Thermal Decomposition of Calcium Carbonate at Multiple Heating Rates in Different Atmospheres Using the Techniques of TG, DTG, and DSC
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Scanning Eletron Microscope (SEM) and X-Ray Diffraction (XRD)
2.3. Thermal Analysis
2.4. Kinetic Analysis
3. Results and Discussion
3.1. Results and Analyses of SEM and XRD
3.2. Results and Analyses of TG, DTG, and DSC
3.3. Kinetic Analysis of Calcium Carbonate in a N2 Atmosphere
3.4. Kinetic Analysis of Calcium Carbonate in a 70% (N2) + 30% (O2) Atmosphere
3.5. Mechanism Model of Thermal Decomposition of Calcium Carbonate
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Norouzi, M.; Chàfer, M.; Cabeza, L.F.; Jiménez, L.; Boer, D. Circular economy in the building and construction sector: A scientific evolution analysis. J. Build. Eng. 2021, 44, 102704. [Google Scholar] [CrossRef]
- Verma, M.; Dev, N.; Rahman, I.; Nigam, M.; Ahmed, M.; Mallick, J. Geopolymer concrete: A material for sustainable development in Indian construction industries. Crystals 2022, 12, 514. [Google Scholar] [CrossRef]
- Luo, Z.; Song, H.; Huang, Y.; Jin, B. Recent Advances on the Uses of Biomass Alternative Fuels in Cement Manufacturing Process: A Review. Energy Fuels 2024, 38, 7454–7479. [Google Scholar] [CrossRef]
- Van Deventer, J.S.J.; White, C.E.; Myers, R.J. A roadmap for production of cement and concrete with low-CO2 emissions. Waste Biomass Valorization 2021, 12, 4745–4775. [Google Scholar] [CrossRef]
- Abdul-Wahab, S.A.; Al-Dhamri, H.; Ram, G.; Chatterjee, V.P. An overview of alternative raw materials used in cement and clinker manufacturing. International J. Sustain. Eng. 2021, 14, 743–760. [Google Scholar] [CrossRef]
- Popuri, A.K.; Garimella, P. Heat transfer studies in a laboratory vertical riser system suitable for waste heat recovery from industrial waste exhaust gases. Chem. Eng. Commun. 2020, 207, 1616–1623. [Google Scholar] [CrossRef]
- Aldeib, M.A.; Brakes, Y.H.; Alguail, A.A.; Al-Eggiely, A.H. Optimization of Calcium Carbonate Requirements in Rotary Kilns Lebda Cement Plant for Carbon Dioxide Emission Minimization. Azzaytuna Univ. J. 2020, 35, 298–309. [Google Scholar] [CrossRef]
- Benhammada, A.; Trache, D. Thermal decomposition of energetic materials using TG-FTIR and TG-MS: A state-of-the-art review. Appl. Spectrosc. Rev. 2020, 55, 724–777. [Google Scholar] [CrossRef]
- Gerassimidou, S.; Velis, C.A.; Williams, P.T.; Komilis, D.P. Characterisation and composition identification of waste-derived fuels obtained from municipal solid waste using thermogravimetry: A review. Waste Manag. Res. 2020, 38, 942–965. [Google Scholar] [CrossRef]
- He, W.; Li, R.; Yang, Y.; Zhang, Y.; Nie, G. Kinetic and thermodynamic analysis on preparation of belite-calcium sulphoaluminate cement using electrolytic manganese residue and barium slag by TGA. Environ. Sci. Pollut. Res. 2023, 30, 95901–95916. [Google Scholar] [CrossRef]
- Hotta, M.; Tone, T.; Favergeon, L.; Koga, N. Kinetic parameterization of the effects of atmospheric and self-generated carbon dioxide on the thermal decomposition of calcium carbonate. J. Phys. Chem. C 2022, 126, 7880–7895. [Google Scholar] [CrossRef]
- Tone, T.; Hotta, M.; Koga, N. Acceleration effect of atmospheric water vapor on the thermal decomposition of calcium carbonate: A comparison of various resources and kinetic parameterizations. ACS Sustain. Chem. Eng. 2022, 10, 11273–11286. [Google Scholar] [CrossRef]
- Ghiasi, M.; Abdollahy, M.; Khalesi, M. Investigating the kinetics, mechanism, and activation energy of limestone calcination using isothermal analysis methods. Min. Metall. Explor. 2021, 38, 129–140. [Google Scholar] [CrossRef]
- Xu, F.; Wang, B.; Yang, D.; Hao, J.; Qiao, Y.; Tian, Y. Thermal degradation of typical plastics under high heating rate conditions by TG-FTIR: Pyrolysis behaviors and kinetic analysis. Energy Convers. Manag. 2018, 171, 1106–1115. [Google Scholar] [CrossRef]
- Xi, Z.; Shan, Z.; Li, M.; Wang, X. Analysis of coal spontaneous combustion by thermodynamic methods. Combust. Sci. Technol. 2021, 193, 2305–2330. [Google Scholar] [CrossRef]
- Liu, S.H.; Xu, Z.L.; Zhang, L. Effect of cyano ionic liquid on flame retardancy of melamine. J. Therm. Anal. Calorim. 2021, 144, 305–314. [Google Scholar] [CrossRef]
- Tibola, F.L.; de Oliveira TJ, P.; Ataíde, C.H.; Cerqueira, D.A.; Sousa, N.G.; Cardoso, C.R. Temperature-programmed pyrolysis of sunflower seed husks: Application of reaction models for the kinetic and thermodynamic calculation. Biomass Convers. Biorefin. 2023, 13, 13841–13858. [Google Scholar] [CrossRef]
- Vyazovkin, S.; Burnham, A.K.; Favergeon, L.; Koga, N.; Moukhina, E.; Pérez-Maqueda, L.A.; Sbirrazzuoli, N. ICTAC Kinetics Committee recommendations for analysis of multi-step kinetics. Thermochim. Acta 2020, 689, 178597. [Google Scholar] [CrossRef]
- Tian, L.; Chen, H.; Chen, Z.; Wang, X.; Zhang, S. A study of non-isothermal kinetics of limestone decomposition in air (O2/N2) and oxy-fuel (O2/CO2) atmospheres. J. Therm. Anal. Calorim. 2014, 115, 45–53. [Google Scholar] [CrossRef]
- Li, Z.; Shen, X.; Feng, X.; Wang, P.; Wu, Z. Non-isothermal kinetics studies on the thermal decomposition of zinc hydroxide carbonate. Thermochim. Acta 2005, 438, 102–106. [Google Scholar] [CrossRef]
- Raza, M.; Abu-Jdayil, B.; Al-Marzouqi, A.H.; Abrar, I. Kinetic and thermodynamic analyses of date palm surface fibers pyrolysis using Coats-Redfern method. Renew. Energy 2022, 183, 67–77. [Google Scholar] [CrossRef]
- Chen, L.; Hu, J.; Han, Q.; Xie, A.; Zhou, Z.; Yang, J.; Tang, Q.; Mi, B.; Wu, F.F. Application of distributed activation energy model and Coats-Redfern integration method in the study of industrial lignin pyrolysis kinetics. Biomass Convers. Biorefin. 2022, 1–11. [Google Scholar] [CrossRef]
- Pucéat, E.; Reynard, B.; Lécuyer, C. Can crystallinity be used to determine the degree of chemical alteration of biogenic apatites. Chem. Geol. 2004, 205, 83–97. [Google Scholar] [CrossRef]
- He, H.; Liu, Y.; Cui, Z.; Huang, Z.; Wu, Z.; Hou, Q. High-performance Fe–6.5 wt.% Si/CaCO3 soft magnetic composites prepared via the thermal decomposition of calcium acetate. J. Phys. Chem. Solids 2024, 190, 112012. [Google Scholar] [CrossRef]
- Zhuang, D.; Yang, F.; Xiang, Q.; Wei, Q.; Jiang, W.; Zhao, J.; Guo, Y. Differences in thermal decomposition and crystallinity of dark organic laminae and light mineral laminae in same stromatolite. Thermochim. Acta 2023, 728, 179576. [Google Scholar] [CrossRef]
- Han, Z.; Zhuang, D.; Yan, H.; Zhao, H.; Sun, Y.; Li, D.; Sun, Y.; Hu, W.; Xuan, Q.; Chen, J.; et al. Thermogravimetric and kinetic analysis of thermal decomposition characteristics of microbial calcites induced by cyanobacteria Synechocystis sp. PCC6803. J. Therm. Anal. Calorim. 2017, 127, 1371–1379. [Google Scholar] [CrossRef]
- González-Gómez, W.S.; Quintana, P.; May-Pat, A.; Avilés, F.; May-Crespo, J.; Alvarado-Gil, J.J. Thermal effects on the physical properties of limestones from the Yucatan Peninsula. Int. J. Rock Mech. Min. Sci. 2015, 75, 182–189. [Google Scholar] [CrossRef]
- Pecchi, M.; Patuzzi, F.; Benedetti, V.; Maggio, R.D.; Baratieri, M. Thermodynamics of hydrothermal carbonization: Assessment of the heat release profile and process enthalpy change. Fuel Process. Technol. 2020, 197, 106206. [Google Scholar] [CrossRef]
- Zhuang, D.X.; Chen, S.; Li, J.; Han, S.X.; Guo, Y. Recycled Coarse Aggregate from Waste Concrete Strengthened by Microbially Induced Calcium Carbonate Precipitation. Environ. Technol. Innov. 2024, 37, 103981. [Google Scholar] [CrossRef]
- Zaimi, K.; Ishak, A.; Pop, I. Unsteady flow due to a contracting cylinder in a nanofluid using Buongiorno’s model. Int. J. Heat Mass Transf. 2014, 68, 509–513. [Google Scholar] [CrossRef]
- Zou, Z.; Yan, D.; Zhu, J.; Zheng, Y.P.; Li, H.Z.; Zhu, Q.S. Simulation of the fluid–solid noncatalytic reaction based on the structure-based mass-transfer model: Shrinking core reaction. Ind. Eng. Chem. Res. 2020, 59, 17729–17739. [Google Scholar] [CrossRef]
- Zangooei, E.; Talaghat, M.R. Conversion of Gas-Solid Reactions of the Flat Plate Particles with Unchanged Size Using the Shrinking Core Model. J. Chem. Pet. Eng. 2021, 55, 33–51. [Google Scholar] [CrossRef]
- Tong, L.Y.; Xiong, Q.X.; Zhang, Z.D.; Chen, X.S.; Ye, G.; Liu, Q.F. A novel lattice model to predict chloride diffusion coefficient of unsaturated cementitious materials based on multi-typed pore structure characteristics. Cem. Concr. Res. 2024, 176, 107351. [Google Scholar] [CrossRef]
α | Temperature/°C | E/(kJ·mol−1) | R2 | |||
---|---|---|---|---|---|---|
β = 10 °C/min | β = 20 °C/min | β = 30 °C/min | β = 40 °C/min | |||
0.10 | 456 | 458 | 502 | 602 | 217 | 0.9768 |
0.15 | 462 | 462 | 512 | 615 | 211 | 0.9876 |
0.20 | 468 | 472 | 526 | 627 | 203 | 0.9981 |
0.25 | 475 | 479 | 537 | 638 | 200 | 0.9880 |
0.30 | 487 | 486 | 549 | 641 | 196 | 0.9979 |
0.35 | 491 | 492 | 553 | 649 | 195 | 0.9773 |
0.40 | 502 | 502 | 572 | 658 | 194 | 0.9669 |
0.45 | 511 | 509 | 592 | 669 | 193 | 0.9763 |
0.50 | 516 | 512 | 602 | 678 | 190 | 0.9881 |
0.55 | 524 | 519 | 611 | 682 | 191 | 0.9828 |
0.60 | 534 | 524 | 624 | 694 | 188 | 0.9767 |
0.65 | 539 | 536 | 637 | 705 | 189 | 0.9756 |
0.70 | 541 | 547 | 649 | 719 | 186 | 0.9789 |
0.75 | 549 | 550 | 652 | 725 | 184 | 0.9864 |
0.80 | 552 | 559 | 672 | 736 | 182 | 0.9758 |
0.85 | 559 | 561 | 691 | 759 | 178 | 0.9725 |
0.90 | 562 | 572 | 702 | 772 | 177 | 0.9817 |
0.95 | 570 | 580 | 711 | 790 | 175 | 0.9724 |
G(α) | β→0 °C/min | β = 10 °C/min | β = 20 °C/min | β = 30 °C/min | β = 40 °C/min | ||||
---|---|---|---|---|---|---|---|---|---|
E/(kJ·mol−1) | E/(kJ·mol−1) | R2 | E/(kJ·mol−1) | R2 | E/(kJ·mol−1) | R2 | E/(kJ·mol−1) | R2 | |
(1 − α)−1 | 410.66 | 453.26 | 0.9987 | 395.79 | 0.9856 | 389.56 | 0.9655 | 372.52 | 0.9654 |
(1 − α)−2 | 96.98 | 108.95 | 0.9998 | 97.68 | 0.9756 | 90.25 | 0.9856 | 80.56 | 0.9842 |
α1/2 | 437.97 | 458.96 | 0.9964 | 450.29 | 0.9625 | 478.95 | 0.9742 | 394.58 | 0.9963 |
α1/2 | 103.59 | 116.25 | 0.9948 | 97.64 | 0.9984 | 112.6 | 0.9658 | 98.64 | 0.9758 |
[− ln(1 − α)]1/2 | 464.49 | 502.64 | 0.9946 | 447.68 | 0.9862 | 422.56 | 0.9958 | 421.29 | 0.9951 |
[− ln(1 − α)]1/3 | 408.69 | 428.64 | 0.9947 | 402.96 | 0.9754 | 456.28 | 0.9832 | 387.64 | 0.9742 |
[− ln(1 − α)]1/4 | 171.59 | 153.64 | 0.9864 | 147.68 | 0.9768 | 146.28 | 0.9759 | 136.24 | 0.9823 |
− ln(1 − α) | 328.54 | 315.69 | 0.9768 | 305.68 | 0.9634 | 368.94 | 0.9635 | 209.64 | 0.9746 |
1 − (1 − α)1/3 | 233.79 | 210.52 | 0.9789 | 208.94 | 0.9954 | 197.62 | 0.9931 | 182.23 | 0.9842 |
1 − (1 − α)1/2 | 255.17 | 231.69 | 0.9861 | 228.76 | 0.9864 | 217.79 | 0.9754 | 207.56 | 0.9921 |
α | Temperature/°C | E/(kJ·mol−1) | R2 | |||
---|---|---|---|---|---|---|
β = 10 °C/min | β = 20 °C/min | β = 30 °C/min | β = 40 °C/min | |||
0.10 | 445 | 462 | 512 | 609 | 202 | 0.9867 |
0.15 | 457 | 468 | 523 | 624 | 198 | 0.9778 |
0.20 | 461 | 474 | 534 | 636 | 195 | 0.9886 |
0.25 | 472 | 482 | 545 | 642 | 190 | 0.9780 |
0.30 | 480 | 490 | 552 | 658 | 188 | 0.9677 |
0.35 | 489 | 497 | 556 | 663 | 186 | 0.9873 |
0.40 | 505 | 508 | 567 | 672 | 185 | 0.9769 |
0.45 | 516 | 512 | 589 | 684 | 184 | 0.9864 |
0.50 | 520 | 521 | 611 | 693 | 184 | 0.9781 |
0.55 | 529 | 527 | 625 | 705 | 183 | 0.9622 |
0.60 | 536 | 532 | 634 | 712 | 182 | 0.9563 |
0.65 | 542 | 542 | 642 | 723 | 181 | 0.9757 |
0.70 | 546 | 552 | 651 | 735 | 180 | 0.9888 |
0.75 | 552 | 560 | 660 | 746 | 179 | 0.9965 |
0.80 | 554 | 568 | 681 | 752 | 177 | 0.9656 |
0.85 | 568 | 571 | 697 | 767 | 177 | 0.9622 |
0.90 | 572 | 582 | 713 | 781 | 176 | 0.9718 |
0.95 | 579 | 591 | 732 | 799 | 174 | 0.9624 |
G(α) | β→0 °C/min | β = 10 °C/min | β = 20 °C/min | β = 30 °C/min | β = 40 °C/min | ||||
---|---|---|---|---|---|---|---|---|---|
E/(kJ·mol−1) | E/(kJ·mol−1) | R2 | E/(kJ·mol−1) | R2 | E/(kJ·mol−1) | R2 | E/(kJ·mol−1) | R2 | |
(1 − α)−3/4 | 459.29 | 430.27 | 0.9886 | 425.16 | 0.9955 | 395.46 | 0.9755 | 371.46 | 0.9754 |
1 − (1 − α)3 | 110.29 | 102.34 | 0.9894 | 95.46 | 0.9856 | 91.26 | 0.9956 | 84.26 | 0.9943 |
− ln(1 − α) | 497.56 | 440.28 | 0.9663 | 442.19 | 0.9725 | 476.25 | 0.9842 | 389.46 | 0.9963 |
[1 − (1 − α)1/3]2 | 102.37 | 109.46 | 0.9548 | 96.43 | 0.9983 | 109.46 | 0.9758 | 102.46 | 0.9858 |
[− ln(1 − α)]1/2 | 475.68 | 492.57 | 0.9745 | 482.49 | 0.9962 | 421.29 | 0.9858 | 419.46 | 0.9654 |
[− ln(1 − α)]1/3 | 402.37 | 412.36 | 0.9847 | 411.26 | 0.9854 | 446.28 | 0.9933 | 385.42 | 0.9442 |
α1/4 | 161.29 | 152.24 | 0.9962 | 156.46 | 0.9764 | 136.49 | 0.9659 | 126.34 | 0.9525 |
α1/5 | 332.75 | 308.64 | 0.9868 | 321.49 | 0.9934 | 359.64 | 0.9835 | 210.49 | 0.9646 |
1 − (1 − α)1/3 | 236.87 | 212.46 | 0.9989 | 207.49 | 0.9855 | 195.42 | 0.9732 | 186.26 | 0.9746 |
1 − (1 − α)1/4 | 251.64 | 230.49 | 0.9861 | 226.37 | 0.9661 | 216.34 | 0.9657 | 206.31 | 0.9821 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhuang, D.; Chen, Z.; Sun, B. Thermal Decomposition of Calcium Carbonate at Multiple Heating Rates in Different Atmospheres Using the Techniques of TG, DTG, and DSC. Crystals 2025, 15, 108. https://doi.org/10.3390/cryst15020108
Zhuang D, Chen Z, Sun B. Thermal Decomposition of Calcium Carbonate at Multiple Heating Rates in Different Atmospheres Using the Techniques of TG, DTG, and DSC. Crystals. 2025; 15(2):108. https://doi.org/10.3390/cryst15020108
Chicago/Turabian StyleZhuang, Dingxiang, Zhengzheng Chen, and Bin Sun. 2025. "Thermal Decomposition of Calcium Carbonate at Multiple Heating Rates in Different Atmospheres Using the Techniques of TG, DTG, and DSC" Crystals 15, no. 2: 108. https://doi.org/10.3390/cryst15020108
APA StyleZhuang, D., Chen, Z., & Sun, B. (2025). Thermal Decomposition of Calcium Carbonate at Multiple Heating Rates in Different Atmospheres Using the Techniques of TG, DTG, and DSC. Crystals, 15(2), 108. https://doi.org/10.3390/cryst15020108