Guidance on Energy Intake Based on Resting Energy Expenditure and Physical Activity: Effective for Reducing Body Weight in Patients with Obesity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Patients
2.3. Registration
2.4. Intervention
2.5. Data Collection
2.5.1. BW and Composition
2.5.2. REE
2.5.3. Physical Activity
2.5.4. Diet-Induced Thermogenesis
2.5.5. Clinical Parameters
2.6. Outcomes
2.7. Sample Size
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- NCD Risk Factor Collaboration (NCD-RisC). Trends in adult body-mass index in 200 countries from 1975 to 2014: A pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet 2016, 387, 1377–1396. [Google Scholar] [CrossRef]
- Chao, A.M.; Quigley, K.M.; Wadden, T.A. Dietary interventions for obesity: Clinical and mechanistic findings. J. Clin. Investig. 2021, 131, e140065. [Google Scholar] [CrossRef]
- Japan Society for the Study of Obesity (Ed.) Life Science Publishing: Tokyo, Japan, 2016. Volume C3047. Available online: http://www.jasso.or.jp/contents/magazine/journal/2022_1.html (accessed on 12 December 2024).
- Tham, K.W.; Abdul Ghani, R.; Cua, S.C.; Deerochanawong, C.; Fojas, M.; Hocking, S.; Lee, J.; Nam, T.Q.; Pathan, F.; Saboo, B.; et al. Obesity in South and Southeast Asia—A new consensus on care and management. Obes. Rev. 2023, 24, e13520. [Google Scholar] [CrossRef] [PubMed]
- Jensen, M.D.; Ryan, D.H.; Apovian, C.M.; Ard, J.D.; Comuzzie, A.G.; Donato, K.A.; Hu, F.B.; Hubbard, V.S.; Jakicic, J.M.; Kushner, R.F.; et al. 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: A report of the American college of cardiology/American heart association task force on practice guidelines and the obesity society. J. Am. Coll. Cardiol. 2014, 63, 2985–3023. [Google Scholar] [CrossRef] [PubMed]
- Nutrition and Metabolic Management Branch of China International Exchange and Promotive Association for Medical and Health Care; Clinical Nutrition Branch of Chinese Nutrition Society; Chinese Diabetes Society; Chinese Society for Parenteral and Enteral Nutrition; Chinese Clinical Nutritionist Center of Chinese Medical Doctor Association. Guidelines for medical nutrition treatment of overweight/obesity in China (2021). Asia Pac. J. Clin. Nutr. 2022, 31, 450–482. [Google Scholar] [CrossRef]
- Kim, K.K.; Haam, J.H.; Kim, B.T.; Kim, E.M.; Park, J.H.; Rhee, S.Y.; Jeon, E.; Kang, E.; Nam, G.E.; Koo, H.Y.; et al. Evaluation and Treatment of Obesity and Its Comorbidities: 2022 Update of Clinical Practice Guidelines for Obesity by the Korean Society for the Study of Obesity. J. Obes. Metab. Syndr. 2023, 32, 1–24. [Google Scholar] [CrossRef]
- Müller, M.J.; Geisler, C. From the past to future: From energy expenditure to energy intake to energy expenditure. Eur. J. Clin. Nutr. 2017, 71, 358–364. [Google Scholar] [CrossRef] [PubMed]
- Ohkawara, K.; Hikihara, Y.; Matsuo, T.; Melanson, E.L.; Hibi, M. Variable factors of total daily energy expenditure in humans. JPFSM 2012, 1, 389–399. [Google Scholar] [CrossRef]
- Leibel, R.L.; Rosenbaum, M.; Hirsch, J. Changes in energy expenditure resulting from altered body weight. N. Engl. J. Med 1995, 332, 621–628. [Google Scholar] [CrossRef]
- Müller, M.J.; Enderle, J.; Pourhassan, M.; Braun, W.; Eggeling, B.; Lagerpusch, M.; Glüer, C.C.; Kehayias, J.J.; Kiosz, D.; Bosy-Westphal, A. Metabolic adaptation to caloric restriction and subsequent refeeding: The Minnesota Starvation Experiment revisited. Am. J. Clin. Nutr. 2015, 102, 807–819. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Gómez, M.G.; Roberts, B.M. Metabolic Adaptations to Weight Loss: A Brief Review. J. Strength Cond. Res. 2022, 36, 2970–2981. [Google Scholar] [CrossRef] [PubMed]
- Nunes, C.L.; Casanova, N.; Francisco, R.; Bosy-Westphal, A.; Hopkins, M.; Sardinha, L.B.; Silva, A.M. Does adaptive thermogenesis occur after weight loss in adults? a systematic review. Br. J. Nutr. 2022, 127, 451–469. [Google Scholar] [CrossRef] [PubMed]
- Rosenbaum, M.; Goldsmith, R.L.; Haddad, F.; Baldwin, K.M.; Smiley, R.; Gallagher, D.; Leibel, R.L. Triiodothyronine and leptin repletion in humans similarly reverse weight-lossinduced changes in skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 2018, 315, E771–E779. [Google Scholar] [CrossRef]
- Rosenbaum, M.; Hirsch, J.; Murphy, E.; Leibel, R.L. Effects of changes in body weight on carbohydrate metabolism, catecholamine excretion, and thyroid function. Am. J. Clin. Nutr. 2000, 71, 1421–1432. [Google Scholar] [CrossRef] [PubMed]
- Doucet, E.; St Pierre, S.; Alméras, N.; Mauriège, P.; Richard, D.; Tremblay, A. Changes in energy expenditure and substrate oxidation resulting from weight loss in obese men and women: Is there an important contribution of leptin? J. Clin. Endocrinol. Metab. 2000, 85, 1550–1556. [Google Scholar] [CrossRef]
- Nymo, S.; Coutinho, S.R.; Eknes, P.H.; Vestbostad, I.; Rehfeld, J.F.; Truby, H.; Kulseng, B.; Martins, C. Investigation of the long-term sustainability of changes in appetite after weight loss. Int. J. Obes. 2018, 42, 1489–1499. [Google Scholar] [CrossRef] [PubMed]
- Doucet, E.; Imbeault, P.; St-Pierre, S.; Alméras, N.; Mauriège, P.; Richard, D.; Tremblay, A. Appetite after weight loss by energy restriction and a low-fat diet-exercise follow-up. Int. J. Obes. Relat Metab. Disord. 2000, 24, 906–914. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Lenard, N.R.; Shin, A.C.; Berthoud, H.R. Appetite control and energy balance regulation in the modern world: Reward-driven brain overrides repletion signals. Int. J. Obes. 2009, 33 (Suppl. S2), S8–S13. [Google Scholar] [CrossRef]
- Martins, C.; Roekenes, J.A.; Rehfeld, J.F.; Hunter, G.R.; Gower, B.A. Metabolic adaptation is associated with a greater increase in appetite following weight loss: A longitudinal study. Am. J. Clin. Nutr. 2023, 118, 1192–1201. [Google Scholar] [CrossRef]
- Sumithran, P.; Prendergast, L.A.; Delbridge, E.; Purcell, K.; Shulkes, A.; Kriketos, A.; Proietto, J. Long-term persistence of hormonal adaptations to weight loss. N. Engl. J. Med. 2011, 365, 1597–1604. [Google Scholar] [CrossRef]
- Pasman, W.J.; Saris, W.H.; Westerterp-Plantenga, M.S. Predictors of weight maintenance. Obes. Res. 1999, 7, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Handa, T.; Onoue, T.; Kobayashi, T.; Wada, E.; Hayase, A.; Kinoshita, T.; Yamagami, A.; Yasuda, Y.; Iwama, S.; Kawaguchi, Y.; et al. Resting energy expenditure depends on energy intake during weight loss in people with obesity: A retrospective cohort study. Arch. Endocrinol. Metab. 2023, 67, 233–241. [Google Scholar] [CrossRef]
- World Health Organization. Health Topics. Obesity. Available online: https://www.who.int/health-topics/obesity#tab=tab_1 (accessed on 23 December 2024).
- Murase, N.; Katsumura, T.; Ueda, C.; Inoue, S.; Shimomitsu, T. Validity and reliability of Japanese version of international physical activity questionnaire. J. Health Welf. Stat. 2002, 49, 1–9. [Google Scholar]
- The Council for Science and Technology, Ministry of Education, Culture, Sports, Science and Technology, Japan. Standard Tables of Food Composition in Japan 2020 (Eighth Revised Edition): Report of the Subdivision on Resources. Available online: https://www.mext.go.jp/a_menu/syokuhinseibun/mext_01110.html (accessed on 10 November 2024).
- Calomeal: Life Log Technology, Inc. Available online: https://www.calomeal.com/about-calomeal/ (accessed on 10 November 2024).
- Fields, D.A.; Kearney, J.T.; Copeland, K.C. MedGem hand-held indirect calorimeter is valid for resting energy expenditure measurement in healthy children. Obesity 2006, 14, 1755–1761. [Google Scholar] [CrossRef] [PubMed]
- McDoniel, S.O. Systematic review on use of a handheld indirect calorimeter to assess energy needs in adults and children. Int. J. Sport Nutr. Exerc. Metab. 2007, 17, 491–500. [Google Scholar] [CrossRef]
- Nieman, D.C.; Trone, G.A.; Austin, M.D. A new handheld device for measuring resting metabolic rate and oxygen consumption. J. Am. Diet. Assoc. 2003, 103, 588–592. [Google Scholar] [CrossRef] [PubMed]
- Purcell, S.A.; Johnson-Stoklossa, C.; Braga Tibaes, J.R.; Frankish, A.; Elliott, S.A.; Padwal, R.; Prado, C.M. Accuracy of the MedGem® portable indirect calorimeter for measuring resting energy expenditure in adults with class II or III obesity. Clin. Nutr. ESPEN 2020, 40, 408–411. [Google Scholar] [CrossRef]
- Stewart, C.L.; Goody, C.M.; Branson, R. Comparison of two systems of measuring energy expenditure. JPEN J. Parenter Enter. Nutr. 2005, 29, 212–217. [Google Scholar] [CrossRef]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [PubMed]
- Flint, A.; Raben, A.; Blundell, J.E.; Astrup, A. Reproducibility, power and validity of visual analogue scales in assessment of appetite sensations in single test meal studies. Int. J. Obes. Relat. Metab. Disord. 2000, 24, 38–48. [Google Scholar] [CrossRef]
- Kobayashi, S.; Honda, S.; Murakami, K.; Sasaki, S.; Okubo, H.; Hirota, N.; Notsu, A.; Fukui, M.; Date, C. Both comprehensive and brief self-administered diet history questionnaires satisfactorily rank nutrient intakes in Japanese adults. J. Epidemiol. 2012, 22, 151–159. [Google Scholar] [CrossRef]
- Kobayashi, S.; Murakami, K.; Sasaki, S.; Okubo, H.; Hirota, N.; Notsu, A.; Fukui, M.; Date, C. Comparison of relative validity of food group intakes estimated by comprehensive and brief-type self-administered diet history questionnaires against 16 d dietary records in Japanese adults. Public Health Nutr. 2011, 14, 1200–1211. [Google Scholar] [CrossRef] [PubMed]
- Oshima, Y.; Matsuoka, Y.; Sakane, N. Effect of weight-loss program using self-weighing twice a day and feedback in overweight and obese subject: A randomized controlled trial. Obes. Res. Clin. Process. 2013, 7, e361–e366. [Google Scholar] [CrossRef]
- Obesity: Identification, Assessment and Management. Available online: https://www.nice.org.uk/guidance/cg189 (accessed on 10 November 2024).
- Garvey, W.T.; Mechanick, J.I.; Brett, E.M.; Garber, A.J.; Hurley, D.L.; Jastreboff, A.M.; Nadolsky, K.; Pessah-Pollack, R.; Plodkowski, R.; Reviewers of the AACE/ACE Obesity Clinical Practice Guidelines. American association of clinical endocrinologists and American college of endocrinology comprehensive clinical practice guidelines for medical care of patients with obesity. Endocr Process. 2016, 22 (Suppl. S3), 1–203. [Google Scholar] [CrossRef]
- National Heart, Lung, and Blood Institute. Overweight and Obesity Treatment. Available online: https://www.nhlbi.nih.gov/health/overweight-and-obesity/treatment (accessed on 10 November 2024).
- Yumuk, V.; Tsigos, C.; Fried, M.; Schindler, K.; Busetto, L.; Micic, D.; Toplak, H.; Obesity Management Task Force of the European Association for the Study of Obesity. European guidelines for obesity management in adults. Obes. Facts 2015, 8, 402–424. [Google Scholar] [CrossRef] [PubMed]
- Klausen, B.; Toubro, S.; Astrup, A. Age and sex effects on energy expenditure. Am. J. Clin. Nutr. 1997, 65, 895–907. [Google Scholar] [CrossRef]
- Geisler, C.; Braun, W.; Pourhassan, M.; Schweitzer, L.; Glüer, C.C.; Bosy-Westphal, A.; Müller, M.J. Gender-Specific Associations in Age-Related Changes in Resting Energy Expenditure (REE) and MRI Measured Body Composition in Healthy Caucasians. J. Gerontol. A Biol. Sci. Med. Sci. 2016, 71, 941–946. [Google Scholar] [CrossRef]
- Cunningham, J.J. Body composition as a determinant of energy expenditure: A synthetic review and a proposed general prediction equation. Am. J. Clin. Nutr. 1991, 54, 963–969. [Google Scholar] [CrossRef] [PubMed]
- Nelson, K.M.; Weinsier, R.L.; Long, C.L.; Schutz, Y. Prediction of resting energy expenditure from fat-free mass and fat mass. Am. J. Clin. Nutr. 1992, 56, 848–856. [Google Scholar] [CrossRef] [PubMed]
- Elliot, D.L.; Goldberg, L.; Kuehl, K.S.; Bennett, W.M. Sustained depression of the resting metabolic rate after massive weight loss. Am. J. Clin. Nutr. 1989, 49, 93–96. [Google Scholar] [CrossRef] [PubMed]
- Tremblay, A.; Major, G.; Doucet, E.; Trayhurn, P.; Astrup, A. Role of adaptive thermogenesis in unsuccessful weight-loss intervention. Future Lipidol. 2007, 2, 651–658. [Google Scholar] [CrossRef]
- Müller, M.J.; Bosy-Westphal, A. Adaptive thermogenesis with weight loss in humans. Obesity 2013, 21, 218–228. [Google Scholar] [CrossRef] [PubMed]
- Fothergill, E.; Guo, J.; Howard, L.; Kerns, J.C.; Knuth, N.D.; Brychta, R.; Chen, K.Y.; Skarulis, M.C.; Walter, M.; Walter, P.J.; et al. Persistent metabolic adaptation 6 years after “The Biggest Loser” competition. Obesity 2016, 24, 1612–1619. [Google Scholar] [CrossRef] [PubMed]
- Davoodi, S.H.; Ajami, M.; Ayatollahi, S.A.; Dowlatshahi, K.; Javedan, G.; Pazoki-Toroudi, H.R. Calorie shifting diet versus calorie restriction diet: A comparative clinical trial study. Int. J. Prev. Med. 2014, 5, 447–456. [Google Scholar]
- Byrne, N.M.; Sainsbury, A.; King, N.A.; Hills, A.P.; Wood, R.E. Intermittent energy restriction improves weight loss efficiency in obese men: The MATADOR study. Int. J. Obes. 2018, 42, 129–138. [Google Scholar] [CrossRef]
- Antoni, R.; Johnston, K.L.; Collins, A.L.; Robertson, M.D. Investigation into the acute effects of total and partial energy restriction on postprandial metabolism among overweight/obese participants. Br. J. Nutr. 2016, 115, 951–959. [Google Scholar] [CrossRef] [PubMed]
- Johnstone, A.M.; Faber, P.; Gibney, E.R.; Elia, M.; Horgan, G.; Golden, B.E.; Stubbs, R.J. Effect of an acute fast on energy compensation and feeding behaviour in lean men and women. Int. J. Obes. Relat. Metab. Disord. 2002, 26, 1623–1628. [Google Scholar] [CrossRef]
- Laessle, R.G.; Platte, P.; Schweiger, U.; Pirke, K.M. Biological and psychological correlates of intermittent dieting behavior in young women. A model for bulimia nervosa. Physiol. Behav. 1996, 60, 1–5. [Google Scholar] [CrossRef]
- Ackermans, M.A.; Jonker, N.C.; Bennik, E.C.; de Jong, P.J. Hunger increases negative and decreases positive emotions in women with a healthy weight. Appetite 2022, 168, 105746. [Google Scholar] [CrossRef] [PubMed]
- Dicker-Oren, S.D.; Gelkopf, M.; Greene, T. The dynamic network associations of food craving, restrained eating, hunger and negative emotions. Appetite 2022, 175, 106019. [Google Scholar] [CrossRef] [PubMed]
- Hill, A.J.; Weaver, C.F.; Blundell, J.E. Food craving, dietary restraint and mood. Appetite 1991, 17, 187–197. [Google Scholar] [CrossRef]
- Dzubur, E.; Semborski, S.; Redline, B.; Hedeker, D.; Dunton, G.F.; Henwood, B.F. Food insecurity, hunger, stress, and homelessness among young adults. Health Psychol. 2022, 41, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Ngo, J.; Engelen, A.; Molag, M.; Roesle, J.; García-Segovia, P.; Serra-Majem, L. A review of the use of information and communication technologies for dietary assessment. Br. J. Nutr. 2009, 101 (Suppl. S2), S102–S112. [Google Scholar] [CrossRef]
- Lozano, C.P.; Canty, E.N.; Saha, S.; Broyles, S.T.; Beyl, R.A.; Apolzan, J.W.; Martin, C.K. Validity of an artificial intelligence-based application to identify foods and estimate energy intake among adults: A pilot study. Curr. Dev. Nutr. 2023, 7, 102009. [Google Scholar] [CrossRef] [PubMed]
- Eldridge, A.L.; Piernas, C.; Illner, A.K.; Gibney, M.J.; Gurinović, M.A.; de Vries, J.H.M.; Cade, J.E. Evaluation of new technology-based tools for dietary intake assessment—An ILSI Europe dietary intake and exposure task force evaluation. Nutrients 2018, 11, 55. [Google Scholar] [CrossRef]
- Boushey, C.J.; Spoden, M.; Zhu, F.M.; Delp, E.J.; Kerr, D.A. New mobile methods for dietary assessment: Review of image-assisted and image-based dietary assessment methods. Proc. Nutr. Soc. 2017, 76, 283–294. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Bosch, M.; Woo, I.; Kim, S.; Boushey, C.J.; Ebert, D.S.; Delp, E.J. The use of mobile devices in aiding dietary assessment and evaluation. IEEE J. Sel. Top. Signal. Process. 2010, 4, 756–766. [Google Scholar] [CrossRef]
Inclusion Criteria |
|
Exclusion Criteria |
|
Step | Details |
---|---|
1. Estimate the energy expenditure | Total energy expenditure was calculated by combining REE; physical activity was estimated using IPAQ and adding 10% of total expenditure as diet-induced thermogenesis. |
2. Determine the recommended energy intake | The recommended energy intake is determined using an algorithm based on the energy expenditure and the caloric deficit needed for weight loss. The target weight loss is set at 10% over 6 months. |
3. Provide nutritional counseling | Nutritional guidance, including menu examples and photographs, is provided to support compliance. Nutrient intake is monitored through a meal recording app. |
4. Repeat the process at specific intervals | The process was conducted at baseline (week 0) and follow-up visits (weeks 1, 2, 4, 8, 12, 16, and 20). |
Total Patients (n = 18) | |
---|---|
Age (years) | 52.5 (26.0–63.0) |
Sex, male | 6 (33.3%) |
Body weight (kg) | 90.9 (62.0–170.5) |
BMI (kg/m2) | 32.8 (26.4–57.6) |
Waist circumference (cm) a | 103.0 (87.5–151.0) |
Type 2 diabetes | 11 (61.1%) |
Hypertension | 12 (66.7%) |
Dyslipidemia | 11 (61.1%) |
Hyperuricemia | 10 (55.6%) |
Proteinuria | 7 (38.9%) |
Cardiovascular disease | 0 (0%) |
Cerebrovascular disease | 0 (0%) |
MASLD | 14 (82.4%) |
OSAS, OHS | 3 (16.7%) |
Musculoskeletal diseases b | 1 (5.6%) |
Thyroid disease c | 2 (11.1%) |
Menstrual disorder d | 1 (5.6%) |
Oral steroids e | 1 (5.6%) |
Anti-obesity drug | 0 (0%) |
Diuretic | 2 (11.1%) |
SGLT-2 inhibitor | 7 (38.9%) |
Changes at 12 Weeks (95% CI) | p-Value | Changes at 24 Weeks (95% CI) | p-Value | |
---|---|---|---|---|
BMI (kg/m2) | −1.36 (−2.44 to −0.29) | 0.0013 | −2.12 (−3.19 to −1.04) | 0.0001 |
Body composition | ||||
Body fat mass (kg) | −3.39 (−6.22 to −0.56) | 0.0172 | −6.91 (−9.75 to −4.09) | <0.0001 |
Body fat percentage (%) | −2.19 (−4.41 to 0.04) | 0.0542 | −4.77 (−6.99 to −2.54) | <0.0001 |
Lean body mass (kg) | 0.29 (−1.91 to 2.48) | 0.9367 | 1.05 (−1.14 to 3.24) | 0.4463 |
Muscle mass (kg) | 0.15 (−1.97 to 2.28) | 0.9799 | 0.88 (−1.25 to 3.01) | 0.5407 |
Skeletal muscle mass (kg) | 0.16 (−1.23 to 1.54) | 0.9517 | 0.60 (−0.78 to 1.98) | 0.5099 |
Estimated energy intake as assessed by BDHQ (kcal/day) | −316.60 (−595.13 to −38.06) | 0.0242 | −333.51 (−612.05 to −54.98) | 0.0173 |
Blood pressure (mmHg) | ||||
Systolic blood pressure | 0.50 (−6.73 to 7.73) | 0.9817 | −6.31 (−13.69 to 1.06) | 0.1011 |
Diastolic blood pressure | −0.31 (−6.18 to 5.55) | 0.9891 | −5.76 (−11.75 to 0.23) | 0.0606 |
HbA1c (mmol/mol) | −1.86 (−5.68 to 2.08) | 0.4562 | −2.62 (−6.34 to 1.20) | 0.2070 |
Triglyceride (mmol/L) | −0.33 (−0.63 to −0.03) | 0.0283 | −0.36 (−0.66 to −0.06) | 0.0160 |
LDL cholesterol (mmol/L) | 0.06 (−0.38 to 0.50) | 0.9257 | −0.11 (−0.55 to 0.33) | 0.7944 |
AST (IU/l) | −6.44 (−14.93 to 2.04) | 0.1555 | −8.89 (−17.37 to −0.40) | 0.0391 |
ALT (IU/l) | −9.56 (−22.67 to 3.56) | 0.1772 | −16.72 (−29.83 to −3.61) | 0.0110 |
γ-GTP (IU/l) | −3.78 (−11.61 to 4.05) | 0.4389 | −9.22 (−17.05 to −1.39) | 0.0193 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Handa, T.; Onoue, T.; Maeda, R.; Mizutani, K.; Suzuki, K.; Kobayashi, T.; Miyata, T.; Sugiyama, M.; Hagiwara, D.; Iwama, S.; et al. Guidance on Energy Intake Based on Resting Energy Expenditure and Physical Activity: Effective for Reducing Body Weight in Patients with Obesity. Nutrients 2025, 17, 202. https://doi.org/10.3390/nu17020202
Handa T, Onoue T, Maeda R, Mizutani K, Suzuki K, Kobayashi T, Miyata T, Sugiyama M, Hagiwara D, Iwama S, et al. Guidance on Energy Intake Based on Resting Energy Expenditure and Physical Activity: Effective for Reducing Body Weight in Patients with Obesity. Nutrients. 2025; 17(2):202. https://doi.org/10.3390/nu17020202
Chicago/Turabian StyleHanda, Tomoko, Takeshi Onoue, Ryutaro Maeda, Keigo Mizutani, Koji Suzuki, Tomoko Kobayashi, Takashi Miyata, Mariko Sugiyama, Daisuke Hagiwara, Shintaro Iwama, and et al. 2025. "Guidance on Energy Intake Based on Resting Energy Expenditure and Physical Activity: Effective for Reducing Body Weight in Patients with Obesity" Nutrients 17, no. 2: 202. https://doi.org/10.3390/nu17020202
APA StyleHanda, T., Onoue, T., Maeda, R., Mizutani, K., Suzuki, K., Kobayashi, T., Miyata, T., Sugiyama, M., Hagiwara, D., Iwama, S., Suga, H., Banno, R., & Arima, H. (2025). Guidance on Energy Intake Based on Resting Energy Expenditure and Physical Activity: Effective for Reducing Body Weight in Patients with Obesity. Nutrients, 17(2), 202. https://doi.org/10.3390/nu17020202