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Simple Summary: This study explores the structural and stability impacts of rare genetic
and somatic mutations in two glutathione peroxidase proteins, GPx7 and GPx8, which
play crucial roles in cellular stress responses. This study aims to identify how these
mutations affect protein stability, as these changes are often associated with cancers and
other complex diseases. Using advanced computational methods, this research analyzed
thousands of potential mutations to predict their effects on protein function. The findings
reveal that destabilizing mutations are more likely to be associated with diseases, providing
insights into the molecular mechanisms of cancer development. By focusing on high-impact
mutations, this study provides a foundation for developing targeted therapies and better
understanding the molecular basis of diseases associated with these proteins.

Abstract: Background/Objectives: Somatic and genetic mutations in glutathione per-
oxidases (GPxs), including GPx7 and GPx8, have been linked to intellectual disability,
microcephaly, and various tumors. GPx7 and GPx8 evolved the latest among the GPx
enzymes and are present in the endoplasmic reticulum. Although lacking a glutathione
binding domain, GPx7 and GPx8 possess peroxidase activity that helps the body respond
to cellular stress. However, the protein mutations in these peroxidases remain relatively un-
derstudied. Methods: By elucidating the structural and stability consequences of missense
mutations, this study aims to provide insights into the pathogenic mechanisms involved in
different cancers, thereby aiding clinical diagnosis, treatment strategies, and the develop-
ment of targeted therapies. We performed saturated computational mutagenesis to analyze
2926 and 3971 missense mutations of GPx7 and GPx8, respectively. Results: The results
indicate that G153H and G153F in GPx7 are highly destabilizing, while E93M and W142F
are stabilizing. In GPx8, N74W and G173W caused the most instability while S70I and
S119P increased stability. Our analysis shows that highly destabilizing somatic and genetic
mutations are more likely pathogenic compared to stabilizing mutations. Conclusions: This
comprehensive analysis of missense mutations in GPx7 and GPx8 provides critical insights
into their impact on protein structure and stability, contributing to a deeper understanding
of the roles of somatic mutations in cancer development and progression. These findings
can inform more precise clinical diagnostics and targeted treatment approaches for cancers.
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1. Introduction
Glutathione peroxidases (GPxs) are cytosolic enzymes whose function is to catalyze

the reduction of hydrogen peroxide to water and oxygen. There are currently eight known
mammalian GPxs, most of which are selenoproteins that often simultaneously occupy
different cell types [1]. However, certain variants of the GPx family, such as GPx-7, and
GPx-8, lack the selenocysteine residue and have instead replaced it with a cysteine residue.
The swapping of selenium in selenocysteine for sulfur in cysteine is the differing element
between the two amino acids [2].

Both GPx7 and GPx8 are present in the endoplasmic reticulum and play a part in the
oxidative folding of endoplasmic reticulum proteins. GPx7 modifies cysteine residues and
functions as a stress transmitter, passing along signals to its associated proteins, such as GRP78
and PDI, via disulfide bond transfer in response to various stressors. Some diseases associated
with GPx7 are testicular torsion and Keshan disease, both of which are associated with GPx8
as well [3]. A mutation in GPx7 could possibly prove detrimental to its function regarding the
cellular processes of apoptosis and tumor suppression. Its enzymatic function and interaction
with its associated proteins could result in the dysregulation of oxidative stress responses and in
turn promote disease processes. Furthermore, the aberrant function of GPx7 has been linked to
ROS accumulations, highly elevated cancer incidences, auto-immune disorders, and obesity [4].
In a pan-cancer analysis of multiple cancer, GPx7 was overexpressed and posed as a potential
biomarker for glioma prognosis [5]. However, GPx7 is thought to act as a tumor suppressor in
non-malignant esophageal cells [4]. In contrast, GPx8 is overexpressed in gastric cancer and
non-small lung cancer cells (NSLCCs). GPx8 is also part of the GPX8/IL-6/STAT3 axis that
helps to suppress the progression of an aggressive type of breast cancer [6].

The type II transmembrane proteins, GPx8, possesses a high sequence similarity with
GPx7, one of which is their KDEL-like endoplasmic reticulum retrieval motif. They both also
exhibit low GPx activity due to their lack of a GSH-binding domain. The physiological function
of GPX8 is still unclear; however, it has been reported to be involved in diverse physiological
processes [6]. It is worthy to note that GPx8 plays a role in the regulation of calcium (Ca2+)
in the endoplasmic reticulum. Similarly to GPx7, GPx8 mutations can alter the enzymatic
function and its interaction with its associated proteins, possibly leading to the dysregulation
of oxidative stress responses, but also endoplasmic reticulum stress responses. However, just
like with GPx7, or any mutation, to predict its effects more accurately, you would need to know
the type of mutation, where it is in the gene, and how it would affect protein function.

The impact of rare mutations on the proteins GPx7 and GPx8 has not been extensively
studied. The primary objective of this study is to employ computational methods to investigate
the impact of missense mutations on the structural integrity and stability of GPx7 and GPx8
proteins. Additionally, we aim to assess the carcinogenic somatic mutations in GPx7 and
GPx8, with a specific focus on predicting their influence on protein stability. Computational
methods play a crucial role in predicting the potential structural and functional consequences
of missense mutations, particularly in terms of their ability to disrupt critical active sites
involved in protein–protein interactions. These interactions are essential for the enzymatic
functions of glutathione peroxidases. By employing free energy calculations and stability
prediction algorithms, computational tools enable a more accurate estimation of the risk
to protein stability and the destabilizing effects that missense mutations may induce. We
can identify and characterize potentially pathogenic mutations that could lead to disease
utilizing computational methods. This analysis aids in enhancing our understanding of
genetic disorders at the molecular level. Such insights into the molecular basis of diseases
can contribute to improved clinical diagnosis and treatment strategies. In particular, the
study’s findings provide a valuable framework for prioritizing mutations with significant
stability impacts for further functional validation, which could be pivotal in refining diagnostic
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markers and therapeutic targets in clinical settings. Furthermore, combining the computational
results with the experimental data derived from structural studies or biochemical assays
can strengthen and validate the findings generated by each approach. This integration of
computational and experimental approaches provides a more comprehensive understanding
of the detrimental effects that missense mutations may have. In conclusion, this study
highlights the importance of computational methods in assessing the impact of missense
mutations on protein structure and stability. The findings obtained through computational
analysis, when combined with the experimental data, contribute to a deeper understanding of
the potential implications of missense mutations in disease development and progression.

2. Materials and Methods
2.1. Selection and Alignment of the Sequence and Structure of GPx7 and GPx8

We searched the UniprotKB database and filtered for “human” and “reviewed” sequences.
The Uniprot IDs for GPx7 and GPx8 were Q96SL4 and Q8TED1, respectively. We selected the
canonical FASTA sequences for GPx7 and GPx8 and used the Clustal Omega tool for pairwise
alignment. The UniprotKB provided access to available structures for GPx7 and GPx8. We chose
a crystal structure determined by X-ray diffraction for GPx7 (PDB ID:2P31), and a predicted
AlphaFold structure was selected for GPx8 (AF-Q8TED1-F1). We used PyMOL (version 2.5.4),
a molecular visualization tool, developed by Schrödinger for structural alignment.

2.2. Phylogenetic Analysis of the Glutathione Family of Proteins

We used the Clustal Omega [7] multiple sequence alignment to construct the identity matrix
and determine evolutionary relationships between GPx1, GPx2, GPx3, GPx4, GPx5, GPx6, GPx7,
and GPx8. We used the canonical sequences of all the glutathione proteins in humans.

2.3. Collection of Cancer-Causing Somatic Mutations

We curated the somatic mutations of GPx7 and GPx8 from the COSMIC database (v99)
developed by the Sanger Institute [8]. We searched by gene name and filtered for only
missense mutations. We also conducted a curation and analysis of missense mutations and
their associated Mendelian traits for GPx7 and GPx8. We collected the genetic mutations
from the Human Gene Mutation Database (HGMD) [9].

2.4. Saturated Computational Mutagenesis

To generate the number of possible missense mutations that can occur in a protein
sequence, we used a custom python script to mutate each residue in GPx7 and GPx8 to 19 other
residues. Our approach was structure-based, so we needed the FASTA sequence of the protein
structures. The FASTA sequence of the GPx7 structure has (Q23-R177) 154 residues; therefore,
the total number of missense mutations generated was 2926, which can be calculated as 154*19.
GPx8’s structure has 209 residues, and we generated 3971 (209*19) missense mutations.

2.5. Calculations of Gibbs Free Energy Changes

Gibbs free energy during protein folding contributes to the stability of the folded confor-
mation. It is important to note that the stability of a protein is determined by the difference in
the Gibbs free energy (∆G) between folded and unfolded states (∆G = Gunfolded − Gfolded).
Foldx (version 5.0) generates numerous structures and computes the Gibbs free energy of
the mutant structures and their corresponding wild-type structures [10]. The first step is
to repair the raw structure by reducing the conformational energy of each residue using
the RepairPDB command (https://foldxsuite.crg.eu/command/RepairPDB (accessed on
3 June 2024)). The syntax for running RepairPDB from the command terminal is:

FoldX --command=RepairPDB --pdb=2P31.pdb

https://foldxsuite.crg.eu/command/RepairPDB
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The second step is to run the BuildModel command to compute the energy changes
caused by each mutation (https://foldxsuite.crg.eu/command/BuildModel (accessed on
3 June 2024)). The syntax for running the BuilModel command is:

FoldX --command=BuildModel --pdb=2P31_Repair.pdb –mutant-file=individual_list.txt
Ultimately, Foldx outputs the energy changes (∆∆G) between the Gibbs free energy of each

wild-type and mutant protein structure, ∆∆G = ∆GMutant − ∆GWildtype. A more negative ∆∆G
indicates a more stable protein, while a less negative or positive ∆∆G suggests a less stable or
destabilized protein. Compared to the experimental ∆∆G values, Foldx predicted ∆∆G values
deviated by 0.46 kcal/mol (~0.5 kcal/mol). As a result, a missense mutation is classified as
highly destabilizing (∆∆G > 2.5), destabilizing (2.5 > ∆∆G > 0.5), neutral (0.5 > ∆∆G > −0.5),
stabilizing (−0.5 > ∆∆G > −2.5), or highly stabilizing (∆∆G < −2.5).

2.6. Comparative and Statistical Analyses

In our study, we conducted a comparative bioinformatic analysis of all the computed
missense mutations of GPx7 and GPx8 utilizing two tools: Meta-SNP and Alphamissense.
Meta-SNP takes in a protein sequence as the input and predicts whether a mutation is
disease-causing or neutral. Meta-SNP integrates the predictive capabilities of four dis-
tinct algorithms, namely PANTHER, PhD-SNP, SIFT, and SNAP [11]. On the other
hand, Alphamissense relies on a deep learning model for its predictive power [12].
Alphamissense was developed by a scientist at Google DeepMind, and it leverages the
AlphaFold algorithm to classify mutations as either pathogenic or benign. To assess any
potential correlations between our Foldx outputs and the predictions from Meta-SNP and
Alphamissense, we performed a comparative analysis. For statistical analysis and graph
plotting, we utilized the RGui platform, specifically version 4.3.2.

3. Results
3.1. Phylogenetic Analysis of Gpx7 and GPx8

The Percentage Identity Matrix (PIM) in Figure 1A shows that the sequences of GPx7 and
GPx8 are 50.27% identical. This is also evident in the phylogenetic tree in Figure 1B, where
GPx7 and GPx8 emerge from a common GPx4 ancestor. Furthermore, GPx7 shows an earlier
evolution than GPx8. Scientists believed that GPx7 and GPx8 evolved from GPx4 before the
separation of mammals and fish. As shown in Figure 1C, the active sites (red rectangle) and
the Glutathione Peroxidase Signature_2 domains (green rectangle) are perfectly conserved
in GPx7 and GPx8. The active sites are 57C and 79C in GPx7 and GPx8, respectively. The
Glutathione Peroxidase Signature_2 domains are 82LAFPCNQF89 and 104LAFPCNQF111 in GPx7
and GPx8, respectively. The region of the sequence in Figure 1C represents a high sequence
similarity, residue by residue. Figure 1D shows a high structural similarity between GPx7 and
GPx8 with a root mean square deviation (RSMD) of 0.528.

3.2. Classification and Distribution of Missense Mutations

Our analysis of missense mutations in the GPx7 protein revealed that approximately
70% of the 2926 mutations resulted in protein destabilization, as indicated by a ∆∆G value
greater than 0.5. Conversely, around 7% of the mutations were found to stabilize the GPx7
protein structure, with a ∆∆G value lower than −0.5 (Figure 2). The distribution of energy
change values, as depicted in the histogram, exhibited a median of 1.37 kcal/mol. Moreover,
the mean energy change value for these mutations was calculated to be 2.53 kcal/mol.
Regarding GPx8, our analysis showed that approximately 63% of the 3971 missense mu-
tations led to protein destabilization, while approximately 8% had a stabilizing effect by
lowering the Gibb’s free energy (Figure 2). The median energy change (∆∆G) value for
GPx8 was found to be 1.01 kcal/mol, with a mean value of 2.06 kcal/mol.

https://foldxsuite.crg.eu/command/BuildModel
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3.3. Computational Analysis of the Effect of Missense Mutations on GPx7 and GPx8

Figure 3A,B show the domains and sites, positional heatmaps, and line charts of GPx7
and GPx8, respectively. As indicated by the red arrows in Figure 3A, we observed three
potential domains and one identified domain (Glutathione Peroxidase Signature_2) on the
GPx7 heatmap. These four domains are located within the GSH_peroxidase domain and
missense mutations in these regions greatly destabilize GPx7. The line chart highlights
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four critical residues: G153, A54, N80, and G58. The G153 and A54 residues are the
most critical residues as any missense mutation would cause the greatest instability of
GPx7. In contrast, missense mutations affecting the N80 and A54 residues would improve
the stability of the GPx7 structure. Figure 3C shows the heatmap of the ten most critical
residues and the energy values (∆∆G) of each missense mutation within those residues. The
missense mutations G153H and G153F increased the ∆G of the wild-type GPx7 structure
by 49.53 kcal/mol and 39.39 kcal/mol, respectively.

The domain layout of GPx8 in Figure 3B is very similar to GPx7’s domain in Figure 3A.
Within the GSH_peroxidase domain in GPx8, we highlighted, with red arrows, two uniden-
tified domains and one identified domain (Glutathione Peroxidase Signature_2). Four criti-
cal residues of GPx8 stood out and were highlighted in the line chart: G175, P162, S157, and
S99. Missense mutations in G175 and P162 tend to destabilize GPx8’s structure. In contrast,
missense mutations in S157 and S99 stabilize GPx8. The heatmap in Figure 3D shows that
N74W and G175W have the greatest destabilization impact by increasing the wild-type
energy values by 41.12 kcal/mol and 35.87 kcal/mol, respectively. The top critical residues,
G153 and G175, align, respectively, with the sequences of GPx7 and GPx8. Furthermore,
the second most-critical residue on GPx8, P162, is also conserved and it aligns with residue
P140 on GPx7. The A54 residue on GPx7 is conserved and aligns with A76 on GPx8.

The four conserved regions represent the beta-sheets in the GPx7 structure. The G153
residue is located at the downstream loop of a beta-sheet and its α-carbon is 5.4 Å away
from the α-carbon of A150 residue. The A54 residue is close to F144 and F89 structurally.
The distance between the α-carbons of A54 and F144 is 7.3 Å, and the α-carbon of A54 is
7.0 Å from F89 (Figure 3E). G175 and P162 are in the loop of the GPx8 structure. Like G153
on GPx7, G175 is on the upstream loop of the beta-sheet on the C-terminal of the GPx8.
G175 connects with V171 across the loop, and they are 5.5 Å apart. P162 is in proximity
with W164 (Figure 3F).

In our analysis, we conducted a comparison of the top missense mutations using the
Meta-SNP tool. Additionally, we employed Foldx predictions to assess the impact of these
mutations. The results indicate that destabilizing mutations are predicted to be pathogenic
according to Meta-SNP (Table 1). However, upon further examination, we observed slight
discrepancies in the Meta-SNP predictions for the top-five stabilizing mutations in both
GPx7 and GPx8.

Table 1. Comparative prediction of top-five destabilizing and stabilizing missense mutations.

Top 5 Destabilizing Mutations Top 5 Stabilizing Mutations

GPx8 Foldx Meta-SNP GPx8 Foldx Meta-SNP

Mutations ∆∆G Effect Score Pathogenicity Mutations ∆∆G Effect Score Pathogenicity

N74W 41.12 Highly_Des 0.89 Disease S70I −2.82 Highly_Sta 0.36 Neutral

G175W 35.87 Highly_Des 0.88 Disease S119P −2.74 Highly_Sta 0.49 Neutral

G175Y 34.21 Highly_Des 0.88 Disease D193W −2.57 Highly_Sta 0.86 Disease

A126W 33.09 Highly_Des 0.82 Disease P118D −2.39 Stabilizing 0.30 Neutral

G175F 30.51 Highly_Des 0.87 Disease S99W −2.29 Stabilizing 0.72 Disease

GPx7 GPx7

Mutations ∆∆G Effect Score Pathogenicity Mutations ∆∆G Effect Score Pathogenicity

G153H 49.53 Highly_Des 0.89 Disease E93M −3.61 Highly_Sta 0.56 Disease

G153F 39.39 Highly_Des 0.87 Disease W142F −3.12 Highly_Sta 0.84 Disease

A54W 34.98 Highly_Des 0.88 Disease D95F −2.70 Highly_Sta 0.45 Neutral

G153W 34.38 Highly_Des 0.89 Disease D95N −2.53 Highly_Sta 0.43 Neutral

V50W 31.21 Highly_Des 0.86 Disease S48I −2.49 Stabilizing 0.40 Neutral
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Figure 3. Gibb’s free energy change values and mutagenesis. Domain, complete heatmap, and
line chart of (A) Gpx7 and (B) GPx8. Line represents mean ∆∆G values and the bubbles represent
alanine mutagenesis. Red represents destabilizing missense mutations and blue represents stabilizing
missense mutations. Top residues with missense mutations and their corresponding ∆∆G values for
(C) GPx7 and (D) GPx8. (E) GPx7 structure and (F) Gpx8 structure showing intermolecular distances
in Angstrom between critical residues in red and neighboring residues in yellow.

3.4. Somatic Mutations, Energy Changes, and Cancer Types

In our analysis, we observed a range of folding energy changes caused by missense
mutations in GPx7-associated cancers. Figure 4 displays annotated missense mutations,
along with the corresponding cancer types and their impact on folding energy. Interestingly,
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we noted distinct energy changes, even among mutations occurring in the same type of
amino acids within similar cancer types. For instance, in small-intestine carcinoma, the
G137V mutation was found to highly destabilize GPx7 with a folding energy change of
5.07 kcal/mol. Conversely, the G124S mutation had a nearly neutral effect with a minimal
energy difference of 0.01 kcal/mol. These observations highlight the diverse impact of
somatic mutations on the stability of GPx7, even within the same cancer type. In Figure 4C,
we show that G137, C57, V168, and V176 are surface residues, and mutations here affect
how GPx7 interacts with the environment or other proteins. Specifically, C57 is identified
as an active site, and its substitution to tyrosine, known as C57Y, has been linked to skin
adnexal tumor development as reported in the COSMIC database. This mutation, C57Y,
has been shown to destabilize the GPx7 structure with a calculated ∆∆G of 2.38 kcal/mol.
As shown in Figure 4D, GPx8 destabilizing somatic mutations, L104W and N172H, are
located in the core of the protein while the stabilizing somatic mutations, S157F and D208N,
are on the surface of the GPx8 protein structure.
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in (A) GPx7 and (B) GPx8. Structural localization of top destabilizing (red) and top stabilizing (blue)
somatic mutations in (C) GPx7 and (D) GPx8. Wild-type residues in yellow.
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Furthermore, our analysis revealed that most somatic mutations of GPx8 destabilize
its structure. The L104W mutation was reportedly found in patients with carcinoma of the
kidney, and our analysis showed that it caused the highest energy change of 24.03 kcal/mol.
The GPx8 somatic mutation with the least energy change is S157F (∆∆G = −1.23 kcal/mol)
and was discovered in patients with skin carcinoma [13].

3.5. Comparative and Statistical Analyses

The boxplots in Figure 5 display the distribution of the Alphamissense and Meta-SNP
scores within each category, allowing for an easy comparison of the central tendency,
variability, and potential outliers. The highly destabilizing category (>2.5) for GPx7 and
GPx8 shows the least variability when predicted by Meta-SNP and Alphamissense tools.
The Analysis of Variance (ANOVA) yielded a p-value of 2 × 10−16 that provides strong
evidence against the null hypothesis, indicating that there are significant differences in the
Meta-SNP and Alphamissense scores across the five energy change categories.

Cancers 2025, 17, x FOR PEER REVIEW  10  of  14 
 

 

3.5. Comparative and Statistical Analyses 

The boxplots  in Figure 5 display  the distribution of  the Alphamissense and Meta-

SNP scores within each category, allowing for an easy comparison of the central tendency, 

variability, and potential outliers. The highly destabilizing category (>2.5) for GPx7 and 

GPx8 shows the least variability when predicted by Meta-SNP and Alphamissense tools. 

The Analysis of Variance  (ANOVA) yielded a p-value of 2 × 10−16  that provides strong 

evidence against the null hypothesis, indicating that there are significant differences in the 

Meta-SNP and Alphamissense scores across the five energy change categories. 

 

Figure 5. Statistical analysis of our Foldx predictions for Alphamissense (top row (A,C)) and Meta-

SNP (bottom row (B,D)). 

4. Discussion 

This scientific investigation provides valuable insights into the effects of specific rare 

missense mutations on the structural stability and functional  implications of GPx7 and 

GPx8. While the experimental approach remains slow, tedious, and labor-intensive, we 

provided an alternative computational approach to investigate the role of missense mu-

tations. This approach has been applied to several other proteins, including Myeloperox-

idase [14] and Thyroid Peroxidase [15]. Most rare missense mutations have a very  low 

frequency (<0.5%). We generated all possible missense mutations of GPx7 and GPx8, and 

some mutations have been  identified  in  the  literature while most  remain unidentified. 

When compared with reliable and robust tools, our prediction shows a significantly high 

correlation with a p-value < 2 × 10−16. In this study, we highlighted ten missense mutations 

in Figure 3A,B with significant impacts on the structures of GPx7 and GPx8. These muta-

tions have neither been investigated nor discovered. G175 and G153 are conserved resi-

dues in GPx8 and GPx7, respectively. We inferred that they are in an important domain 

that  serves  critical  functions. The A54T mutation  in GPx7  identified  through genomic 

Figure 5. Statistical analysis of our Foldx predictions for Alphamissense (top row (A,C)) and
Meta-SNP (bottom row (B,D)).

4. Discussion
This scientific investigation provides valuable insights into the effects of specific rare

missense mutations on the structural stability and functional implications of GPx7 and GPx8.
While the experimental approach remains slow, tedious, and labor-intensive, we provided
an alternative computational approach to investigate the role of missense mutations. This
approach has been applied to several other proteins, including Myeloperoxidase [14] and
Thyroid Peroxidase [15]. Most rare missense mutations have a very low frequency (<0.5%).
We generated all possible missense mutations of GPx7 and GPx8, and some mutations
have been identified in the literature while most remain unidentified. When compared
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with reliable and robust tools, our prediction shows a significantly high correlation with a
p-value < 2 × 10−16. In this study, we highlighted ten missense mutations in Figure 3A,B
with significant impacts on the structures of GPx7 and GPx8. These mutations have neither
been investigated nor discovered. G175 and G153 are conserved residues in GPx8 and
GPx7, respectively. We inferred that they are in an important domain that serves critical
functions. The A54T mutation in GPx7 identified through genomic screening was associated
with patients exhibiting intellectual disability [16], with a significant destabilizing effect
(3.38 kcal/mol) on the protein. We also identified another mutation, A54W, in the same
position with significantly high destabilizing features. The K182R mutations on GPx8 have
been reported as an inheritable/Mendelian trait and as a somatic mutation. K182R as a
germline variant increased the risk of epithelial ovarian cancer [17]. Moreover, K182R has
been identified as a sporadic or somatic mutation associated with soft tissue tumor in the
gastrointestinal tract [18]. K182R inactivates the mTORC1 repressor gene, DEPDC5, thereby
driving the progression of duodenal cancer [19]. We predicted some somatic mutations to
have a neutral effect on the stability of GPx7 and GPx8. However, it was shown that they
are part of polygenic variants driving the disease phenotype. These findings establish a
foundational framework to explore clinically relevant mutations, distinguishing those with
potential driver roles from incidental, passenger mutations.

Based on our results, we demonstrate that most somatic mutations of GPx7 occur
on surface residues, as in the cases of G137, C57, V168, and V176. For C57, it has been
established that enzymes that utilize cysteine as an active site rely on its deprotonation for
activity. Any alterations in cysteine at an active site may reduce the protein stability and
inhibit the enzymatic function of the protein [20]. However, the role of these residues at the
surface needs further investigation. The top destabilizing somatic mutation of GPx8 affects
residues in highly conserved domains. The L104W mutation occurs on residue that is part
of the Glutathione Peroxidase Signature_2 domain, and N172H interacts with V171 in the
164WNFWKYLV171 domain. This suggests a potential role of these mutations in compromis-
ing the stability and function of GPx8, potentially contributing to the development and
progression of associated cancers. From the analysis of the heatmap, specific regions have
been identified and designated as “unidentified domains”, which are deemed crucial for
the functioning of GPx7 and GPx8. Structurally, these domains are integral components of
the beta-sheet structure and exhibit conservation in both GPx7 and GPx8. The positioning
of residues, whether within the hydrophobic core or the hydrophilic periphery, and their
interactions with neighboring residues are pivotal in determining the potential impact of
mutations. Typically, residues within 8 Å are considered contact residues, signifying their
physical interaction with one another [21].

The residue G153 occupies a central position within the GPx7 structure and interacts
with residues located within a conserved domain, notably including the A150 residue.
Furthermore, the substitution of glycine at position 153 with tryptophan has been observed
to escalate Van der Waal steric clashes, thereby distorting the structure of GPx7. Another
significant interaction involves A54, which interacts with two phenylalanine residues, F89
and F144, situated within distinct conserved domains. Notably, F89 is associated with the
glutathione Peroxidase Signature_2 domain, while F144 is located within a domain that has
been identified as critical to the structure and function of GPx7. It has been observed that the
substitution of alanine, characterized by a short hydrophobic sidechain, with a longer, polar,
or aromatic side chain results in constriction, leading to instability in the GPx7 structure.
In the case of GPx8, the residue G175, which is conserved within its structure, plays a
crucial role owing to its hydrophobic nature and central location, thereby significantly
contributing to the stability of GPx8. Most substitutions of G175 have been predicted to
result in destabilization. Additionally, P162 has been identified as the second most-critical
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residue for GPx8, as it is situated within an upstream loop of a beta-sheet and interacts
with numerous residues, including the conserved W164 residue. These findings underscore
the paramount importance of the location and interactions of residues in comprehending
the implications of mutations on protein structures, particularly within the context of GPx7
and GPx8.

Our statistical analysis, including ANOVA, reveals that the predicted stability effects
of mutations are consistent with pathogenicity scores provided by AlphaMissense and
Meta-SNP, tools chosen for their robust performance in similar research contexts. The
ANOVA results highlight that highly destabilizing mutations are statistically more likely
to be pathogenic or disease-causing compared to mutations with neutral or stabilizing
effects. This correlation supports the robustness of our predictions, underscoring the
potential of stability changes as a marker for pathogenicity. Further exploration of these
associations could provide valuable insights into the molecular mechanisms underlying
mutation-driven complex diseases. While these findings are promising, we recognize
inherent limitations and potential biases in our computational approach. It is important
to note that experimental studies of GPx7 and GPx8 structures would be invaluable, as
they could reveal essential data and structural details that in silico methods may overlook.
Additionally, it is crucial to recognize that mutations in other genes might also play a role
in the development of cancers linked to GPx7 and GPx8, underscoring the complexity of
the genetic factors involved. Future studies may incorporate additional predictive tools
and experimental validation to further enhance the reliability of these predictions.

5. Conclusions
In conclusion, our comprehensive analysis of somatic mutations in GPx7 and GPx8

provides valuable insights into their impact on protein structure and stability. By combining
computational methods and experimental data, we can further our understanding of
the potential implications of these mutations in cancer development and progression.
Understanding the molecular underpinnings of diseases, particularly at the level of somatic
mutations, holds significant clinical relevance. By elucidating the structural and stability
consequences of missense mutations, we will further study the biological significance
of these mutation to uncover the pathogenic mechanisms involved in different cancer
types. This knowledge can inform clinical diagnosis, treatment strategies, and aid in the
development of targeted therapies.
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