---|---|---|---|---|
HEP-W | 4.00 | - | 0.56 | 19.37 | 73.59 | 1.71 | 0.78 |
HEP-A | 1.54 | 0.26 | 0.28 | 7.93 | 89.59 | - | 0.38 |
Samples | Total Sugar (%) | Reducing Sugar (%) | Mn | Mw | Mw/Mn |
---|---|---|---|---|---|
HEP-W | 67.97 ± 0.14 a | 2.86 ± 0.07 d | 386,887 c | 462,282 b | 1.19 b |
1104 f | 1563 f | 1.42 a | |||
HEP-A | 73.77 ± 0.16 b | 4.48 ± 0.11 c | 383,951 c | 470,080 a | 1.22 b |
21,060 e | 29,516 d | 1.40 a |
Samples | Sobs | ACE | Chao | Shannon | Simpson | Coverage |
---|---|---|---|---|---|---|
Inulin | 163 a | 163 a | 163 a | 3.83 a | 0.045827 b | 1 |
HEP-A | 161 a | 161 a | 161 b | 3.81 a | 0.045074 b | 1 |
HEP-W | 155 b | 155 c | 155 c | 3.81 a | 0.042790 c | 1 |
Blank | 147 c | 147 d | 147 d | 3.79 a | 0.049469 a | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhuang, H.; Dong, H.; Zhang, X.; Feng, T. Antioxidant Activities and Prebiotic Activities of Water-Soluble, Alkali-Soluble Polysaccharides Extracted from the Fruiting Bodies of the Fungus Hericium erinaceus. Polymers 2023, 15, 4165. https://doi.org/10.3390/polym15204165
Zhuang H, Dong H, Zhang X, Feng T. Antioxidant Activities and Prebiotic Activities of Water-Soluble, Alkali-Soluble Polysaccharides Extracted from the Fruiting Bodies of the Fungus Hericium erinaceus. Polymers. 2023; 15(20):4165. https://doi.org/10.3390/polym15204165
Chicago/Turabian StyleZhuang, Haining, Huayue Dong, Xiaowei Zhang, and Tao Feng. 2023. "Antioxidant Activities and Prebiotic Activities of Water-Soluble, Alkali-Soluble Polysaccharides Extracted from the Fruiting Bodies of the Fungus Hericium erinaceus" Polymers 15, no. 20: 4165. https://doi.org/10.3390/polym15204165
APA StyleZhuang, H., Dong, H., Zhang, X., & Feng, T. (2023). Antioxidant Activities and Prebiotic Activities of Water-Soluble, Alkali-Soluble Polysaccharides Extracted from the Fruiting Bodies of the Fungus Hericium erinaceus. Polymers, 15(20), 4165. https://doi.org/10.3390/polym15204165