Long-Distance Passive Sensing Tag Design Based on Multi-Source Energy Harvesting and Reflection Amplification
Abstract
:1. Introduction
2. Long-Distance Passive Sensing Tag Design
2.1. Multi-Source Energy Harvesting Circuit Design
2.2. Design of High Sensitivity Demodulation Circuit
2.3. Design of High-Gain and High-Energy Reflection Amplifier Circuit
3. Test and Verification
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lee, J.S.; Oh, J.; Jun, J.; Jang, J. Wireless hydrogen smart sensor based on Pt/Graphene- immobilized radio-frequency identification tag. ACS Nano 2015, 9, 7783–7790. [Google Scholar] [CrossRef] [PubMed]
- Inserra, D.; Hu, W.; Li, Z.; Li, G.; Zhao, F.; Yang, Z.; Wen, G. Screw relaxing detection with UHF RFID tag. IEEE Access 2020, 8, 553–564. [Google Scholar] [CrossRef]
- Xiao, Z.; Tan, X.; Chen, X.; Chen, S.; Zhang, Z.; Zhang, H.; Wang, J.; Huang, Y.; Zhang, P.; Zheng, L.; et al. An Implantable RFID Sensor Tag toward Continuous Glucose Monitoring. IEEE J. Biomed. Health Inform. 2015, 19, 910–919. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Yi, J.; Law, M.K.; Ling, Y.; Lee, M.C.; Ng, K.P.; Gao, B.; Luong, H.C.; Bermak, A.; Chan, M.; et al. A system-on-chip EPC Gen-2 Passive UHF RFID tag with embedded temperature sensor. IEEE J. Solid-State Circuits 2010, 45, 2404–2420. [Google Scholar]
- Shao, Z.; Wen, Y.; Xu, Z.; Bian, L.; Li, P.; Wen, G.; Li, Z.; Li, G.; Wang, Y.; Han, T.; et al. Cable current detection with passive rf sensor tags. IEEE Trans. Ind. Electron. 2022, 69, 930–939. [Google Scholar] [CrossRef]
- Virtanen, J.; Ukkonen, L.; Bjorninen, T.; Elsherbeni, A.Z.; Sydänheimo, L. Inkjet-Printed Humidity Sensor for Passive UHF RFID Systems. IEEE Trans. Instrum. Meas. 2011, 60, 2768–2777. [Google Scholar] [CrossRef]
- Kantareddy, S.N.R.; Mathews, I.; Bhattacharyya, R.; Peters, I.M.; Buonassisi, T.; Sarma, S.E. Long range battery-less pv-powered RFID tag sensors. IEEE Internet Things J. 2019, 6, 6989–6996. [Google Scholar] [CrossRef]
- Astigarraga, A.; Lopez-Gasso, A.; Golpe, D.; Beriain, A.; Solar, H.; Del Rio, D. A 21 m operation range RFID tag for “pick to light” applications with a photovoltaic harvester. Micromachines 2020, 11, 1013. [Google Scholar] [CrossRef] [PubMed]
- Sample, A.P.; Braun, J.; Parks, A.; Smith, J.R. Photovoltaic enhanced UHF RFID tag antennas for dual purpose energy harvesting. In Proceedings of the IEEE International Conference on RFID, Orlando, FL, USA, 6–8 October 2011; pp. 146–153. [Google Scholar]
- Abdulhadi, A.E.; Denidni, T.A. Self-powered multi-port UHF RFID tag-based-sensor. IEEE J. Radio Freq. Identif. 2017, 1, 115–123. [Google Scholar] [CrossRef]
- Abdulhadi, A.E.; Abhari, R. Multiport UHF RFID-tag antenna for enhanced energy harvesting of self-powered wireless sensors. IEEE Trans. Ind. Inform. 2016, 12, 801–808. [Google Scholar] [CrossRef]
- Kimionis, J.; Georgiadis, A.; Collado, A.; Tentzeris, M.M. Enhancement of RF tag backscatter efficiency with low-power reflection amplifiers. IEEE Trans. Microw. Theory Tech. 2014, 62, 3562–3571. [Google Scholar] [CrossRef]
- Khaledian, S.; Farzami, F.; Erricolo, D.; Smida, B. A Full-duplex bidirectional amplifier with low DC power consumption using tunnel diodes. IEEE Microw. Wirel. Compon. Lett. 2017, 27, 1125–1127. [Google Scholar] [CrossRef]
- Farzami, F.; Khaledian, S.; Smida, B.; Erricolo, D. Ultra-low power reflection amplifier using tunnel diode for RFID applications. In Proceedings of the IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego, CA, USA, 9–14 July 2017; pp. 2511–2512. [Google Scholar]
- Keshavarzian, P.; Okoniewski, M.; Nielsen, J. Active phase-conjugating rotman lens with reflection amplifiers for backscattering enhancement. IEEE Trans. Microw. Theory Tech. 2020, 68, 405–413. [Google Scholar] [CrossRef]
- Gumber, K.; Dejous, C.; Hemour, S. Harmonic reflection amplifier for widespread backscatter internet-of-things. IEEE Trans. Microw. Theory Tech. 2021, 69, 774–785. [Google Scholar] [CrossRef]
- Kimionis, J.; Georgiadis, A.; Kim, S.; Collado, A.; Niotaki, K.; Tentzeris, M.M. An enhanced-range RFID tag using an ambient energy powered reflection amplifier. In Proceedings of the IEEE MTT-S International Microwave Symposium, Tampa, FL, USA, 1–6 June 2014; pp. 1–4. [Google Scholar]
- Kimionis, J.; Tentzeris, M.M.; Georgiadis, A.; Collado, A. Inkjet-printed reflection amplifier for increased-range Backscatter radio. In Proceedings of the European Microwave Conference, Rome, Italy, 6–9 October 2014; pp. 5–8. [Google Scholar]
- Amato, F.; Peterson, C.W.; Degnan, B.P.; Durgin, G.D. Tunneling RFID Tags for Long-Range and Low-Power Microwave Applications. IEEE J. Radio Freq. Identif. 2018, 2, 93–103. [Google Scholar] [CrossRef]
- Fabbri, D.; Berthet-Bondet, E.; Masotti, D.; Costanzo, A.; Dardari, D.; Romani, A. Long range battery-less UHF-RFID platform for sensor applications. In Proceedings of the IEEE International Conference on RFID Technology and Applications, Pisa, Italy, 25–27 September 2019; pp. 80–85. [Google Scholar]
- Amato, F.; Peterson, C.W.; Degnan, B.P.; Durgin, G.D. A 45 μW bias power, 34 dB gain reflection amplifier exploiting the tunneling effect for RFID applications. In Proceedings of the IEEE International Conference on RFID, San Diego, CA, USA, 15–17 April 2015; pp. 137–144. [Google Scholar]
- Bito, J.; Bahr, R.; Hester, J.G.; Nauroze, S.A.; Georgiadis, A.; Tentzeris, M.M. A Novel Solar and Electromagnetic Energy Harvesting System With a 3-D Printed Package for Energy Efficient Internet-of-Things Wireless Sensors. IEEE Trans. Microw. Theory Tech. 2017, 65, 1831–1842. [Google Scholar] [CrossRef]
- Kurokawa, K. Power Waves and the Scattering Matrix. IEEE Trans. Microw. Theory Tech. 1965, 13, 194–202. [Google Scholar] [CrossRef]
Paper | Device | Frequency (GHz) | Input Power (dBm) | Gain (dB) | Output Power (dBm) | Dc Power (mW) | Power-Added Efficiency (PAE) |
---|---|---|---|---|---|---|---|
[14] | BFT25A BJT | 0.915 | −50 | 10.2 | −39.8 | 0.325 | 0.033 |
[15] | AI201A Tunnel Diode | 0.915 | −30 | 13 | −17 | 0.178 | 11.209 |
[16] | AI301A Tunnel Diode | 0.89 | −30 | 17 | −13 | 0.2 | 25.055 |
[17] | BFP840 HBT | 5.15 | −60 | 19.1 | −40.9 | 0.5 | 0.0163 |
[18] | AI301A GaAs Tunnel Diode | 0.8292 | −43 | 20 | −23 | 0.144 | 3.479 |
[19] | BFT25A BJT | 0.9 | −50 | 29 | −21 | 0.664 | 1.196 |
[20] | BJT | 0.9 | −50 | 30 | −20 | 0.605 | 1.653 |
[21] | MBD5057-E28 Ge Tunnel Diode | 5.8 | −75 | 40 | −35 | 0.045 | 0.702 |
This work | BFU550A BJT | 0.897 | −30 | 23.8 | −6.2 | 1.573 | 15.248 |
0.912 | −40 | 30.3 | −9.7 | 1.524 | 7.033 | ||
0.918 | −50 | 37 | −13 | 1.515 | 3.308 | ||
0.919 | −60 | 44 | −16 | 1.515 | 1.658 |
Paper | Environmental Energy | Frequency (GHz) | Tag Demodulation Sensitivity (dBm) | Collector Sensitivity (dBm) | Communication Distance (m) |
---|---|---|---|---|---|
[20] | Rf and battery | 0.865–0.868 | −17.8 | −70 | 15 |
[7] | Solar energy | 0.800~1 | −31 | −80 | 20 |
[8] | Rf and solar | 0.868 | −35 | - | 21 |
[9] | Rf and solar | 0.915 | <−29 | −84 | 24 |
[10] | Batteries, RF and solar | 0.932 | −24.9 | −85 | 25.6 |
[3] | Rf and solar | 0.860~0.960 | −25.34 | −75 | 27 |
This work | Rf and solar | 0.920~0.925 | −45.5 | −84 | 96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, G.; Pan, C.; Wu, B.; Xu, Z.; Li, S.; Zhang, Y.; Yang, Y.; Zou, Z.; Shi, C.; Wang, M. Long-Distance Passive Sensing Tag Design Based on Multi-Source Energy Harvesting and Reflection Amplification. Micromachines 2025, 16, 18. https://doi.org/10.3390/mi16010018
Li G, Pan C, Wu B, Xu Z, Li S, Zhang Y, Yang Y, Zou Z, Shi C, Wang M. Long-Distance Passive Sensing Tag Design Based on Multi-Source Energy Harvesting and Reflection Amplification. Micromachines. 2025; 16(1):18. https://doi.org/10.3390/mi16010018
Chicago/Turabian StyleLi, Gang, Chong Pan, Bo Wu, Zhiliang Xu, Shihua Li, Yehua Zhang, Yongjun Yang, Zhuohang Zou, Chang Shi, and Muze Wang. 2025. "Long-Distance Passive Sensing Tag Design Based on Multi-Source Energy Harvesting and Reflection Amplification" Micromachines 16, no. 1: 18. https://doi.org/10.3390/mi16010018
APA StyleLi, G., Pan, C., Wu, B., Xu, Z., Li, S., Zhang, Y., Yang, Y., Zou, Z., Shi, C., & Wang, M. (2025). Long-Distance Passive Sensing Tag Design Based on Multi-Source Energy Harvesting and Reflection Amplification. Micromachines, 16(1), 18. https://doi.org/10.3390/mi16010018