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Simple Summary: This study aimed to develop and validate a radiomic model for predicting
overall survival (OS) in glioblastoma multiforme (GBM) patients using pre-treatment MRI images.
A retrospective dataset of 289 patients from multiple institutions was used to extract 660 radiomic
features (RFs) from each patient’s tumor volume. The initial model was enhanced by incorporating
clinical variables and validated through repeated three-fold cross-validation. The final clinical–
radiomic model utilized primary gross tumor volume (GTV) and T2-FLAIR MRI modality and
includes the age variable and two robust RFs. The model achieved a moderately good discriminatory
performance (C-Index: 0.69) and significant patient stratification (p = 7 × 10−5) on the validation
cohort. Notably, the trained model exhibited the highest integrated area under curve (iAUC) at
11 months (0.81) in the literature. The study concluded that the validated clinical–radiomic model
can effectively stratify GBM patients into low and high-risk groups based on OS. Future work will
focus on integrating deep learning-based features and standardized convolutional filters to improve
OS predictions.

Abstract: Purpose: To develop and validate an MRI-based radiomic model for predicting overall
survival (OS) in patients diagnosed with glioblastoma multiforme (GBM), utilizing a retrospective
dataset from multiple institutions. Materials and Methods: Pre-treatment MRI images of 289 GBM
patients were collected. From each patient’s tumor volume, 660 radiomic features (RFs) were ex-
tracted and subjected to robustness analysis. The initial prognostic model with minimum RFs was
subsequently enhanced by including clinical variables. The final clinical–radiomic model was de-
rived through repeated three-fold cross-validation on the training dataset. Performance evaluation
included assessment of concordance index (C-Index), integrated area under curve (iAUC) alongside
patient stratification into low and high-risk groups for overall survival (OS). Results: The final prog-
nostic model, which has the highest level of interpretability, utilized primary gross tumor volume
(GTV) and one MRI modality (T2-FLAIR) as a predictor and integrated the age variable with two
independent, robust RFs, achieving moderately good discriminatory performance (C-Index [95%
confidence interval]: 0.69 [0.62–0.75]) with significant patient stratification (p = 7 × 10−5) on the
validation cohort. Furthermore, the trained model exhibited the highest iAUC at 11 months (0.81) in
the literature. Conclusion: We identified and validated a clinical–radiomic model for stratification
of patients into low and high-risk groups based on OS in patients with GBM using a multicenter
retrospective dataset. Future work will focus on the use of deep learning-based features, with recently
standardized convolutional filters on OS tasks.

Keywords: magnetic resonance imaging (MRI); radiomics; machine learning; clinical applications;
glioblastoma multiforme
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1. Introduction

Glioblastoma multiforme (GBM) is a fatal primary brain neoplasm [1], classified as a
Grade IV glioma due to its aggressive nature and propensity for rapid progression. The
median survival for patients with GBM is approximately 15 months after the initial diag-
nosis [2]. The poor prognosis may be attributed to the considerable genetic heterogeneity
observed within GBM tumor tissue [3]. Accurate prediction of a patient’s overall survival
(OS) is important for guiding the optimal selection of treatment and management strate-
gies. In current practice, a range of factors are used to predict the prognosis of patients
with GBM; these include patient factors such as age and performance status and tumor
factors such as the molecular genetic tumor profile, dimensions of the neoplasm prior to
surgery and ability to maximally resect the tumor [4]. However, the subjective assessment
of some of these factors highlights the increasing necessity for objective and quantitative
radiological assessment.

Neurosurgical procedures, important for diagnosis and characterizing brain tumors [5],
can be limited by tumor location, their invasiveness and sampling scope and can potentially
miss genetic diversity within tumors [6]. Non-invasive quantitative imaging analysis could
complement biopsies by evaluating the entire tumor and may substitute them when they
are unsafe or not viable [7]. Magnetic resonance imaging (MRI) plays a pivotal role in
neuro-oncology for both diagnoses and the assessment of treatment response, offering
detailed tumor visualization without ionizing radiation and providing superior soft tissue
contrast compared to X-ray and computer tomography (CT) scans [8]. Radiomic analysis
is an expanding field in medical imaging as it deals with the extraction of quantitative
features and texture variations of the radiological images to uncover patterns not visible to
the naked eye. It utilizes advanced imaging techniques to assess tumor heterogeneity [9]
and the microenvironment [10]. The radiomic features are to train models using statistical
and machine learning (ML) methods for classification and regression tasks, as detailed in
the literature [11]. Radiomics can play an important future role in enhancing personalized
and precise patient care [12,13].

For time-to-event survival analysis of GBM, prior research demonstrated the effective-
ness of radiomics based on MRI for risk stratification [14–17]. Previous radiomic models
often incorporated a large number of features, which presented challenges in interpretation
and risk for overfitting, deviating from established radiomic guidelines [18]. There is a
need for a radiomic-based model for GBM that incorporates a minimum set of stable and
interpretable features, similar to those developed for other cancer types [19,20].

In this study, we seek to bridge this gap by prioritizing reproducible, stable features
and interpretable ML models with a minimal number of radiomic features (RFs) to stratify
GBM patients into high and low-risk groups based on survival information. We consider
limitations in dealing with real-world data such as reliance on a single region of interest
(ROI), the gross tumor volume (GTV) used in neuro-oncology radiotherapy, access to a
limited number of MRI sequences and variable MRI acquisition parameters across patients.

2. Materials and Method
2.1. Study Population

In this study, radiomic signatures were developed and validated based on 289 patients
with GBM. The study included two datasets: (1) the publicly available BraTS (Brain Tumor
Segmentation) Challenge 2020 including 236 GBM cases [21–23] and (2) a local dataset
called STORM_GLIO, a retrospective collection of patients with a diagnosis of GBM treated
at our institution between April 2014 and April 2018. The STORM_GLIO dataset included
53 eligible cases from a total of 108 patients. The four preoperative MRI sequences included
in both datasets were T1-weighted (T1), T1-weighted contrast-enhanced (T1ce), T2 weighted
(T2) and T2 fluid attenuated inversion recovery (T2-FLAIR) following the guidelines of the
response assessment in the neuro-oncology (RANO) working group [24]. Both datasets
also provided OS and age information.
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2.2. Study Design

Figure 1 shows the study design. A time-to-event task, assessing OS, was defined
as the duration in days from the initial pathological diagnosis to either the date of death
(censored = 1) or the last known date that the patient was alive (censored = 0). Patients
were randomly allocated into training and validation datasets using an 80/20 ratio for
time-to-event OS prediction. Initially, clinical parameters were derived from the training
cohort. These were integrated with radiomic features extracted from the primary gross
tumor volume (GTV) outlined on the pre-treatment MRI scans. The risk-stratification
model signatures were crafted within the training cohort and later assessed in the valida-
tion cohort.
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Figure 1. The workflow of the study: dataset splitting, feature extraction, stability analysis, model
building, model validation.

To measure the accuracy of the model in stratifying patients into low and high-risk
groups, we used a number of tools including the concordance index (C-Index) and the
integrated area under the time-dependent ROC curve (iAUC) at 11 months introduced by
our clinicians and model calibration.

2.3. Image Pre-Processing and Feature Extraction

The BraTS scans, originating from 19 different institutions, were acquired using diverse
clinical protocols and scanners. Image pre-processing involved several steps for this
dataset. First, MRI scans were converted from DICOM to NifTI format. Then, N4 bias
correction was applied to scans as a temporary preparatory step for registration [25]. T1,
T2 and FLAIR scans were registered to the T1ce sequence. Next, T1ce was registered to
the SRI24 anatomical atlas [26], yielding co-registered, resampled volumes with uniform
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1 × 1 × 1 mm3 isotropic voxel dimensions. A pre-trained deep learning model was used
for brain tissue extraction from all scans, followed by intensity Z-scoring normalization.
All steps were executed using the Cancer Imaging Phenomics Toolkit (CaPTk) [27]. For
each MRI scan, the voxel resolution was fixed to 1 × 1 × 1 mm3 and the matrix size was
fixed to 240 × 240 × 155.

For the image pre-processing of the STORM_GLIO dataset, we adopted techniques
similar to those employed in curating the BraTS 2020 dataset. These included (1) skull strip-
ping utilizing the HD-BET algorithm [28] and (2) applying rigid registration of all sequences
to align with the T1ce modality, which is a previously validated workflow [29,30]. The MRI
scans were uniformly resampled using B-splines to an isotropic voxel size of 1 × 1 × 1 mm3.
The size of the resampled MRI images varied, as reported in the Supplementary Materi-
als Table S1. The image pre-processing pipeline and settings were performed based on the
guidelines established by the Image Biomarker Standardization Initiative (IBSI) [31].

Within the BraTS 2020 challenge, three distinct tumor regions were identified: en-
hancing tumor (ET), tumor core (TC; including both enhancing tumor and necrotic re-
gions) and whole tumor (WT; comprising enhancing tumor, necrotic and edema). The
STORM_GLIO dataset included manually delineated GTV segmentation, defined as the
visible extent of malignant growth [32]. Based on previous validations [30,31], GTV and
TC were treated as analogous regions for radiomic assessment. Using the four MRI scans
associated to each patient, a total of 660 (4 × 165) imaging features were derived using the
MATLAB version of Spaarc Pipeline for Automated Analysis and Radiomics Computing
(SPAARC, https://www.spaarc-radiomics.io/, accessed on 1 July 2024) [33,34]. These
imaging features are a large set of numerical indicators that describe various aspects of the
characteristics of the tumor, such as its shape, texture and intensity patterns. All features,
which were standardized following IBSI guidelines [31], were extracted using a 3D ap-
proach. The image pre-processing settings and collected radiomic features are summarized
in Supplementary Figure S1.

2.4. Stability Analysis

The robustness of the radiomic feature against variations such as acquisition parame-
ters and patient positioning were evaluated using image augmentation techniques such
as those used by Zwanenburg et al. [35]. In this study, GTVs underwent rotations (−4◦,
−2◦, 0◦, 2◦, 4◦) and volume changes (−20%, −10%, 10%, 20%) in the training cohort. This
generated a set of 20 variant images per patient for feature stability analysis. The intra-class
correlation coefficient (ICC) with a 95% confidence interval (CI) was computed for each
feature to assess consistency across such variations. When building the model, features with
an ICC below 0.75 at the lower bound of the 95% CI were discarded. The same exclusion
criteria were applied to the features extracted from the validation cohort.

2.5. Identifying a Clinical and Radiomic Signature

For the time-to-event task, three feature selection methods were used, helping to
avoid overfitting and enhance the model’s generalizability to new, unseen datasets. The
fundamental steps of the workflow are shown in Figure 2: (i) feature pre-processing,
(ii) feature selection (detailed workflow in Supplementary Materials Figure S2), (iii) hyper-
parameter optimization for the ML algorithms, (iv) model building with internal validation.
With the exception of (iv), all steps were employed with three-fold cross validation and
33 repetitions on the training data following the approach used by Kim et al., 2009 [36].

https://www.spaarc-radiomics.io/
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(i) Yeo-Johnson transformation was utilized to align the feature distributions with a
normal distribution [37]. Then, features were z-score normalized. Both the transformation
and the normalization were applied to the training dataset. The parameters derived from
these processes were utilized to normalize the features in the validation dataset.

(ii) Following the approach used by Leger et al., 2017 [38], three feature selection
methods were used: mutual information (MutInfo) [39], minimal redundancy maximum
relevance (MRMR) [40] and regularized cox regression (Lasso) [41]. After feature selection,
three prognostic models were used: regularized Cox regression (Cox-Lasso), gradient boost-
ing survival (GBS) and random survival forests (RSF) [42]. These models are specifically
designed for survival analysis, offering complementary approaches to analyzing the data
and potentially enhancing the accuracy and robustness of the risk stratification.

(iii) To handle overfitting, hyperparameter-tuning was conducted through bootstrap
sampling of the training datasets for each model.

(iv) To adhere to the radiomic guideline and meet the minimum feature number
requirement of three features, including clinical information (age) [18], the two features
collected and counted from each of the 99 cross-validation runs were ranked according to
their frequency of occurrence.

The prognostic models built using three features were evaluated on 200 bootstraps of
the entire training dataset to evaluate their stratification performance with the C-index.

The workflow was applied to build prognostic models on the training dataset. The
developed prognostic models were tested on the validation dataset.

2.6. Statistical Analysis

The survival distributions of training and validation datasets were compared using the
log-rank test. The χ2 test was employed to assess whether there were significant differences
in the distribution of categorical variables within the clinical data between the training and
validation cohorts. Continuous variables were assessed using the Mann–Whitney U test.

The risk scores derived from prognostic models were evaluated using Kaplan–Meier
curve survival analysis, with the median risk score serving as the threshold (cut-off) to
categorize patients into low and high-risk groups. The Kaplan–Meir curve was assessed by
the log-rank test. The stratification performance of the prognostic models was evaluated
by calculating the C-index. For calculating 95% CI, the C-index was evaluated using the
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200 bootstraps on the training and the validation cohorts [43]. Furthermore, the integrated
area under the time-dependent ROC curve (iAUC) was calculated [44]. While the conventional
AUC assesses event status and predictor value for each patient at fixed points over time, iAUC
measures the incremental change over time. We also calculated iAUC at eleven months for
all models as determined by our clinicians. Statistical and survival analyses were performed
with Python software version 3.9. A p-value < 0.05 was considered a statistically significant
difference. The image preprocessing and statistical analysis workflow are shown in Figure 2.
Permutation feature importance using the Sklearn library v1.3.2 was utilized to show feature
importance (cf. Supplementary Materials, Table S2).

3. Results

Clinical characteristics of both the training and validation cohorts are shown in Table 1.
The median value of OS was 11.9 months for the training cohort and 12.3 months for
the validation cohort. The OS data between the two cohorts did not show a significant
difference (p = 0.48, Table 1). Out of 660, 523 stable RFs remained after the robustness
analysis. All RFs demonstrated a weak correlation with age, with correlation coefficients
below 0.3 (Spearman < 0.3). In total, 227 RFs remained after excluding those with a high
correlation (Spearman > 0.95). The robust RFs were used to conduct feature selection
workflow via the three-fold cross-validation setting with 33 repetitions (99 runs). A pool
of 37 RFs were identified using Lasso feature selection. The top two RFs were selected
from the feature set by ranking occurrence frequency. For the top two RFs and age,
200 bootstrapping on the entire training cohort was applied to select the hyper parameters
of each three-feature prognostic model. The selected hyperparameters settings can be found
in Supplementary Materials Table S3.

Table 1. Characteristics of clinical variables for training and validation datasets.

Variable Training Dataset
Median (Range)

Validation Dataset
Median (Range)

Statistical Cohort
Comparison

Age (years) 61.1 [18.98–86.27] 63.4 [31.0–86.65] U: 0.65,
p-value: 0.74

OS (months) 11.9 [0.17–58.9] 12.3 [0.7666–57.7] U: 0.63,
p-value: 0.48

OS < 11-month (%) 43.7% (101/231) 39.7% (23/58) χ2: 0.19
p-value: 0.66

The clinical–radiomic signature based on age and two RFs was utilized to build prog-
nostic models on the training cohort. The top two RFs selected by the feature selection
methods are shown in Table 2. The optimal performing RFs, which need the minimum
number of MRI modalities, were achieved by the Lasso feature selection method. Ad-
ditionally, the Cox–Lasso model, which is the most interpretable model among various
machine learning models according to Luo et al. [45], exhibits a C-index of 0.64 as shown in
Figure 3c.

Table 2. The selected feature names are shown for each feature selection method. Each feature is
displayed with its dependent modality in parentheses, except for “morph_av”, which is a modality-
independent feature.

Feature Selection Method

Lasso MutInfo MRMR

morph_av

dzm_zdnu_3D
(FLAIR)

szm_glnu_3D
(T1ce)

stat_p10
(T2)

dzm_zdnu_3D
(FLAIR)

szm_glnu_3D
(T1ce)
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In the training cohort, the radiomic model had optimum results using only two RFs:
morph_av (morphological, occurrence: 31%) and dzm_zdnu_3D (texture, occurrence: 16%).
The model had a C-index of 0.60 (95% CI: 0.54–0.66) and a Hazard Ratio (HR) of 2.72 (95%
CI: 1.66–4.46). The two RFs were both derived from the FLAIR modality and exhibited
weak correlation with each other (Spearman < 0.6). Morph_av (IBSI: 2PR5) is a shape-based
feature providing surface-to-volume ratio. Dzm_zdnu_3D (IBSI: V294) is a texture feature
quantifying the association between spatial location and grey level value by measuring the
size of homogeneous zones (groups) within a specified distance. It captures the distribution
of such zone counts across various distances. It is derived from the Grey Level Distance
Zone Matrix (GLDZM).

In the validation dataset, the radiomic model had the best C-index (0.62, 95% CI:
54–71), and HR (2.97, 95% CI: 0.8–10.99) as reported in Table 3. In the training dataset, the
clinical–radiomic model, using a clinical feature and RFs, had the best C-index (0.63, 95%
CI: 0.56–0.74). As reported in Table 3, this model had a C-index (0.69, 95% CI: 0.62–0.75) in
the validation dataset.

The cut-off point for the Kaplan–Meier curve was 0.015 (c.f. Supplementary Materials
Table S4). The log-rank p-value was 6 × 10−5 in the training dataset. For the same cut-off
value, the log-rank p-value was 7 × 10−5 in the validation dataset (Figure 4a,b). Kaplan–
Meier plots clearly demonstrate the model’s consistent ability to distinguish between high
and low-risk groups across both training and validation datasets. The distinct separation
between the survival curves, coupled with the highly significant p-values, underscores the
model’s reliability and potential predictive power for diverse, unseen patient populations.
This robust performance suggests the model could be a valuable tool for tailoring prognoses
and developing personalized treatment strategies based on individual risk profiles.

Table 3. Univariate and Multivariate Cox regression analysis.

Univariate Cox Regression Analysis

Dataset Model Variable HR [95% CI] p-Value C-Index iAUC 11m-iAUC

Training
Clinical model Age 1.32

[1.15–1.50] 0.010 0.59
[0.53–0.64] 0.67 0.62

Radiomic model RFs Risk Score 2.72
[1.66–4.46] 0.007 0.60

[0.54–0.66] 0.67 0.63

Validation

Clinical Model Age 1.63
[1.23–2.16] 0.006 0.63

[0.56–0.68] 0.66 0.67

Radiomic model RFs Risk Score 2.97
[0.8–10.99] 0.290 0.62

[0.54–0.71] 0.79 0.78
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Table 3. Cont.

Multivariate Cox Regression Analysis

Dataset Model Variable HR [95% CI] p-Value C-Index iAUC 11m-iAUC

Training Clinical–radiomic
Model

Age 1.30
[1.14–1.49]

6 × 10−5 0.63
[0.56–0.74]

0.68 0.69morph_av 1.02
[0.87–1.20]

dzm_zdnu_3D 1.36
[1.13–1.62]

Validation
Clinical-radiomic

Model

Age 1.60
[1.21–2.13]

7 × 10−5 0.69
[0.62–0.75]

0.78 0.81morph_av 1.58
[1.08–2.29]

dzm_zdnu_3D 1.89
[1.19–3.01]
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Figure 4. Kaplan–Meier plots showing differences between (a) training and (b) validation datasets
stratified into low or high-risk groups by the Cox–Lasso model. The small p-values indicate a highly
reliable differentiation between the risk groups.

The iAUC at 11 months of the prognostic model with only two RFs had 0.63 in the
training dataset and 0.78 in the validation dataset. The iAUC at 11 months of the model with
only the age variable achieved 0.62 in the training dataset and 0.67 in the validation dataset.

The iAUC at 11 months of the clinical–radiomic model incorporating age and two RFs
was 0.69 in the training dataset and 0.81 in the validation dataset.

In Table 3, HR shows the most significant impact from the GLDZM-based feature with
a value of 1.89. Age and morphology features demonstrate almost identical effects, with
values of 1.60 and 1.58, respectively. Figure 5 shows a visual representation of both risk
groups on example cases.
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mesh of the tumor. (a) FLAIR (b) Tumor Mesh.

4. Discussion

In this study, we developed a clinical–radiomic prognostic model to stratify GBM
patients into low and high-risk groups by using preoperative MRI. It is important to note
that converting from the RTSTRUCT to mask can influence the radiomics analysis by
using a different software platform [46]. Therefore, we consistently used a single software
(Python) for generating masks in the STORM_GLIO dataset. Using robustness analysis
of radiomic features, feature selection methods provided two RFs derived from only the
FLAIR modality. The clinical–radiomic model was validated with a C-index of 0.69 with
significant differences on the stratified risk groups.

In Table 4, we compare the findings of our study with those reported in previous
investigations. We applied specific inclusion criteria: studies must use only radiomics
features, focus on GBM (Grade 4) and work on time-to-event tasks (overall survival).
Studies not meeting these criteria were excluded. The table reveals potential biases related
to patient sample size, specifically limited patient cohorts and single-center studies, which
may compromise the validity and reliability of the findings. For instance, while Hajianfar
et al. [17] reported the highest C-index, their study had the smallest patient cohort. To
mitigate this, we aimed to maximize our patient cohort from multiple centers. However,
potential bias risks remain in our study as well. It can be noted that Cepeda et al. [15]
reported a model built on multiple MRI modalities and 10 RFs (C-index = 0.61, and
iAUC = 0.77). A similar result (AUC = 0.75) with 57 RFs was obtained by Tixier et al. [14].
Verma et al. achieved a comparable performance (AUC = 0.78) with over 300 features and
multiple MRI modalities [16]. Additionally, Hajianfar et al. reported a C-index of 0.77 [17]
for a model based on the smallest patient cohort and using convolutional filters which were
not IBSI standardized at the time of publication [47]. Our study demonstrated a comparable
C-index and the best iAUC at 11 months. This was accomplished by utilizing the largest
patient cohort, employing the smallest number of RFs, deriving RFs from only the MRI
FLAIR modality and utilizing only one ROI (GTV).
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Table 4. The comparison of recent similar studies with our study.

References No. of
Patients

MRI
Sequence

Region of
Feature

Extraction

Extracted
Feature
Number

Selected
Feature
Number

Feature
Number

Guideline
(3–10)

ML Model Validation
Method

IBSI
Guideline

Performance
Metrics

Tixier et al.
[14] 234 T1 Gd-ET, NEC,

NET, TC 88 57 No Lasso Five-fold
CV Yes AUC: 0.75

Cepeda
et al. [15] 203 T1ce, T1,

T2, FLAIR
Tumor,

Peritumoral 15,720 10 Yes
Random

Forest
Survival

Five-fold
CV

Partially
(Convolutional

Filters)

iAUC: 0.77
C-index 0.61

Verma et al.
[16] 150 T1ce, T2,

FLAIR ET, NCR 3792 316 No - Five-fold
CV

Partially
(Convolutional

Filters)
AUC: 0.78

Hajianfar
et al. [17] 119 FLAIR,

T1ce
ET, TC, NEC,

ED 4471 - No Cox Boost
Three-fold

CV
Bootstrap

Partially
(Convolutional

Filters)
C-index: 0.77

Our Study 289 FLAIR GTV (TC) 689
2

(without
Age)

Yes Cox-Lasso

Three-fold
CV
33

repetitions
Bootstrap

Yes C-index: 0.69
iAUC: 0.81

Exploring several combinations of feature selection and machine learning algorithms,
we showed that the use of age, alongside one modality-independent morphology feature
(morph_av) and one GLDZM feature (dzm_zdnu_3D) from MRI FLAIR modality, yielded
the most favorable outcomes for generalizability on the validation set. This enables the
model to perform well in diverse healthcare settings, ranging from small local clinics to
large research hospitals. It provides dependable predictions and valuable insights using
data from various sources, highlighting its adaptability and reliability across different
medical environments. As can be seen in Figure 5b for the interpretation of RFs, the high-
risk patients can be characterized by very irregular boundaries and a non-smooth, irregular
shape. This means having a higher surface area to volume ratio (‘morph_av’). Additionally,
Zone Distance Non-Uniformity derived (ZDNU) from GLDZM measures the variability
of zone sizes and distances in a 3D image (dzm_zdnu_3D). In addition, patients in the
high-risk category have a higher ZDNU value which is attributed to a more heterogeneous
textural pattern (c.f. Figure 5a). This highlights that even regions appearing homogeneous
can display considerable variations in zone size at different distances. The combination of
RFs with age resulted in enhanced outcomes compared to using only clinical information
for GBM. This is a finding also reported by Cepeda et al. [15]. Integrating clinical (age) and
radiomic data can improve model performance, but it risks obscuring the significance of
clinical factors. Without well-structured feature selection and model building processes,
models may overfit the training data and perform poorly on new datasets, highlighting
the need for a careful balance between clinical and radiomic features. In the medical
domain, data sparsity/scarcity and imbalance pose significant challenges due to the rarity
of certain diseases, limited cohort sizes and missing clinical information, making it difficult
to collect comprehensive datasets [48]. In our research, we encountered similar challenges
in collecting comprehensive data, including various MRI sequences (T1, T1ce, T2 and
FLAIR) and multiple clinical parameters such as age, genetic information, survival metrics
and Karnofsky performance status. Acknowledging these clinical constraints, we aimed
to maximize the patient cohort by collecting a minimal number of clinical data, extracting
radiomics features from a minimal set of MR sequences. This approach was targeted to
achieve an optimal balance between data availability and model performance. Additionally,
the potential bias associated with the retrospective dataset was reduced by collecting a
multi-center patient cohort with the largest achievable sample size.

The performance of our model could be increased by using additional labels besides
GTV, such as the multiple regions of feature extraction used in previous studies, as shown
in Table 4. Additionally, deep learning (DL)-based features could be employed to enhance
performance in survival analysis. However, this study excluded deep radiomic features
due to their low reproducibility and interpretability which are important limitations for
clinical applications [49].
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Previous studies did not prioritize minimum requirements, such as using a singular
ROI or maximizing interpretability by minimizing the number of radiomic features. On
the other hand, our work is in line with recommendations by van Timmeren et al. [18]
suggesting that the number during building a radiomic model should be limited to the
range [3,10]. To mitigate overfitting, a workflow was designed including hyperparameter
optimization and resampling of the data. We reported the results of the prognostic model
on the independent validation dataset with this workflow.

5. Conclusion

In this study, we developed and validated a clinical–radiomic model for stratification
of GBM patients according to OS. To the best of our knowledge, this is the first study to
utilize MRI-based RFs following the IBSI guidelines while prioritizing clinical challenges,
interpretability issue and robustness analysis for GBM. This approach has resulted in supe-
rior performance compared to previous studies as reported by Tabassum et al., 2023 [11].
Our model utilized two independent RFs from FLAIR MRI modality and age. Due to
recent standardization of convolutional filters by the IBSI consensual guidelines [47], we
aim to use convolutional filters for RFs in the future. Furthermore, work is in progress
at our institution to explore the use of DL features to enhance performance, subject to
the verification of their interpretability. This could involve exploring the application of
multimodal foundation models, integrating additional clinical factors such as age, sex,
Karnofsky performance status or incorporating multi-modality imaging data (PET, CT etc.).
Other potential areas for performance improvement include incorporating diffusional or
functional MRI sequences and collecting more comprehensive clinical information, includ-
ing omics data such as genomics, transcriptomics, and metabolomics, to develop more
accurate and reliable models, which could be facilitated by larger patient cohorts.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers16193351/s1, Figure S1: Settings in IBSI compliant ter-
minology for radiomics analysis carried out with the SPAARC code. Figure S2: Feature Selection
Workflow: Correlation analysis using Spearman and Pearson methods, feature selection through
Lasso Cox, MRMR, and Mutual Information, ranking features over multiple iterations, feeding the
model with the selected features. Table S1: Selection of relevant MRI acquisition parameters for
the scans included the STORM_GLIO dataset. Table S2: Permutation feature importance: Permuta-
tion feature importance was conducted (Sklearn v1.3.2 in Python) test for 200 repetitions. Table S3:
The selected hyperparameters settings from 200 bootstrapped iterations of the training dataset.
Table S4: Feature weights and cut-off value. The weight of each feature and the cut-off value for
risk-stratification into low and high-risk groups.
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