Simulation of Surface Segregation in Nanoparticles of Pt-Pd Alloys
Abstract
:1. Introduction
2. Experimental Details
3. Results
- 1-<dNN> within the first atomic layer (top) of the surface;
- 1,2-<dNN> between the first and second atomic layers;
- 2-<dNN> within the second atomic layer from the surface;
- 2,3-<dNN> between the second and atomic layers;
- 3-<dNN> within the third atomic layer from the surface.
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, J. PEM Fuel Cell Electrocatalysts and Catalyst Layers: Fundamentals and Applications; Springer Nature: Dordrecht, The Netherlands, 2008. [Google Scholar] [CrossRef]
- Ganesan, A.; Narayanasamy, M. Ultra-low loading of platinum in proton exchange membrane-based fuel cells: A brief review. Mater. Renew. Sustain. Energy 2019, 8, 18. [Google Scholar] [CrossRef]
- Shao, M.; Chang, Q.; Dodelet, J.P.; Chenitz, R. Recent Advances in Electrocatalysts for Oxygen Reduction Reaction. Chem. Rev. 2016, 116, 3594–3657. [Google Scholar] [CrossRef] [PubMed]
- Antolini, E. Palladium in fuel cell catalysis. Energy Environ. Sci. 2009, 2, 915–931. [Google Scholar] [CrossRef]
- Stephen, A.J.; Rees, N.V.; Mikheenko, I.; Macaskie, L.E. Platinum and palladium bio-synthesized nanoparticles as sustainable fuel cell catalysts. Front. Energy Res. 2019, 7, 66. [Google Scholar] [CrossRef]
- Esparza, R.; Santoveña, A.; Ruíz-Baltazar, A.; Angeles-Pascual, A.; Bahena, D.; Maya-Cornejo, J.; Ledesma-García, J.; Pérez, R. Study of PtPd bimetallic nanoparticles for fuel cell applications. Mater. Res. 2017, 20, 1193–1200. [Google Scholar] [CrossRef]
- Kumar, S.S.; Himabindu, V. Hydrogen production by PEM water electrolysis—A review. Mater. Sci. Energy Technol. 2019, 2, 442–454. [Google Scholar] [CrossRef]
- Zielińska-Jurek, A.; Hupka, J. Preparation and characterization of Pt/Pd-modified titanium dioxide nanoparticles for visible light irradiation. Catal. Today 2014, 230, 181–187. [Google Scholar] [CrossRef]
- Baca, M.; Cendrowski, K.; Kukulka, W.; Bazarko, G.; Moszyński, D.; Michalkiewicz, B.; Kalenczuk, R.J.; Zielinska, B. A comparison of hydrogen storage in Pt, Pd and Pt/Pd alloys loaded disordered mesoporous hollow carbon spheres. Nanomaterials 2018, 8, 639. [Google Scholar] [CrossRef] [PubMed]
- Geng, Z.; Wang, D.; Zhang, C.; Zhou, X.; Xin, H.; Liu, X.; Cai, M. Spillover enhanced hydrogen uptake of Pt/Pd doped corncob-derived activated carbon with ultra-high surface area at high pressure. Int. J. Hydrogen Energy 2014, 39, 13643–13649. [Google Scholar] [CrossRef]
- Craig, B.; Anderson, D. Handbook of Corrosion; ASM International: Almere, The Netherlands, 1972. [Google Scholar]
- Dhand, C.; Dwivedi, N.; Loh, X.J.; Ying, A.N.J.; Verma, N.K.; Beuerman, R.W.; Lakshminarayanan, R.; Ramakrishna, S. Methods and strategies for the synthesis of diverse nanoparticles and their applications: A comprehensive overview. RSC Adv. 2015, 5, 105003–105037. [Google Scholar] [CrossRef]
- Yang, Y.; Cao, Y.; Yang, L.; Huang, Z.; Long, N.V. Synthesis of Pt–Pd bimetallic porous nanostructures as electrocatalysts for the methanol oxidation reaction. Nanomaterials 2018, 8, 208. [Google Scholar] [CrossRef] [PubMed]
- You, G.; Jiang, J.; Li, M.; Li, L.; Tang, D.; Zhang, J.; Zeng, X.C.; He, R. PtPd(111) Surface versus PtAu(111) Surface: Which One Is More Active for Methanol Oxidation? ACS Catal. 2018, 8, 132–143. [Google Scholar] [CrossRef]
- Zhang, X.; Guan, P.; Malic, L.; Trudeau, M.; Rosei, F.; Veres, T. Nanoporous twinned PtPd with highly catalytic activity and stability. J. Mater. Chem. Mater. 2015, 3, 2050–2056. [Google Scholar] [CrossRef]
- Kim, J.; Jang, J.S.; Peck, D.H.; Lee, B.; Yoon, S.H.; Jung, D.H. Methanol-tolerant platinum-palladium catalyst supported on nitrogen-doped carbon Nanofiber for high concentration direct methanol fuel cells. Nanomaterials 2016, 6, 148. [Google Scholar] [CrossRef]
- Lopes, T.; Antolini, E.; Gonzalez, E.R. Carbon supported Pt-Pd alloy as an ethanol tolerant oxygen reduction electrocatalyst for direct ethanol fuel cells. Int. J. Hydrogen Energy 2008, 33, 5563–5570. [Google Scholar] [CrossRef]
- Li, H.; Sun, G.; Li, N.; Sun, S.; Su, D.; Xin, Q. Design and preparation of highly active Pt-Pd/C catalyst for the oxygen reduction reaction. J. Phys. Chem. 2007, 111, 5605–5617. [Google Scholar] [CrossRef]
- Limpattayanate, S.; Hunsom, M. ORR Activity and Stability of Pt-Based Electrocatalysts in PEM Fuel Cell. Int. J. Chem. Mol. Eng. 2015, 9, 647–657. [Google Scholar]
- Peng, Z.; Wu, J.; Yang, H. Synthesis and oxygen reduction electrocatalytic property of platinum hollow and platinum-on-silver nanoparticles. Chem. Mater. 2010, 22, 1098–1106. [Google Scholar] [CrossRef]
- Termpornvithit, C.; Chewasatn, N. Hunsom, Stability of Pt-Co/C and Pt-Pd/C based oxygen reduction reaction electrocatalysts prepared at a low temperature by a combined impregnation and seeding process in PEM fuel cells. J. Appl. Electrochem. 2012, 42, 169–178. [Google Scholar] [CrossRef]
- Quan, Z.; Wang, Y.; Fang, J. High-index faceted noble metal nanocrystals. Acc. Chem. Res. 2013, 46, 191–202. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Gao, Y.; Wang, Z.L.; Tian, N.; Zhou, Z.Y.; Sun, S.G. Facets and surface relaxation of tetrahexahedral platinum nanocrystals. Appl. Phys. Lett. 2007, 91, 121901. [Google Scholar] [CrossRef]
- Huang, X.; Zhao, Z.; Fan, J.; Tan, Y.; Zheng, N. Amine-assisted synthesis of concave polyhedral platinum nanocrystals having {411} high-index facets. J. Am. Chem. Soc. 2011, 133, 4718–4721. [Google Scholar] [CrossRef] [PubMed]
- Tian, N.; Zhou, Z.Y.; Yu, N.F.; Wang, L.Y.; Sun, S.G. Direct electrodeposition of tetrahexahedral Pd nanocrystals with high-index facets and high catalytic activity for ethanol electrooxidation. J. Am. Chem. Soc. 2010, 132, 7580–7581. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Lugo, Y.Y.; Pérez-Muñoz, K.I.; Trujillo-Navarrete, B.; Silva-Carrillo, C.; Reynoso-Soto, E.A.; Yañez, J.C.C.; Lin, S.W.; Flores-Hernández, J.R.; Félix-Navarro, R.M. PTPD hybrid composite catalysts as cathodes for proton exchange membrane fuel cells. Energies 2020, 13, 316. [Google Scholar] [CrossRef]
- Li, Z.; Deng, X.; Zhou, H.; Xuan, W.; Xie, Z.; Liu, F. Preparation of self-nitrogen-doped porous carbon nanofibers and their supported PtPd alloy catalysts for oxygen reduction reaction. J. Solid State Electrochem. 2020, 24, 195–206. [Google Scholar] [CrossRef]
- Arias-Pinedo, O.M.; Riojas, A.A.C.; Pastor, E.; López, E.O.; Perez, G.; Archanjo, B.S.; Ponce-Vargas, M.; Planes, G.Á.; Baena-Moncada, A.M. Hierarchical Porous Carbon-PtPd Catalysts and Their Activity toward Oxygen Reduction Reaction. ACS Omega 2022, 7, 20860–20871. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, J.; Zhao, Y. Enhancement Mechanism of Pt/Pd-Based Catalysts for Oxygen Reduction Reaction. Nanomaterials 2023, 13, 1275. [Google Scholar] [CrossRef] [PubMed]
- Ma, G.; Zhao, X.; Wang, J.; Qin, G.; Lu, Z.; Yu, X.; Li, L.; Zhang, X.; Yang, X. The Alloying Effect of PtPd/rGO and the Improvement of Its ORR Performance. Catal. Lett. 2024, 154, 2162–2170. [Google Scholar] [CrossRef]
- Guterman, V.; Alekseenko, A.; Belenov, S.; Menshikov, V.; Moguchikh, E.; Novomlinskaya, I.; Paperzh, K.; Pankov, I. Exploring the Potential of Bimetallic PtPd/C Cathode Catalysts to Enhance the Performance of PEM Fuel Cells. Nanomaterials 2024, 14, 1672. [Google Scholar] [CrossRef] [PubMed]
- Jelinek, B.; Groh, S.; Horstemeyer, M.F.; Houze, J.; Kim, S.G.; Wagner, G.J.; Moitra, A.; Baskes, M.I. Modified embedded atom method potential for Al, Si, Mg, Cu, and Fe alloys. Phys. Rev. Condens. Matter. Mater. Phys. 2012, 85, 245102. [Google Scholar] [CrossRef]
- Thompson, A.P.; Aktulga, H.M.; Berger, R.; Bolintineanu, D.S.; Brown, W.M.; Crozier, P.S.; in’t Veld, P.J.; Kohlmeyer, A.; Moore, S.G.; Nguyen, T.D.; et al. LAMMPS—A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 2022, 271, 10817. [Google Scholar] [CrossRef]
- Batyrev, I.G.; Coleman, S.P.; Ciezak-Jenkins, J.A.; Stavrou, E.; Zaug, J.M. Modeling and measurements of the XRD patterns of extended solids under high-pressure. AIP Conf. Proc. 2018, 1979, 050003. [Google Scholar] [CrossRef]
- Raykhtsaum, G. Platinum alloys: A selective review of the available literature. Platin. Met. Rev. 2013, 57, 202–213. [Google Scholar] [CrossRef]
- Massen, C.; Mortimer-Jones, T.V.; Johnston, R.L. Geometries and segregation properties of platinum-palladium nanoalloy clusters. J. Chem. Soc. Dalton Trans. 2002, 23, 4375–4388. [Google Scholar] [CrossRef]
- Luyten, J.; De Keyzer, J.; Wollants, P.; Creemers, C. Construction of modified embedded atom method potentials for the study of the bulk phase behaviour in binary Pt-Rh, Pt-Pd, Pd-Rh and ternary Pt-Pd-Rh alloys. Calphad 2009, 33, 370–376. [Google Scholar] [CrossRef]
- Aref’eva, L.P.; Dolgachev, Y.V. Phase diagram of nanoparticles of palladium-platinum alloys. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1029, 012058. [Google Scholar] [CrossRef]
- Goff, J.M.; Li, B.Y.; Sinnott, S.B.; Dabo, I. Quantifying multipoint ordering in alloys. Phys. Rev. 2021, 104, 054109. [Google Scholar] [CrossRef]
- Zhang, L.; Roling, L.T.; Wang, X.; Vara, M.; Chi, M.; Liu, J.; Choi, S.; Park, J.; Herron, J.A.; Xie, Z. Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets. Science 2015, 349, 412–416. [Google Scholar] [CrossRef] [PubMed]
- Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool. Model. Simul. Mat. Sci. Eng. 2010, 18, 015012. [Google Scholar] [CrossRef]
- Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef]
- Coleman, S.P.; Spearot, D.E.; Capolungo, L. Virtual diffraction analysis of Ni [0 1 0] symmetric tilt grain boundaries. Model. Simul. Mat. Sci. Eng. 2013, 21, 055020. [Google Scholar] [CrossRef]
- Interatomic Potentials Repository. Available online: www.ctcms.nist.gov/potentials (accessed on 29 November 2024).
- Zhou, X.W.; Johnson, R.A.; Wadley, H.N.G. Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers. Phys. Rev. 2004, 69, 144113. [Google Scholar] [CrossRef]
- Samsonov, V.M.; Romanov, A.A.; Kartoshkin, A.Y.; Talyzin, I.V.; Puytov, V.V. Embedding functions for Pt and Pd: Recalculation and verification on properties of bulk phases, Pt, Pd, and Pt–Pd nanoparticles. Appl. Phys. 2022, 128, 826. [Google Scholar] [CrossRef]
- Samsonov, V.; Romanov, A.; Talyzin, I.; Lutsay, A.; Zhigunov, D.; Puytov, V. Puzzles of Surface Segregation in Binary Pt–Pd Nanoparticles: Molecular Dynamics and Thermodynamic Simulations. Metals 2023, 13, 1269. [Google Scholar] [CrossRef]
- Chaisubanan, N.; Maniwan, W.; Hunsom, M. Effect of heat-treatment on the performance of PtM/C (M = Cr, Pd, Co) catalysts towards the oxygen reduction reaction in PEM fuel cell. Energy 2017, 127, 454–461. [Google Scholar] [CrossRef]
- Bezerra, C.W.B.; Zhang, L.; Liu, H.; Lee, K.; Marques, A.L.B.; Marques, E.P.; Wang, H.; Zhang, J. A review of heat-treatment effects on activity and stability of PEM fuel cell catalysts for oxygen reduction reaction. J. Power Sources 2007, 173, 891–908. [Google Scholar] [CrossRef]
- Chepkasov, I.V.; Gafner, Y.Y.; Vysotin, M.A.; Redel’, L.V. A study of melting of various types of Pt–Pd nanoparticles. Phys. Solid State 2017, 59, 2076–2081. [Google Scholar] [CrossRef]
- Deng, H.; Hu, W.; Shu, X.; Zhao, L.; Zhang, B. Monte Carlo Simulation of the Surface Segregation of Pt-Pd and Pt-Ir Alloys with an Analytic Embedded-Atom Method. Surf. Sci. 2002, 517, 177–185. [Google Scholar] [CrossRef]
- Bernardi, F.; Alves, M.C.M.; Traverse, A.; Silva, D.O.; Scheeren, C.W.; Dupont, J.; Morais, J. Monitoring atomic rearrangement in PtxPd1-x (x) 1, 0.7, or 0.5) nanoparticles driven by reduction and sulfidation processes. J. Phys. Chem. 2009, 113, 3909–3916. [Google Scholar] [CrossRef]
- An, W.; Liu, P. Size and shape effects of Pd@Pt core-shell nanoparticles: Unique role of surface contraction and local structural flexibility. J. Phys. Chem. 2013, 117, 16144–16149. [Google Scholar] [CrossRef]
- Methfessel, M.; Hennig, D.; Scheffler, M. Trends of the surface relaxations, surface energies, and work functions of the 4d transition metals. Phys. Rev. 1992, 46, 8. [Google Scholar] [CrossRef]
- Wang, L.L.; Johnson, D.D. Predicted trends of core-shell preferences for 132 late transition-metal binary-alloy nanoparticles. J. Am. Chem. Soc. 2009, 131, 14023–14029. [Google Scholar] [CrossRef] [PubMed]
- De Clercq, A.; Giorgio, S.; Mottet, C. Pd surface and Pt subsurface segregation in Pt1−cPdc nanoalloys. J. Phys. Condens. Matter. 2016, 28, 064006. [Google Scholar] [CrossRef] [PubMed]
- Nafday, D.; Sarkar, S.; Ayyub, P.; Saha-Dasgupta, T. A Reduction in Particle Size Generally Causes Body-Centered-Cubic Metals to Expand but Face-Centered-Cubic Metals to Contract. ACS Nano 2018, 12, 7246–7252. [Google Scholar] [CrossRef] [PubMed]
- Wasserman, H.J.; Vermaak, J.S. On the determination of the surface stress of copper and platinum. Surf. Sci. 1972, 32, 168–174. [Google Scholar] [CrossRef]
- Lamber, R.; Wetjen, S.; Jaeger, N.I. Size dependence of the lattice parameter of small palladium particles. Phys. Rev. 1995, 51, 10968–10971. [Google Scholar] [CrossRef]
- Zhou, Z.Y.; Tian, N.; Li, J.T.; Broadwell, I.; Sun, S.G. Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage. Chem. Soc. Rev. 2011, 40, 4167–4185. [Google Scholar] [CrossRef]
- Zhuang, H.; Tkalych, A.J.; Carter, E.A. Surface Energy as a Descriptor of Catalytic Activity. J. Phys. Chem. 2016, 120, 23698–23706. [Google Scholar] [CrossRef]
- Wen, Y.N.; Zhang, J.M. Surface energy calculation of the fcc metals by using the MAEAM. Solid State Commun. 2007, 144, 163–167. [Google Scholar] [CrossRef]
- Mariscal, M.M.; Oldani, N.A.; Dassie, S.A.; Leiva, E.P.M. Atomistic computer simulations on the generation of bimetallic nanoparticles. Faraday Discuss. 2008, 138, 89–104. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, D.; Torres-Castro, A.; Gao, X.; Sepúlveda-Guzmán, S.; Ortiz-Méndez, U.; José-Yacamán, M. Three-layer core/shell structure in Au-Pd bimetallic nanoparticles. Nano Lett. 2007, 7, 1701–1705. [Google Scholar] [CrossRef] [PubMed]
- Cheng, D.; Wang, W. Tailoring of Pd-Pt bimetallic clusters with high stability for oxygen reduction reaction. Nanoscale 2012, 4, 2408–2415. [Google Scholar] [CrossRef] [PubMed]
- Mavrikakis, M.; Hammer, B.; Nørskov, J.K. Effect of strain on the reactivity of metal surfaces. Phys. Rev. Lett. 1998, 81, 2819–2822. [Google Scholar] [CrossRef]
- Yang, X.; Wang, Y.; Tong, X.; Yang, N. Strain Engineering in Electrocatalysts: Fundamentals, Progress, and Perspectives. Adv. Energy Mater. 2022, 12, 2102261. [Google Scholar] [CrossRef]
- Stamenkovic, V.; Mun, B.S.; Mayrhofer, K.J.J.; Ross, P.N.; Markovic, N.M.; Rossmeisl, J.; Greeley, J.; Nørskov, J.K. Changing the Activity of Electrocatalysts for Oxygen Reduction by Tuning the Surface Electronic Structure. Angew. Chem. 2006, 118, 2963–2967. [Google Scholar] [CrossRef]
- Wang, W.; Wang, Z.; Wang, J.; Zhong, C.J.; Liu, C.J. Highly Active and Stable Pt–Pd Alloy Catalysts Synthesized by Room-Temperature Electron Reduction for Oxygen Reduction Reaction. Adv. Sci. 2017, 4, 1600486. [Google Scholar] [CrossRef]
- Ali, S.; Myasnichenko, V.S.; Neyts, E.C. Size-dependent strain and surface energies of gold nanoclusters. Phys. Chem. Chem. Phys. 2015, 18, 792–800. [Google Scholar] [CrossRef]
- Haouas, H.; El Atouani, L.; Sbiaai, K.; Hasnaoui, A. Size and temperature effects on surface energy of Au and Fe nanoparticles from atomistic simulations. Comput. Mater. Sci. 2022, 214, 111695. [Google Scholar] [CrossRef]
- Long, N.V.; Ohtaki, M.; Hien, T.D.; Randy, J.; Nogami, M. A comparative study of Pt and Pt-Pd core-shell nanocatalysts. Electrochim. Acta 2011, 56, 9133–9143. [Google Scholar] [CrossRef]
- Tao, F.; Grass, M.E.; Zhang, Y.; Butcher, D.R.; Renzas, J.R.; Liu, Z.; Chung, J.Y.; Mun, B.S.; Salmeron, M.; Somorjai, G.A. Reaction-driven restructuring of Rh-Pd and Pt-Pd core-shell nanoparticles. Science 2008, 322, 932–934. [Google Scholar] [CrossRef]
- Bernardi, F.; Fecher, G.H.; Alves, M.C.M.; Morais, J. Unraveling the formation of core-shell structures in nanoparticles by S-XPS. J. Phys. Chem. Lett. 2010, 1, 912–917. [Google Scholar] [CrossRef]
Designation | Pd100 | Pt19Pd81 | Pt50Pd50 | Pt86Pd14 | Pt100 |
---|---|---|---|---|---|
Pt (at.%) | 0 | 19 | 50 | 86 | 100 |
Pd (at.%) | 100 | 81 | 50 | 14 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Correia, J.B.; de Sá, A.I. Simulation of Surface Segregation in Nanoparticles of Pt-Pd Alloys. Crystals 2025, 15, 53. https://doi.org/10.3390/cryst15010053
Correia JB, de Sá AI. Simulation of Surface Segregation in Nanoparticles of Pt-Pd Alloys. Crystals. 2025; 15(1):53. https://doi.org/10.3390/cryst15010053
Chicago/Turabian StyleCorreia, Jose Brito, and Ana Isabel de Sá. 2025. "Simulation of Surface Segregation in Nanoparticles of Pt-Pd Alloys" Crystals 15, no. 1: 53. https://doi.org/10.3390/cryst15010053
APA StyleCorreia, J. B., & de Sá, A. I. (2025). Simulation of Surface Segregation in Nanoparticles of Pt-Pd Alloys. Crystals, 15(1), 53. https://doi.org/10.3390/cryst15010053