PET-PZT Dielectric Polarization: Electricity Harvested from Photon Energy
Abstract
:1. Introduction
2. Experimental
3. Results
4. Discussion
4.1. Photon Energy Thermal Effect Evaluation
4.2. Dielectric Polarization Electricity Harvesting from Photon Energy
4.3. Photon Energy-PET-PZT Dielectric Polarization Electricity: Conversion Evaluation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Naranjo, B.; Gimzewski, J.K.; Putterman, S. Observation of nuclear fusion driven by a pyroelectric crystal. Nature 2005, 434, 1115–1117. [Google Scholar] [CrossRef]
- Poplavko, Y.; Yakymenko, Y. Functional Dielectrics for Electronics: Fundamentals of Conversion Properties; Woodhead Publishing: Sawston, UK, 2020. [Google Scholar]
- Pilon, L.; McKinley, I.M. Pyroelectric energy conversion. Annu. Rev. Heat Transf. 2016, 19, 279–344. [Google Scholar] [CrossRef]
- Mitofsky, A.M. Direct Energy Conversion; AT Still University: Kirksville, MI, USA, 2018. [Google Scholar]
- Pecunia, V.; Silva, S.R.P.; Phillips, J.D.; Artegiani, E.; Romeo, A.; Shim, H.; Park, J.; Kim, J.H.; Yun, J.S.; Welch, G.C. Roadmap on energy harvesting materials. J. Phys. Mater. 2023, 6, 042501. [Google Scholar] [CrossRef]
- Haertling, G.H. Ferroelectric ceramics: History and technology. J. Am. Ceram. Soc. 1999, 82, 797–818. [Google Scholar] [CrossRef]
- Lang, S.B. Pyroelectricity: From ancient curiosity to modern imaging tool. Phys. Today 2005, 58, 31–36. [Google Scholar] [CrossRef]
- Brewster, D. The Edinburgh Journal of Science; William Blackwood: Edinburgh, UK, 1824; Volume 1. [Google Scholar]
- Maxwell, J.C. A Treatise on Electricity and Magnetism; Clarendon Press: Oxford, UK, 1873; Volume 2, pp. 3408–3425. [Google Scholar]
- Böttcher, C. Theory of Electric Polarization: Dielectrics in Static Fields; Elsevier: Amsterdam, The Netherlands, 1973. [Google Scholar]
- Landau, L.D.; Lifshitz, E. Electrodynamics of Continuous Media, 2nd ed.; Lifshitz, E.M., Pitaevskii, L.P., Eds.; Pergamon: Aeolis, Greece, 1984. [Google Scholar]
- Deluca, M.; Sakashita, T.; Galassi, C.; Pezzotti, G. Investigation of local orientation and stress analysis of PZT-based materials using micro-probe polarized Raman spectroscopy. J. Eur. Ceram. Soc. 2006, 26, 2337–2344. [Google Scholar] [CrossRef]
- Lheritier, P.; Torelló, A.; Usui, T.; Nouchokgwe, Y.; Aravindhan, A.; Li, J.; Prah, U.; Kovacova, V.; Bouton, O.; Hirose, S. Large harvested energy with non-linear pyroelectric modules. Nature 2022, 609, 718–721. [Google Scholar] [CrossRef]
- Zhou, Y.; Ding, T.; Guo, J.; Xu, G.; Cheng, M.; Zhang, C.; Wang, X.-Q.; Lu, W.; Ong, W.L.; Li, J. Giant polarization ripple in transverse pyroelectricity. Nat. Commun. 2023, 14, 426. [Google Scholar] [CrossRef]
- Mohammadnia, A.; Rezania, A. Pyroelectric energy harvesting from power electronic substrates. Energy Convers. Manag. 2023, 290, 117233. [Google Scholar] [CrossRef]
- Wang, H.; Ng, L.S.; Li, H.; Lee, H.K.; Han, J. Achieving milliwatt level solar-to-pyroelectric energy harvesting via simultaneous boost to photothermal conversion and thermal diffusivity. Nano Energy 2023, 108, 108184. [Google Scholar] [CrossRef]
- Fang, Z.; Zhou, Z.; Yi, M.; Zhang, Z.; Luo, X.; Ahmed, A. A roller-bearing-based triboelectric nanosensor for freight train synergistic maintenance in smart transportation. Nano Energy 2023, 106, 108089. [Google Scholar] [CrossRef]
- Bai, Y.; Jantunen, H.; Juuti, J. Ferroelectric oxides for solar energy conversion, multi-source energy harvesting/sensing, and opto-ferroelectric applications. ChemSusChem 2019, 12, 2540–2549. [Google Scholar] [CrossRef]
- Wang, Z.L.; Wu, W. Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. Angew. Chem. Int. Ed. 2012, 51, 11700–11721. [Google Scholar] [CrossRef]
- Feyman, R.P. QED: The Strange Theory of Light and Matter; Princeton University Press: Princeton NJ, USA, 1985. [Google Scholar]
- Xu, Y. Ferroelectric Materials and Their Applications; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Okuyama, M.; Ishibashi, Y. Ferroelectric Thin Films: Basic Properties and Device Physics for Memory Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2005; Volume 98. [Google Scholar]
- Polla, D.L. Microelectromechanical systems based on ferroelectric thin films. Microelectron. Eng. 1995, 29, 51–58. [Google Scholar] [CrossRef]
- Muralt, P. Ferroelectric thin films for micro-sensors and actuators: A review. J. Micromechanics Microengineering 2000, 10, 136. [Google Scholar] [CrossRef]
- Polla, D.; Francis, L. Ferroelectric thin films in micro-electromechanical systems applications. MRS Bull. 1996, 21, 59–65. [Google Scholar] [CrossRef]
- Nikolov, A.; Wasan, D. Air bubble bursting phenomenon at the air-water interface monitored by the piezoelectric-acoustic method. Adv. Colloid Interface Sci. 2019, 272, 101998. [Google Scholar] [CrossRef]
- Zhou, Y.; Ding, T.; Xu, G.; Yang, S.; Qiu, C.-W.; He, J.; Ho, G.W. Sustainable heat harvesting via thermal nonlinearity. Nat. Rev. Phys. 2024, 6, 769–783. [Google Scholar] [CrossRef]
- Knopf, G.K.; Uchino, K. Light Driven Micromachines; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Bai, Y. Photoresponsive piezoelectrics. Front. Mater. 2021, 8, 636712. [Google Scholar] [CrossRef]
- Chen, C.; Li, X.; Lu, T.; Liu, Y.; Yi, Z. Reinvestigation of the photostrictive effect in lanthanum-modified lead zirconate titanate ferroelectrics. J. Am. Ceram. Soc. 2020, 103, 4074–4082. [Google Scholar] [CrossRef]
- Bowen, C.R.; Taylor, J.; LeBoulbar, E.; Zabek, D.; Chauhan, A.; Vaish, R. Pyroelectric materials and devices for energy harvesting applications. Energy Environ. Sci. 2014, 7, 3836–3856. [Google Scholar] [CrossRef]
- Pandey, R.; Vats, G.; Yun, J.; Bowen, C.R.; Ho-Baillie, A.W.; Seidel, J.; Butler, K.T.; Seok, S.I. Mutual insight on ferroelectrics and hybrid halide perovskites: A platform for future multifunctional energy conversion. Adv. Mater. 2019, 31, 1807376. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikolov, A.; Murad, S.; Lee, J. PET-PZT Dielectric Polarization: Electricity Harvested from Photon Energy. Micromachines 2024, 15, 1505. https://doi.org/10.3390/mi15121505
Nikolov A, Murad S, Lee J. PET-PZT Dielectric Polarization: Electricity Harvested from Photon Energy. Micromachines. 2024; 15(12):1505. https://doi.org/10.3390/mi15121505
Chicago/Turabian StyleNikolov, Alex, Sohail Murad, and Jongju Lee. 2024. "PET-PZT Dielectric Polarization: Electricity Harvested from Photon Energy" Micromachines 15, no. 12: 1505. https://doi.org/10.3390/mi15121505
APA StyleNikolov, A., Murad, S., & Lee, J. (2024). PET-PZT Dielectric Polarization: Electricity Harvested from Photon Energy. Micromachines, 15(12), 1505. https://doi.org/10.3390/mi15121505