Influence of Mediterranean Diet on Sexual Function in People with Metabolic Syndrome: A Narrative Review
Abstract
:1. Introduction
2. Methods
3. Interconnections between Sexual Function and Metabolic Syndrome
3.1. Points of Variability in the Prevalence Rate of Metabolic Syndrome and Sexual Dysfunction
3.2. Male Sexual Function and Metabolic Syndrome
3.3. Female Sexual Function and Metabolic Syndrome
4. Impact of the Mediterranean Diet on Metabolic Syndrome
5. Impact of the Mediterranean Diet on Sexual Function
5.1. Male Sexual Dysfunction
5.1.1. Erectile Dysfunction
5.1.2. Male Infertility
5.2. Female Sexual Dysfunction
5.2.1. Menstrual Cycle
5.2.2. Menopause and Perimenopausal Age
5.2.3. Premenstrual Syndrome
5.2.4. Female Infertility
5.2.5. Endometriosis
5.2.6. Polycystic Ovary Syndrome
6. Effect of Diet on Sexual Function in People with Metabolic Syndrome
6.1. Mediterranean Diet
6.2. Other Dietary Approaches and Insights on Alcohol Consumption
6.3. Adherence to the Diet Due to Personal, Cultural, or Economic Status
6.4. Individuals’ Response to Dietary Interventions and Personalized Nutrition Strategies
7. Discussion
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Engin, A. The Definition and Prevalence of Obesity and Metabolic Syndrome. Adv. Exp. Med. Biol. 2017, 960, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Yamagishi, K.; Iso, H. The Criteria for Metabolic Syndrome and the National Health Screening and Education System in Japan. Epidemiol. Health 2017, 39, e2017003. [Google Scholar] [CrossRef] [PubMed]
- Noubiap, J.J.; Nansseu, J.R.; Lontchi-Yimagou, E.; Nkeck, J.R.; Nyaga, U.F.; Ngouo, A.T.; Tounouga, D.N.; Tianyi, F.L.; Foka, A.J.; Ndoadoumgue, A.L.; et al. Global, Regional, and Country Estimates of Metabolic Syndrome Burden in Children and Adolescents in 2020: A Systematic Review and Modelling Analysis. Lancet Child Adolesc Health 2022, 6, 158–170. [Google Scholar] [CrossRef] [PubMed]
- Noubiap, J.J.; Nansseu, J.R.; Lontchi-Yimagou, E.; Nkeck, J.R.; Nyaga, U.F.; Ngouo, A.T.; Tounouga, D.N.; Tianyi, F.L.; Foka, A.J.; Ndoadoumgue, A.L.; et al. Geographic Distribution of Metabolic Syndrome and Its Components in the General Adult Population: A Meta-Analysis of Global Data from 28 Million Individuals. Diabetes Res. Clin. Pract. 2022, 188, 109924. [Google Scholar] [CrossRef] [PubMed]
- Vinciguerra, F.; Tumminia, A.; Baratta, R.; Ferro, A.; Alaimo, S.; Hagnäs, M.; Graziano, M.; Vigneri, R.; Frittitta, L. Prevalence and Clinical Characteristics of Children and Adolescents with Metabolically Healthy Obesity: Role of Insulin Sensitivity. Life 2020, 10, 127. [Google Scholar] [CrossRef] [PubMed]
- Feldman, H.A.; Goldstein, I.; Hatzichristou, D.G.; Krane, R.J.; McKinlay, J.B. Impotence and Its Medical and Psychosocial Correlates: Results of the Massachusetts Male Aging Study. J. Urol. 1994, 151, 54–61. [Google Scholar] [CrossRef]
- Aguilar, M.; Bhuket, T.; Torres, S.; Liu, B.; Wong, R.J. Prevalence of the Metabolic Syndrome in the United States, 2003–2012. JAMA 2015, 313, 1973–1974. [Google Scholar] [CrossRef]
- Esposito, K.; Giugliano, D. Obesity, the Metabolic Syndrome, and Sexual Dysfunction. Int. J. Impot. Res. 2005, 17, 391–398. [Google Scholar] [CrossRef]
- Mohamed, S.M.; Shalaby, M.A.; El-Shiekh, R.A.; El-Banna, H.A.; Emam, S.R.; Bakr, A.F. Metabolic Syndrome: Risk Factors, Diagnosis, Pathogenesis, and Management with Natural Approaches. Food Chem. Adv. 2023, 3, 100335. [Google Scholar] [CrossRef]
- Meydani, M. A Mediterranean-Style Diet and Metabolic Syndrome. Nutr. Rev. 2005, 63, 312–314. [Google Scholar] [CrossRef]
- Babio, N.; Bulló, M.; Salas-Salvadó, J. Mediterranean Diet and Metabolic Syndrome: The Evidence. Public. Health Nutr. 2009, 12, 1607–1617. [Google Scholar] [CrossRef] [PubMed]
- Kastorini, C.M.; Panagiotakos, D.B.; Chrysohoou, C.; Georgousopoulou, E.; Pitaraki, E.; Puddu, P.E.; Tousoulis, D.; Stefanadis, C.; Pitsavos, C.; Skoumas, Y.; et al. Metabolic Syndrome, Adherence to the Mediterranean Diet and 10-Year Cardiovascular Disease Incidence: The ATTICA Study. Atherosclerosis 2016, 246, 87–93. [Google Scholar] [CrossRef]
- Imprialos, K.P.; Stavropoulos, K.; Doumas, M.; Tziomalos, K.; Karagiannis, A.; Athyros, V.G. Sexual Dysfunction, Cardiovascular Risk and Effects of Pharmacotherapy. Curr. Vasc. Pharmacol. 2018, 16, 130–142. [Google Scholar] [CrossRef] [PubMed]
- Widmer, R.J.; Flammer, A.J.; Lerman, L.O.; Lerman, A. The Mediterranean Diet, Its Components, and Cardiovascular Disease. Am. J. Med. 2015, 128, 229. [Google Scholar] [CrossRef] [PubMed]
- Kindernay, L.; Ferenczyová, K.; Farkašová, V.; Dulová, U.; Strapec, J.; Barteková, M. Beneficial Effects of Polyphenol-Rich Food Oils in Cardiovascular Health and Disease. Rev. Cardiovasc. Med. 2023, 24, 190. [Google Scholar] [CrossRef]
- Rezig, L.; Martine, L.; Nury, T.; Msaada, K.; Mahfoudhi, N.; Ghzaiel, I.; Prost-Camus, E.; Durand, P.; El Midaoui, A.; Acar, N.; et al. Profiles of Fatty Acids, Polyphenols, Sterols, and Tocopherols and Scavenging Property of Mediterranean Oils: New Sources of Dietary Nutrients for the Prevention of Age-Related Diseases. J. Oleo Sci. 2022, 71, 1117–1133. [Google Scholar] [CrossRef] [PubMed]
- Perona, J.S.; Covas, M.I.; Fitó, M.; Cabello-Moruno, R.; Aros, F.; Corella, D.; Ros, E.; Garcia, M.; Estruch, R.; Martinez-Gonzalez, M.A.; et al. Reduction in Systemic and VLDL Triacylglycerol Concentration after a 3-Month Mediterranean-Style Diet in High-Cardiovascular-Risk Subjects. J. Nutr. Biochem. 2010, 21, 892–898. [Google Scholar] [CrossRef]
- Esposito, K.; Ciotola, M.; Giugliano, F.; De Sio, M.; Giugliano, G.; D’Armiento, M.; Giugliano, D. Mediterranean Diet Improves Erectile Function in Subjects with the Metabolic Syndrome. Int. J. Impot. Res. 2006, 18, 405–410. [Google Scholar] [CrossRef]
- Schardt, C.; Adams, M.B.; Owens, T.; Keitz, S.; Fontelo, P. Utilization of the PICO Framework to Improve Searching PubMed for Clinical Questions. BMC Med. Inform. Decis. Mak. 2007, 7, 16. [Google Scholar] [CrossRef]
- Fernandez-Crespo, R.E.; Cordon-Galiano, B.H. Sexual Dysfunction Among Men Who Have Sex with Men: A Review Article. Curr. Urol. Rep. 2021, 22, 9. [Google Scholar] [CrossRef]
- Lotti, F.; Maggi, M. Sexual Dysfunction and Male Infertility. Nat. Rev. Urol. 2018, 15, 287–307. [Google Scholar] [CrossRef] [PubMed]
- Szmidt, M.K.; Granda, D.; Madej, D.; Sicinska, E.; Kaluza, J. Adherence to the Mediterranean Diet in Women and Reproductive Health across the Lifespan: A Narrative Review. Nutrients 2023, 15, 2131. [Google Scholar] [CrossRef] [PubMed]
- Hatzimouratidis, K.; Hatzichristou, D. Sexual Dysfunctions: Classifications and Definitions. J. Sex Med. 2007, 4, 241–250. [Google Scholar] [CrossRef]
- McCabe, M.P.; Sharlip, I.D.; Atalla, E.; Balon, R.; Fisher, A.D.; Laumann, E.; Lee, S.W.; Lewis, R.; Segraves, R.T. Definitions of Sexual Dysfunctions in Women and Men: A Consensus Statement From the Fourth International Consultation on Sexual Medicine 2015. J. Sex Med. 2016, 13, 135–143. [Google Scholar] [CrossRef]
- Alberti, K.G.M.M.; Zimmet, P.; Shaw, J. The Metabolic Syndrome—A New Worldwide Definition. Lancet 2005, 366, 1059–1062. [Google Scholar] [CrossRef]
- Phillips, K.D.; Dudgeon, W.D.; Becker, J.; Bopp, C.M. Sexually Transmitted Diseases in Men. Nurs. Clin. N. Am. 2004, 39, 357–377. [Google Scholar] [CrossRef]
- Tal, R. Epidemiology of Male Sexual Dysfunction. In Male Sexual Dysfunction; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2017; pp. 1–7. [Google Scholar] [CrossRef]
- Bacon, C.G.; Hu, F.B.; Giovannucci, E.; Glasser, D.B.; Mittleman, M.A.; Rimm, E.B. Association of Type and Duration of Diabetes With Erectile Dysfunction in a Large Cohort of Men. Diabetes Care 2002, 25, 1458–1463. [Google Scholar] [CrossRef] [PubMed]
- Simon, J.A. Identifying and Treating Sexual Dysfunction in Postmenopausal Women: The Role of Estrogen. Artic. J. Women’S Health 2011, 20, 1453–1465. [Google Scholar] [CrossRef]
- Ford, E.S.; Giles, W.H.; Mokdad, A.H. Increasing Prevalence of the Metabolic Syndrome Among U.S. Adults. Diabetes Care 2004, 27, 2444–2449. [Google Scholar] [CrossRef]
- Pandit, K.; Goswami, S.; Ghosh, S.; Mukhopadhyay, P.; Chowdhury, S. Metabolic Syndrome in South Asians. Indian J. Endocrinol. Metab. 2012, 16, 44–55. [Google Scholar] [CrossRef]
- Lewis, R.W.; Fugl-Meyer, K.S.; Corona, G.; Hayes, R.D.; Laumann, E.O.; Moreira, E.D.; Rellini, A.H.; Segraves, T. Definitions/Epidemiology/Risk Factors for Sexual Dysfunction. J. Sex Med. 2010, 7, 1598–1607. [Google Scholar] [CrossRef]
- Laumann, E.O.; Paik, A.; Rosen, R.C. Sexual Dysfunction in the United States: Prevalence and Predictors. JAMA 1999, 281, 537–544. [Google Scholar] [CrossRef] [PubMed]
- Figueroa, J.F.; Frakt, A.B.; Jha, A.K. Addressing Social Determinants of Health: Time for a Polysocial Risk Score. JAMA 2020, 323, 1553–1554. [Google Scholar] [CrossRef]
- Morgentaler, A.; Traish, A.; Hackett, G.; Jones, T.H.; Ramasamy, R. Diagnosis and Treatment of Testosterone Deficiency: Updated Recommendations From the Lisbon 2018 International Consultation for Sexual Medicine. Sex Med. Rev. 2019, 7, 636–649. [Google Scholar] [CrossRef]
- Deaton, A. Income, Health and Wellbeing Around the World: Evidence from the Gallup World Poll. J. Econ. Perspect. 2008, 22, 53. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Rao, K.; Chen, J. Editorial: Metabolic Factors in Erectile Dysfunction. Front. Endocrinol. 2023, 14, 1344191. [Google Scholar] [CrossRef]
- Khoo, J.; Piantadosi, C.; Worthley, S.; Wittert, G.A. Effects of a Low-Energy Diet on Sexual Function and Lower Urinary Tract Symptoms in Obese Men. Int. J. Obes. 2010, 34, 1396–1403. [Google Scholar] [CrossRef] [PubMed]
- Schulster, M.L.; Liang, S.E.; Najari, B.B. Metabolic Syndrome and Sexual Dysfunction. Curr. Opin. Urol. 2017, 27, 435–440. [Google Scholar] [CrossRef]
- Isidori, A.M.; Giannetta, E.; Gianfrilli, D.; Greco, E.A.; Bonifacio, V.; Aversa, A.; Isidori, A.; Fabbri, A.; Lenzi, A. Effects of Testosterone on Sexual Function in Men: Results of a Meta-Analysis. Clin. Endocrinol. 2005, 63, 381–394. [Google Scholar] [CrossRef]
- Varlamov, O. Western-Style Diet, Sex Steroids and Metabolism. Biochim. Biophys. Acta Mol. Basis Dis. 2017, 1863, 1147–1155. [Google Scholar] [CrossRef]
- Traish, A.M.; Zitzmann, M. The Complex and Multifactorial Relationship between Testosterone Deficiency (TD), Obesity and Vascular Disease. Rev. Endocr. Metab. Disord. 2015, 16, 249–268. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.K.; Chughtai, B.; Te, A.E.; Kaplan, S.A. Sexual Function in Men with Metabolic Syndrome. Urol. Clin. N. Am. 2012, 39, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Rowland, D.L.; McNabney, S.M.; Mann, A.R. Sexual Function, Obesity, and Weight Loss in Men and Women. Sex Med. Rev. 2017, 5, 323–338. [Google Scholar] [CrossRef]
- Liu, L.H.; Zhang, T.; Zhang, Y.R.; Liu, T.S.; Zhang, H.B.; Chen, F.Z.; He, S.H.; Wei, A.Y. Metabolic Syndrome and Risk for ED: A Meta-Analysis. Int. J. Impot. Res. 2014, 26, 196–200. [Google Scholar] [CrossRef] [PubMed]
- González, P.; Lozano, P.; Ros, G.; Solano, F. Hyperglycemia and Oxidative Stress: An Integral, Updated and Critical Overview of Their Metabolic Interconnections. Int. J. Mol. Sci. 2023, 24, 9352. [Google Scholar] [CrossRef]
- Bansal, T.C.; Guay, A.T.; Jacobson, J.; Woods, B.O.; Nesto, R.W. Incidence of Metabolic Syndrome and Insulin Resistance in a Population with Organic Erectile Dysfunction. J. Sex Med. 2005, 2, 96–103. [Google Scholar] [CrossRef]
- Corona, G.; Mannucci, E.; Schulman, C.; Petrone, L.; Mansani, R.; Cilotti, A.; Balercia, G.; Chiarini, V.; Forti, G.; Maggi, M. Psychobiologic Correlates of the Metabolic Syndrome and Associated Sexual Dysfunction. Eur. Urol. 2006, 50, 595–604. [Google Scholar] [CrossRef]
- Cohen, D.J.; Giaccagli, M.M.; Herzfeld, J.D.; González, L.N.; Cuasnicú, P.S.; Da Ros, V.G. Metabolic Syndrome and Male Fertility Disorders: Is There a Causal Link? Rev. Endocr. Metab. Disord. 2021, 22, 1057–1071. [Google Scholar] [CrossRef]
- Pilatz, A.; Hudemann, C.; Wolf, J.; Halefeld, I.; Paradowska-Dogan, A.; Schuppe, H.C.; Hossain, H.; Jiang, Q.; Schultheiss, D.; Renz, H.; et al. Metabolic Syndrome and the Seminal Cytokine Network in Morbidly Obese Males. Andrology 2017, 5, 23–30. [Google Scholar] [CrossRef]
- Ehala-Aleksejev, K.; Punab, M. The Effect of Metabolic Syndrome on Male Reproductive Health: A Cross-Sectional Study in a Group of Fertile Men and Male Partners of Infertile Couples. PLoS ONE 2018, 13, e0194395. [Google Scholar] [CrossRef]
- Salonia, A.; Ventimiglia, E.; Capogrosso, P.; Colicchia, M.; Boeri, L.; Serino, A.; Castagna, G.; Clementi, M.C.; Croce, G.L.; Regina, C.; et al. Metabolic Syndrome in White European Men Presenting for Primary Couple’s Infertility: Investigation of the Clinical and Reproductive Burden. Andrology 2016, 4, 944–951. [Google Scholar] [CrossRef]
- Le, M.T.; Nguyen Nguyen, D.; Duong Le, D.; Quynh, N.; Tran, T. Impact of Body Mass Index and Metabolic Syndrome on Sperm DNA Fragmentation in Males from Infertile Couples: A Cross-Sectional Study from Vietnam. Metabol. Open 2020, 7, 100054. [Google Scholar] [CrossRef] [PubMed]
- Elfassy, Y.; Bongrani, A.; Levy, P.; Foissac, F.; Fellahi, S.; Faure, C.; McAvoy, C.; Capeau, J.; Dupont, J.; Fève, B.; et al. Relationships between Metabolic Status, Seminal Adipokines, and Reproductive Functions in Men from Infertile Couples. Eur. J. Endocrinol. 2020, 182, 67–77. [Google Scholar] [CrossRef]
- Elsamanoudy, A.Z.; Abdalla, H.A.; Hassanien, M.; Gaballah, M.A. Spermatozoal Cell Death-Inducing DNA Fragmentation Factor-α-like Effector A (CIDEA) Gene Expression and DNA Fragmentation in Infertile Men with Metabolic Syndrome and Normal Seminogram. Diabetol. Metab. Syndr. 2016, 8, 76. [Google Scholar] [CrossRef]
- Lotti, F.; Corona, G.; Degli Innocenti, S.; Filimberti, E.; Scognamiglio, V.; Vignozzi, L.; Forti, G.; Maggi, M. Seminal, Ultrasound and Psychobiological Parameters Correlate with Metabolic Syndrome in Male Members of Infertile Couples. Andrology 2013, 1, 229–239. [Google Scholar] [CrossRef]
- Saikia, U.K.; Saikia, K.; Sarma, D.; Appaiah, S. Sertoli Cell Function in Young Males with Metabolic Syndrome. Indian. J. Endocrinol. Metab. 2019, 23, 251. [Google Scholar] [CrossRef]
- McPherson, N.O.; Tremellen, K. Increased BMI ‘Alone’ Does Not Negatively Influence Sperm Function—A Retrospective Analysis of Men Attending Fertility Treatment with Corresponding Liver Function Results. Obes. Res. Clin. Pract. 2020, 14, 164–167. [Google Scholar] [CrossRef] [PubMed]
- Rosety-Rodriguez, M.; Bernardi, M.; Elosegui, S.; Rosety, I.; Diaz, A.J.; Rosety, M.A.; Brenes, F.; Oliva-Pascual-Vaca, A.; Alvero-Cruz, J.R.; Ordonez, F.J. A Short-Term Resistance Training Circuit Improved Antioxidants in Sedentary Adults with Down Syndrome. Oxid. Med. Cell Longev. 2021, 2021. [Google Scholar] [CrossRef] [PubMed]
- Leisegang, K.; Udodong, A.; Bouic, P.J.D.; Henkel, R.R. Effect of the Metabolic Syndrome on Male Reproductive Function: A Case-Controlled Pilot Study. Andrologia 2014, 46, 167–176. [Google Scholar] [CrossRef]
- Esposito, K.; Ciotola, M.; Marfella, R.; Di Tommaso, D.; Cobellis, L.; Giugliano, D. The Metabolic Syndrome: A Cause of Sexual Dysfunction in Women. Int. J. Impot. Res. 2005, 17, 224–226. [Google Scholar] [CrossRef]
- Towe, M.; La, J.; El-Khatib, F.; Roberts, N.; Yafi, F.A.; Rubin, R. Diet and Female Sexual Health. Sex Med. Rev. 2020, 8, 256–264. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Lu, Y.; Zhu, Q.; Wang, Y.; Lindheim, S.R.; Qi, J.; Li, X.; Ding, Y.; Shi, Y.; Wei, D.; et al. Influence of Metabolic Syndrome on Female Fertility and in Vitro Fertilization Outcomes in PCOS Women. Am. J. Obstet. Gynecol. 2019, 221, 138.e1–138.e12. [Google Scholar] [CrossRef] [PubMed]
- Farland, L.V.; Degnan, W.J.; Harris, H.R.; Tobias, D.K.; Missmer, S.A. A Prospective Study of Endometriosis and Risk of Type 2 Diabetes. Diabetologia 2021, 64, 552. [Google Scholar] [CrossRef] [PubMed]
- Mu, F.; Rich-Edwards, J.; Rimm, E.B.; Spiegelman, D.; Forman, J.P.; Missmer, S.A. Association between Endometriosis and Hypercholesterolemia or Hypertension. Hypertension 2017, 70, 59. [Google Scholar] [CrossRef] [PubMed]
- Crook, D.; Howell, R.; Sidhu, M.; Edmonds, D.K.; Stevenson, J.C. Elevated Serum Lipoprotein(a) Levels in Young Women with Endometriosis. Metabolism 1997, 46, 735–739. [Google Scholar] [CrossRef]
- Rossi, H.R.; Nedelec, R.; Jarvelin, M.R.; Sebert, S.; Uimari, O.; Piltonen, T.T. Body Size during Adulthood, but Not in Childhood, Associates with Endometriosis, Specifically in the Peritoneal Subtype—Population-Based Life-Course Data from Birth to Late Fertile Age. Acta Obstet. Gynecol. Scand. 2021, 100, 1248–1257. [Google Scholar] [CrossRef]
- Li, B.; Zhang, Y.; Zhang, L.; Zhang, L. Association between Endometriosis and Metabolic Syndrome: A Cross-Sectional Study Based on the National Health and Nutrition Examination Survey Data. Gynecol. Endocrinol. 2023, 39, 2254844. [Google Scholar] [CrossRef]
- Hill, D.A.; Taylor, C.A. Dyspareunia in Women. Am. Fam. Physician 2021, 103, 597–604. [Google Scholar]
- Streicher, L.F. Diagnosis, Causes, and Treatment of Dyspareunia in Postmenopausal Women. Menopause 2023, 30, 635–649. [Google Scholar] [CrossRef]
- Lan, Y.; Mai, Z.; Zhou, S.; Liu, Y.; Li, S.; Zhao, Z.; Duan, X.; Cai, C.; Deng, T.; Zhu, W.; et al. Prevalence of Metabolic Syndrome in China: An up-Dated Cross-Sectional Study. PLoS ONE 2018, 13, e0196012. [Google Scholar] [CrossRef]
- Pu, D.; Tan, R.; Yu, Q.; Wu, J. Metabolic Syndrome in Menopause and Associated Factors: A Meta-Analysis. Climacteric 2017, 20, 583–591. [Google Scholar] [CrossRef] [PubMed]
- Lobo, R.A. Metabolic Syndrome after Menopause and the Role of Hormones. Maturitas 2008, 60, 10–18. [Google Scholar] [CrossRef]
- Bermingham, K.M.; Linenberg, I.; Hall, W.L.; Kadé, K.; Franks, P.W.; Davies, R.; Wolf, J.; Hadjigeorgiou, G.; Asnicar, F.; Segata, N.; et al. Menopause Is Associated with Postprandial Metabolism, Metabolic Health and Lifestyle: The ZOE PREDICT Study. EBioMedicine 2022, 85, 104303. [Google Scholar] [CrossRef] [PubMed]
- Mankowska, A.; Nowak, L.; Sypniewska, G. Adiponectin and Metabolic Syndrome in Women at Menopause. Ejifcc 2009, 19, 173–184. [Google Scholar] [PubMed]
- Wu, S.I.; Chou, P.; Tsai, S.T. The Impact of Years since Menopause on the Development of Impaired Glucose Tolerance. J. Clin. Epidemiol. 2001, 54, 117–120. [Google Scholar] [CrossRef]
- Ou, Y.J.; Lee, J.I.; Huang, S.P.; Chen, S.C.; Geng, J.H.; Su, C.H. Association between Menopause, Postmenopausal Hormone Therapy and Metabolic Syndrome. J. Clin. Med. 2023, 12, 4435. [Google Scholar] [CrossRef] [PubMed]
- Ambikairajah, A.; Walsh, E.; Cherbuin, N. Lipid Profile Differences during Menopause: A Review with Meta-Analysis. Menopause 2019, 26, 1327–1333. [Google Scholar] [CrossRef]
- Kim, J.E.; Choi, J.; Park, J.Y.; Lee, J.k.; Shin, A.; Park, S.M.; Kang, D.; Choi, J.Y. Associations of Postmenopausal Hormone Therapy with Metabolic Syndrome among Diabetic and Non-Diabetic Women. Maturitas 2019, 121, 76–82. [Google Scholar] [CrossRef]
- Lizneva, D.; Suturina, L.; Walker, W.; Brakta, S.; Gavrilova-Jordan, L.; Azziz, R. Criteria, Prevalence, and Phenotypes of Polycystic Ovary Syndrome. Fertil. Steril. 2016, 106, 6–15. [Google Scholar] [CrossRef]
- Yildiz, B.O.; Bozdag, G.; Yapici, Z.; Esinler, I.; Yarali, H. Prevalence, Phenotype and Cardiometabolic Risk of Polycystic Ovary Syndrome under Different Diagnostic Criteria. Human. Reprod. 2012, 27, 3067–3073. [Google Scholar] [CrossRef]
- Bil, E.; Dilbaz, B.; Cirik, D.A.; Ozelci, R.; Ozkaya, E.; Dilbaz, S. Metabolic Syndrome and Metabolic Risk Profile According to Polycystic Ovary Syndrome Phenotype. J. Obstet. Gynaecol. Res. 2016, 42, 837–843. [Google Scholar] [CrossRef] [PubMed]
- Diamanti-Kandarakis, E.; Papavassiliou, A.G. Molecular Mechanisms of Insulin Resistance in Polycystic Ovary Syndrome. Trends Mol. Med. 2006, 12, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Ouchi, N.; Parker, J.L.; Lugus, J.J.; Walsh, K. Adipokines in Inflammation and Metabolic Disease. Nat. Rev. Immunol. 2011, 11, 85–97. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.K.; Chou, C.H.; Huang, C.C.; Wen, W.F.; Chen, H.F.; Shun, C.T.; Ho, H.N.; Chen, M.J. Obesity Alters Ovarian Folliculogenesis through Disrupted Angiogenesis from Increased IL-10 Production. Mol. Metab. 2021, 49, 101189. [Google Scholar] [CrossRef]
- Legro, R.S.; Kunselman, A.R.; Dunaif, A. Prevalence and Predictors of Dyslipidemia in Women with Polycystic Ovary Syndrome. Am. J. Med. 2001, 111, 607–613. [Google Scholar] [CrossRef]
- Chen, W.; Pang, Y.; Hill, J.W.; Meikle, P. Metabolites H OH OH Metabolic Syndrome and PCOS: Pathogenesis and the Role of Metabolites. Metabolites 2021, 11, 869. [Google Scholar] [CrossRef]
- Dayi, T.; Ozgoren, M. Effects of the Mediterranean Diet on the Components of Metabolic Syndrome. J. Prev. Med. Hyg. 2022, 63, E56–E64. [Google Scholar]
- Martini, D. Health Benefits of Mediterranean Diet. Nutrients 2019, 11, 1802. [Google Scholar] [CrossRef]
- D’Alessandro, A.; De Pergola, G. The Mediterranean Diet: Its Definition and Evaluation of a Priori Dietary Indexes in Primary Cardiovascular Prevention. Int. J. Food Sci. Nutr. 2018, 69, 647–659. [Google Scholar] [CrossRef]
- Davis, C.; Bryan, J.; Hodgson, J.; Murphy, K. Definition of the Mediterranean Diet: A Literature Review. Nutrients 2015, 7, 9139–9153. [Google Scholar] [CrossRef]
- Gómez-Sánchez, L.; Gómez-Sánchez, M.; Tamayo-Morales, O.; Lugones-Sánchez, C.; González-Sánchez, S.; Martí-Lluch, R.; Rodríguez-Sánchez, E.; García-Ortiz, L.; Gómez-Marcos, M.A. Relationship between the Mediterranean Diet and Metabolic Syndrome and Each of the Components That Form It in Caucasian Subjects: A Cross-Sectional Trial. Nutrients 2024, 16, 1948. [Google Scholar] [CrossRef] [PubMed]
- Bakaloudi, D.R.; Chrysoula, L.; Kotzakioulafi, E.; Theodoridis, X.; Chourdakis, M. Impact of the Level of Adherence to Mediterranean Diet on the Parameters of Metabolic Syndrome: A Systematic Review and Meta-Analysis of Observational Studies. Nutrients 2021, 13, 1514. [Google Scholar] [CrossRef] [PubMed]
- Phillips, L.K.; Prins, J.B. The Link Between Abdominal Obesity and the Metabolic Syndrome. Curr. Hypertens. Rep. 2008, 10, 156–164. [Google Scholar] [CrossRef]
- Fontana, L.; Eagon, J.C.; Trujillo, M.E.; Scherer, P.E.; Klein, S. Visceral Fat Adipokine Secretion Is Associated With Systemic Inflammation in Obese Humans. Diabetes 2007, 56, 1010–1013. [Google Scholar] [CrossRef]
- Notario-Barandiaran, L.; Valera-Gran, D.; Gonzalez-Palacios, S.; Garcia-de-la-Hera, M.; Fernández-Barrés, S.; Pereda-Pereda, E.; Fernández-Somoano, A.; Guxens, M.; Iñiguez, C.; Romaguera, D.; et al. High Adherence to a Mediterranean Diet at Age 4 Reduces Overweight, Obesity and Abdominal Obesity Incidence in Children at the Age of 8. Int. J. Obes. 2020, 44, 1906–1917. [Google Scholar] [CrossRef]
- Damasceno, N.R.T.; Sala-Vila, A.; Cofán, M.; Pérez-Heras, A.M.; Fitó, M.; Ruiz-Gutiérrez, V.; Martínez-González, M.Á.; Corella, D.; Arós, F.; Estruch, R.; et al. Mediterranean Diet Supplemented with Nuts Reduces Waist Circumference and Shifts Lipoprotein Subfractions to a Less Atherogenic Pattern in Subjects at High Cardiovascular Risk. Atherosclerosis 2013, 230, 347–353. [Google Scholar] [CrossRef]
- Hernáez, Á.; Castañer, O.; Fitó, M. Response to Letter Regarding Article, “Mediterranean Diet Improves High-Density Lipoprotein Function in High-Cardiovascular-Risk Individuals: A Randomized Controlled Trial”. Circulation 2017, 136, 342–343. [Google Scholar] [CrossRef]
- Poudyal, H.; Panchal, S.K.; Diwan, V.; Brown, L. Omega-3 Fatty Acids and Metabolic Syndrome: Effects and Emerging Mechanisms of Action. Prog. Lipid Res. 2011, 50, 372–387. [Google Scholar] [CrossRef] [PubMed]
- Tuttolomondo, A.; Simonetta, I.; Daidone, M.; Mogavero, A.; Ortello, A.; Pinto, A. Metabolic and Vascular Effect of the Mediterranean Diet. Int. J. Mol. Sci. 2019, 20, 4716. [Google Scholar] [CrossRef]
- Ajala, O.; English, P.; Pinkney, J. Systematic Review and Meta-Analysis of Different Dietary Approaches to the Management of Type 2 Diabetes. Am. J. Clin. Nutr. 2013, 97, 505–516. [Google Scholar] [CrossRef]
- Maiorino, M.I.; Bellastella, G.; Caputo, M.; Castaldo, F.; Improta, M.R.; Giugliano, D.; Esposito, K. Effects of Mediterranean Diet on Sexual Function in People with Newly Diagnosed Type 2 Diabetes: The MÈDITA Trial. J. Diabetes Complicat. 2016, 30, 1519–1524. [Google Scholar] [CrossRef] [PubMed]
- Giugliano, F.; Maiorino, M.I.; Di Palo, C.; Autorino, R.; De Sio, M.; Giugliano, D.; Esposito, K. Adherence to Mediterranean Diet and Sexual Function in Women with Type 2 Diabetes. J. Sex Med. 2010, 7, 1883–1890. [Google Scholar] [CrossRef] [PubMed]
- Defeudis, G.; Mazzilli, R.; Di Tommaso, A.M.; Zamponi, V.; Carlomagno, F.; Tuccinardi, D.; Watanabe, M.; Faggiano, A.; Gianfrilli, D. Effects of Diet and Antihyperglycemic Drugs on Erectile Dysfunction: A Systematic Review. Andrology 2023, 11, 282–294. [Google Scholar] [CrossRef] [PubMed]
- Olabiyi, A.A.; Ajayi, K. Diet, Herbs and Erectile Function: A Good Friendship! Andrologia 2022, 54, e14424. [Google Scholar] [CrossRef]
- Bauer, S.R.; Breyer, B.N.; Stampfer, M.J.; Rimm, E.B.; Giovannucci, E.L.; Kenfield, S.A. Association of Diet With Erectile Dysfunction Among Men in the Health Professionals Follow-up Study. JAMA Netw. Open 2020, 3, e2021701. [Google Scholar] [CrossRef]
- Esposito, K.; Giugliano, F.; De Sio, M.; Carleo, D.; Di Palo, C.; D’Armiento, M.; Giugliano, D. Dietary Factors in Erectile Dysfunction. Int. J. Impot. Res. 2006, 18, 370–374. [Google Scholar] [CrossRef]
- Giugliano, F.; Maiorino, M.I.; Bellastella, G.; Autorino, R.; De Sio, M.; Giugliano, D.; Esposito, K. Adherence to Mediterranean Diet and Erectile Dysfunction in Men with Type 2 Diabetes. J. Sex Med. 2010, 7, 1911–1917. [Google Scholar] [CrossRef]
- Huetos, A.S.; Muralidharan, J.; Galiè, S.; Salas-Salvadó, J.; Bulló, M. Effect of Nut Consumption on Erectile and Sexual Function in Healthy Males: A Secondary Outcome Analysis of the FERTINUTS Randomized Controlled Trial. Nutrients 2019, 11, 1372. [Google Scholar] [CrossRef]
- Salas-Huetos, A.; Moraleda, R.; Giardina, S.; Anton, E.; Blanco, J.; Salas-Salvadó, J.; Bulló, M. Effect of Nut Consumption on Semen Quality and Functionality in Healthy Men Consuming a Western-Style Diet: A Randomized Controlled Trial. Am. J. Clin. Nutr. 2018, 108, 953–962. [Google Scholar] [CrossRef]
- Skoracka, K.; Eder, P.; Łykowska-Szuber, L.; Dobrowolska, A.; Krela-Kaźmierczak, I. Diet and Nutritional Factors in Male (In)Fertility—Underestimated Factors. J. Clin. Med. 2020, 9, 1400. [Google Scholar] [CrossRef]
- Salas-Huetos, A.; Babio, N.; Carrell, D.T.; Bulló, M.; Salas-Salvadó, J. Adherence to the Mediterranean Diet Is Positively Associated with Sperm Motility: A Cross-Sectional Analysis. Sci. Rep. 2019, 9, 3389. [Google Scholar] [CrossRef] [PubMed]
- Esmaeili, V.; Shahverdi, A.H.; Moghadasian, M.H.; Alizadeh, A.R. Dietary Fatty Acids Affect Semen Quality: A Review. Andrology 2015, 3, 450–461. [Google Scholar] [CrossRef] [PubMed]
- Cristodoro, M.; Zambella, E.; Fietta, I.; Inversetti, A.; Di Simone, N. Dietary Patterns and Fertility. Biology 2024, 13, 131. [Google Scholar] [CrossRef]
- Robbins, W.A.; Xun, L.; FitzGerald, L.Z.; Esguerra, S.; Henning, S.M.; Carpenter, C.L. Walnuts Improve Semen Quality in Men Consuming a Western-Style Diet: Randomized Control Dietary Intervention Trial. Biol. Reprod. 2012, 87, 101. [Google Scholar] [CrossRef] [PubMed]
- Caceres, S.; Silván, G.; Illera, M.J.; Millan, P.; Moyano, G.; Illera, J.C. Effects of Soya Milk on Reproductive Hormones during Puberty in Male Wistar Rats. Reprod. Domest. Anim. 2019, 54, 855–863. [Google Scholar] [CrossRef]
- Orlich, M.J.; Singh, P.N.; Sabaté, J.; Jaceldo-Siegl, K.; Fan, J.; Knutsen, S.; Beeson, W.L.; Fraser, G.E. Vegetarian Dietary Patterns and Mortality in Adventist Health Study 2. JAMA Intern. Med. 2013, 173, 1230–1238. [Google Scholar] [CrossRef]
- Orzylowska, E.M.; Jacobson, J.D.; Bareh, G.M.; Ko, E.Y.; Corselli, J.U.; Chan, P.J. Food Intake Diet and Sperm Characteristics in a Blue Zone: A Loma Linda Study. Eur. J. Obstet. Gynecol. Reprod. Biol. 2016, 203, 112–115. [Google Scholar] [CrossRef]
- Samimisedeh, P.; Afshar, E.J.; Ejtahed, H.S.; Qorbani, M. The Impact of Vegetarian Diet on Sperm Quality, Sex Hormone Levels and Fertility: A Systematic Review and Meta-Analysis. J. Human. Nutr. Diet. 2024, 37, 57–78. [Google Scholar] [CrossRef]
- Kljajic, M.; Hammadeh, M.; Wagenpfeil, G.; Baus, S.; Sklavounos, P.; Solomayer, E.F.; Kasoha, M. Impact of the Vegan Diet on Sperm Quality and Sperm Oxidative Stress Values: A Preliminary Study. J. Hum. Reprod. Sci. 2021, 14, 365–371. [Google Scholar] [CrossRef]
- Szamreta, E.A.; Qin, B.; Rivera-Núñez, Z.; Parekh, N.; Barrett, E.S.; Ferrante, J.; Lin, Y.; Bandera, E.V. Greater Adherence to a Mediterranean-like Diet Is Associated with Later Breast Development and Menarche in Peripubertal Girls. Public. Health Nutr. 2020, 23, 1020–1030. [Google Scholar] [CrossRef]
- Onieva-Zafra, M.D.; Fernández-Martínez, E.; Abreu-Sánchez, A.; Iglesias-López, M.T.; García-Padilla, F.M.; Pedregal-González, M.; Parra-Fernández, M.L. Relationship between Diet, Menstrual Pain and Other Menstrual Characteristics among Spanish Students. Nutrients 2020, 12, 1759. [Google Scholar] [CrossRef] [PubMed]
- Ciołek, A.; Kostecka, M.; Kostecka, J.; Kawecka, P.; Popik-Samborska, M. An Assessment of Women’s Knowledge of the Menstrual Cycle and the Influence of Diet and Adherence to Dietary Patterns on the Alleviation or Exacerbation of Menstrual Distress. Nutrients 2023, 16, 69. [Google Scholar] [CrossRef] [PubMed]
- Vetrani, C.; Barrea, L.; Rispoli, R.; Verde, L.; De Alteriis, G.; Docimo, A.; Auriemma, R.S.; Colao, A.; Savastano, S.; Muscogiuri, G. Mediterranean Diet: What Are the Consequences for Menopause? Front. Endocrinol. 2022, 13, 886824. [Google Scholar] [CrossRef]
- Herber-Gast, G.C.M.; Mishra, G.D. Fruit, Mediterranean-Style, and High-Fat and -Sugar Diets Are Associated with the Risk of Night Sweats and Hot Flushes in Midlife: Results from a Prospective Cohort Study. Am. J. Clin. Nutr. 2013, 97, 1092–1099. [Google Scholar] [CrossRef] [PubMed]
- Sayón-Orea, C.; Santiago, S.; Cuervo, M.; Martínez-González, M.A.; Garcia, A.; Martínez, J.A. Adherence to Mediterranean Dietary Pattern and Menopausal Symptoms in Relation to Overweight/Obesity in Spanish Perimenopausal and Postmenopausal Women. Menopause 2015, 22, 750–757. [Google Scholar] [CrossRef]
- Hofmeister, S.; Bodden, S. Premenstrual Syndrome and Premenstrual Dysphoric Disorder. Am. Fam. Physician 2016, 94, 236–240. [Google Scholar]
- Oboza, P.; Ogarek, N.; Wójtowicz, M.; Rhaiem, T.B.; Olszanecka-Glinianowicz, M.; Kocełak, P. Relationships between Premenstrual Syndrome (PMS) and Diet Composition, Dietary Patterns and Eating Behaviors. Nutrients 2024, 16, 1911. [Google Scholar] [CrossRef]
- Hashim, M.S.; Obaideen, A.A.; Jahrami, H.A.; Radwan, H.; Hamad, H.J.; Owais, A.A.; Alardah, L.G.; Qiblawi, S.; Al-Yateem, N.; Faris, M.A.I.E. Premenstrual Syndrome Is Associated with Dietary and Lifestyle Behaviors among University Students: A Cross-Sectional Study from Sharjah, UAE. Nutrients 2019, 11, 1939. [Google Scholar] [CrossRef] [PubMed]
- Moradifili, B.; Ghiasvand, R.; Pourmasoumi, M.; Feizi, A.; Shahdadian, F.; Shahshahan, Z. Dietary Patterns Are Associated with Premenstrual Syndrome: Evidence from a Case-Control Study. Public. Health Nutr. 2020, 23, 833–842. [Google Scholar] [CrossRef]
- Vander Borght, M.; Wyns, C. Fertility and Infertility: Definition and Epidemiology. Clin. Biochem. 2018, 62, 2–10. [Google Scholar] [CrossRef]
- Gaskins, A.J.; Nassan, F.L.; Chiu, Y.H.; Arvizu, M.; Williams, P.L.; Keller, M.G.; Souter, I.; Hauser, R.; Chavarro, J.E. Dietary Patterns and Outcomes of Assisted Reproduction. Am. J. Obstet. Gynecol. 2019, 220, 567.e1–567.e18. [Google Scholar] [CrossRef] [PubMed]
- Ricci, E.; Bravi, F.; Noli, S.; Somigliana, E.; Cipriani, S.; Castiglioni, M.; Chiaffarino, F.; Vignali, M.; Gallotti, B.; Parazzini, F. Mediterranean Diet and Outcomes of Assisted Reproduction: An Italian Cohort Study. Am. J. Obstet. Gynecol. 2019, 221, 627.e1–627.e14. [Google Scholar] [CrossRef]
- Vujkovic, M.; De Vries, J.H.; Lindemans, J.; MacKlon, N.S.; Van Der Spek, P.J.; Steegers, E.A.P.; Steegers-Theunissen, R.P.M. The Preconception Mediterranean Dietary Pattern in Couples Undergoing in Vitro Fertilization/Intracytoplasmic Sperm Injection Treatment Increases the Chance of Pregnancy. Fertil. Steril. 2010, 94, 2096–2101. [Google Scholar] [CrossRef] [PubMed]
- Gaskins, A.J.; Chavarro, J.E. Diet and Fertility: A Review. Am. J. Obstet. Gynecol. 2018, 218, 379–389. [Google Scholar] [CrossRef]
- Sun, H.; Lin, Y.; Lin, D.; Zou, C.; Zou, X.; Fu, L.; Meng, F.; Qian, W. Mediterranean Diet Improves Embryo Yield in IVF: A Prospective Cohort Study. Reprod. Biol. Endocrinol. 2019, 17, 73. [Google Scholar] [CrossRef]
- Karayiannis, D.; Kontogianni, M.D.; Mendorou, C.; Mastrominas, M.; Yiannakouris, N. Adherence to the Mediterranean Diet and IVF Success Rate among Non-Obese Women Attempting Fertility. Human. Reprod. 2018, 33, 494–502. [Google Scholar] [CrossRef]
- Oszajca, K.; Adamus, A. Diet in Prevention and Treatment of Endometriosis: Current State of Knowledge. Curr. Nutr. Rep. 2024, 13, 49–58. [Google Scholar] [CrossRef]
- Cirillo, M.; Argento, F.R.; Becatti, M.; Fiorillo, C.; Coccia, M.E.; Fatini, C. Mediterranean Diet and Oxidative Stress: A Relationship with Pain Perception in Endometriosis. Int. J. Mol. Sci. 2023, 24, 14601. [Google Scholar] [CrossRef] [PubMed]
- Parazzini, F.; Viganò, P.; Candiani, M.; Fedele, L. Diet and Endometriosis Risk: A Literature Review. Reprod. Biomed. Online 2013, 26, 323–336. [Google Scholar] [CrossRef]
- Kovács, Z.; Reidy, F.; Glover, L.; McAuliffe, F.M.; Stockmann, H.; Kilbane, M.T.; Twomey, P.J.; Peters, M.; Saare, M.; Rudd, P.M.; et al. N-Glycans from Serum IgG and Total Serum Glycoproteins Specific for Endometriosis. Sci. Rep. 2023, 13, 10480. [Google Scholar] [CrossRef]
- Sołkiewicz, K.; Krotkiewski, H.; Jędryka, M.; Kratz, E.M. Variability of Serum IgG Sialylation and Galactosylation Degree in Women with Advanced Endometriosis. Scientific Reports 2021, 11, 5586. [Google Scholar] [CrossRef] [PubMed]
- Sołkiewicz, K.; Krotkiewski, H.; Jędryka, M.; Czekański, A.; Kratz, E.M. The Alterations of Serum IgG Fucosylation as a Potential Additional New Diagnostic Marker in Advanced Endometriosis. J. Inflamm. Res. 2022, 15, 251. [Google Scholar] [CrossRef] [PubMed]
- Kokot, I.; Piwowar, A.; Jędryka, M.; Sołkiewicz, K.; Kratz, E.M. Diagnostic Significance of Selected Serum Inflammatory Markers in Women with Advanced Endometriosis. Int. J. Mol. Sci. 2021, 22, 2295. [Google Scholar] [CrossRef] [PubMed]
- Sołkiewicz, K.; Kacperczyk, M.; Krotkiewski, H.; Jędryka, M.; Kratz, E.M. O-Glycosylation Changes in Serum Immunoglobulin G Are Associated with Inflammation Development in Advanced Endometriosis. Int. J. Mol. Sci. 2022, 23, 8087. [Google Scholar] [CrossRef]
- Nagy, H.; Carlson, K.; Khan, M.A. Dysmenorrhea; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Fjerbæk, A.; Knudsen, U.B. Endometriosis, Dysmenorrhea and Diet--What Is the Evidence? Eur. J. Obstet. Gynecol. Reprod. Biol. 2007, 132, 140–147. [Google Scholar] [CrossRef]
- Barnard, N.D.; Scialli, A.R.; Hurlock, D.; Bertron, P. Diet and Sex-Hormone Binding Globulin, Dysmenorrhea, and Premenstrual Symptoms. Obstet. Gynecol. 2000, 95, 245–250. [Google Scholar] [CrossRef]
- Polycystic Ovary Syndrome. Available online: https://www.who.int/news-room/fact-sheets/detail/polycystic-ovary-syndrome (accessed on 24 July 2024).
- Wang, Q.; Sun, Y.; Xu, Q.; Liu, W.; Wang, P.; Yao, J.; Zhao, A.; Chen, Y.; Wang, W. Higher Dietary Inflammation Potential and Certain Dietary Patterns Are Associated with Polycystic Ovary Syndrome Risk in China: A Case-Control Study. Nutr. Res. 2022, 100, 1–18. [Google Scholar] [CrossRef]
- Barrea, L.; Muscogiuri, G.; Pugliese, G.; de Alteriis, G.; Colao, A.; Savastano, S. Metabolically Healthy Obesity (Mho) vs. Metabolically Unhealthy Obesity (Muo) Phenotypes in Pcos: Association with Endocrine-Metabolic Profile, Adherence to the Mediterranean Diet, and Body Composition. Nutrients 2021, 13, 3925. [Google Scholar] [CrossRef]
- Toledo, E.; Lopez-Del Burgo, C.; Ruiz-Zambrana, A.; Donazar, M.; Navarro-Blasco, Í.; Martínez-González, M.A.; De Irala, J. Dietary Patterns and Difficulty Conceiving: A Nested Case-Control Study. Fertil. Steril. 2011, 96, 1149–1153. [Google Scholar] [CrossRef]
- Jurczewska, J.; Szostak-Węgierek, D. The Influence of Diet on Ovulation Disorders in Women-A Narrative Review. Nutrients 2022, 14, 1556. [Google Scholar] [CrossRef]
- Velez, L.M.; Seldin, M.; Motta, A.B. Inflammation and Reproductive Function in Women with Polycystic Ovary Syndrome. Biol. Reprod. 2021, 104, 1205–1217. [Google Scholar] [CrossRef] [PubMed]
- Fatima, Q.; Amin, S.; Kawa, I.A.; Jeelani, H.; Manzoor, S.; Rizvi, S.M.; Rashid, F. Evaluation of Antioxidant Defense Markers in Relation to Hormonal and Insulin Parameters in Women with Polycystic Ovary Syndrome (PCOS): A Case-Control Study. Diabetes Metab. Syndr. 2019, 13, 1957–1961. [Google Scholar] [CrossRef] [PubMed]
- Cincione, I.R.; Graziadio, C.; Marino, F.; Vetrani, C.; Losavio, F.; Savastano, S.; Colao, A.; Laudisio, D. Short-Time Effects of Ketogenic Diet or Modestly Hypocaloric Mediterranean Diet on Overweight and Obese Women with Polycystic Ovary Syndrome. J. Endocrinol. Investig. 2023, 46, 769–777. [Google Scholar] [CrossRef]
- Mei, S.; Ding, J.; Wang, K.; Ni, Z.; Yu, J. Mediterranean Diet Combined With a Low-Carbohydrate Dietary Pattern in the Treatment of Overweight Polycystic Ovary Syndrome Patients. Front. Nutr. 2022, 9, 876620. [Google Scholar] [CrossRef]
- Paoli, A.; Mancin, L.; Giacona, M.C.; Bianco, A.; Caprio, M. Effects of a Ketogenic Diet in Overweight Women with Polycystic Ovary Syndrome. J. Transl. Med. 2020, 18, 104. [Google Scholar] [CrossRef] [PubMed]
- Barrea, L.; Verde, L.; Camajani, E.; Cernea, S.; Frias-Toral, E.; Lamabadusuriya, D.; Ceriani, F.; Savastano, S.; Colao, A.; Muscogiuri, G. Correction: Ketogenic Diet as Medical Prescription in Women with Polycystic Ovary Syndrome (PCOS). Curr. Nutr. Rep. 2023, 12, 65. [Google Scholar] [CrossRef]
- Barrea, L.; Arnone, A.; Annunziata, G.; Muscogiuri, G.; Laudisio, D.; Salzano, C.; Pugliese, G.; Colao, A.; Savastano, S. Adherence to the Mediterranean Diet, Dietary Patterns and Body Composition in Women with Polycystic Ovary Syndrome (PCOS). Nutrients 2019, 11, 2278. [Google Scholar] [CrossRef]
- Esposito, K.; Ciotola, M.; Giugliano, F.; Schisano, B.; Autorino, R.; Iuliano, S.; Vietri, M.T.; Cioffi, M.; De Sio, M.; Giugliano, D. Mediterranean Diet Improves Sexual Function in Women with the Metabolic Syndrome. Int. J. Impot. Res. 2007, 19, 486–491. [Google Scholar] [CrossRef]
- Cano, A.; Marshall, S.; Zolfaroli, I.; Bitzer, J.; Ceausu, I.; Chedraui, P.; Durmusoglu, F.; Erkkola, R.; Goulis, D.G.; Hirschberg, A.L.; et al. The Mediterranean Diet and Menopausal Health: An EMAS Position Statement. Maturitas 2020, 139, 90–97. [Google Scholar] [CrossRef]
- da Silva Schmitt, C.; da Costa, C.M.; Souto, J.C.S.; Chiogna, L.M.; de Albuquerque Santos, Z.E.; Rhoden, E.L.; Neto, B.S. The Effects of a Low Carbohydrate Diet on Erectile Function and Serum Testosterone Levels in Hypogonadal Men with Metabolic Syndrome: A Randomized Clinical Trial. BMC Endocr. Disord. 2023, 23, 30. [Google Scholar] [CrossRef]
- Khoo, J.; Piantadosi, C.; Duncan, R.; Worthley, S.G.; Jenkins, A.; Noakes, M.; Worthley, M.I.; Lange, K.; Wittert, G.A. Comparing Effects of a Low-energy Diet and a High-protein Low-fat Diet on Sexual and Endothelial Function, Urinary Tract Symptoms, and Inflammation in Obese Diabetic Men. J. Sex Med. 2011, 8, 2868–2875. [Google Scholar] [CrossRef] [PubMed]
- Moran, L.J.; Brinkworth, G.D.; Martin, S.; Wycherley, T.P.; Stuckey, B.; Lutze, J.; Clifton, P.M.; Wittert, G.A.; Noakes, M. Long-Term Effects of a Randomised Controlled Trial Comparing High Protein or High Carbohydrate Weight Loss Diets on Testosterone, SHBG, Erectile and Urinary Function in Overweight and Obese Men. PLoS ONE 2016, 11, e0161297. [Google Scholar] [CrossRef]
- Castro, A.I.; Gomez-Arbelaez, D.; Crujeiras, A.B.; Granero, R.; Aguera, Z.; Jimenez-Murcia, S.; Sajoux, I.; Lopez-Jaramillo, P.; Fernandez-Aranda, F.; Casanueva, F.F. Effect of A Very Low-Calorie Ketogenic Diet on Food and Alcohol Cravings, Physical and Sexual Activity, Sleep Disturbances, and Quality of Life in Obese Patients. Nutrients 2018, 10, 1348. [Google Scholar] [CrossRef]
- Li, J.; Bai, W.P.; Jiang, B.; Bai, L.R.; Gu, B.; Yan, S.X.; Li, F.Y.; Huang, B. Ketogenic Diet in Women with Polycystic Ovary Syndrome and Liver Dysfunction Who Are Obese: A Randomized, Open-Label, Parallel-Group, Controlled Pilot Trial. J. Obstet. Gynaecol. Res. 2021, 47, 1145–1152. [Google Scholar] [CrossRef]
- Mondaini, N.; Cai, T.; Gontero, P.; Gavazzi, A.; Lombardi, G.; Boddi, V.; Bartoletti, R. Regular Moderate Intake of Red Wine Is Linked to a Better Women’s Sexual Health. J. Sex Med. 2009, 6, 2772–2777. [Google Scholar] [CrossRef] [PubMed]
- Barbería-Latasa, M.; Gea, A.; Martínez-González, M.A. Alcohol, Drinking Pattern, and Chronic Disease. Nutrients 2022, 14, 1954. [Google Scholar] [CrossRef] [PubMed]
- Martínez-González, M.A. Should We Remove Wine from the Mediterranean Diet?: A Narrative Review. Am. J. Clin. Nutr. 2024, 119, 262–270. [Google Scholar] [CrossRef]
- Hrelia, S.; Di Renzo, L.; Bavaresco, L.; Bernardi, E.; Malaguti, M.; Giacosa, A. Moderate Wine Consumption and Health: A Narrative Review. Nutrients 2022, 15, 175. [Google Scholar] [CrossRef]
- Griswold, M.G.; Fullman, N.; Hawley, C.; Arian, N.; Zimsen, S.R.M.; Tymeson, H.D.; Venkateswaran, V.; Tapp, A.D.; Forouzanfar, M.H.; Salama, J.S.; et al. Alcohol Use and Burden for 195 Countries and Territories, 1990-2016: A Systematic Analysis for the Global Burden of Disease Study 2016. Lancet 2018, 392, 1015–1035. [Google Scholar] [CrossRef]
- Holmes, M.V.; Dale, C.E.; Zuccolo, L.; Silverwood, R.J.; Guo, Y.; Ye, Z.; Prieto-Merino, D.; Dehghan, A.; Trompet, S.; Wong, A.; et al. Association between Alcohol and Cardiovascular Disease: Mendelian Randomisation Analysis Based on Individual Participant Data. BMJ 2014, 349, g4164. [Google Scholar] [CrossRef]
- Esser, M.B.; Leung, G.; Sherk, A.; Bohm, M.K.; Liu, Y.; Lu, H.; Naimi, T.S. Estimated Deaths Attributable to Excessive Alcohol Use Among US Adults Aged 20 to 64 Years, 2015 to 2019. JAMA Netw Open 2022, 5, e2239485. [Google Scholar] [CrossRef] [PubMed]
- Morales, G.; Martínez-González, M.A.; Barbería-Latasa, M.; Bes-Rastrollo, M.; Gea, A. Mediterranean Diet, Alcohol-Drinking Pattern and Their Combined Effect on All-Cause Mortality: The Seguimiento Universidad de Navarra (SUN) Cohort. Eur. J. Nutr. 2021, 60, 1489–1498. [Google Scholar] [CrossRef] [PubMed]
- Li, M.C.; Fang, H.Y. Adherence to Daily Food Guides Is Associated with Lower Risk of Metabolic Syndrome: The Nutrition and Health Survey in Taiwan. Nutrients 2020, 12, 2955. [Google Scholar] [CrossRef] [PubMed]
- Walker, R.E.; Keane, C.R.; Burke, J.G. Disparities and Access to Healthy Food in the United States: A Review of Food Deserts Literature. Health Place 2010, 16, 876–884. [Google Scholar] [CrossRef]
- Drewnowski, A. The Cost of US Foods as Related to Their Nutritive Value. Am. J. Clin. Nutr. 2010, 92, 1181. [Google Scholar] [CrossRef]
- Marmot, M.; Friel, S.; Bell, R.; Houweling, T.A.; Taylor, S. Closing the Gap in a Generation: Health Equity through Action on the Social Determinants of Health. Lancet 2008, 372, 1661–1669. [Google Scholar] [CrossRef]
- Doustmohammadian, A.; Mohammadi-Nasrabadi, F.; Keshavarz-Mohammadi, N.; Hajjar, M.; Alibeyk, S.; Hajigholam-Saryazdi, M. Community-Based Participatory Interventions to Improve Food Security: A Systematic Review. Front. Nutr. 2022, 9, 1028394. [Google Scholar] [CrossRef]
- Drewnowski, A.; Almiron-Roig, E. Human Perceptions and Preferences for Fat-Rich Foods; CRC Press: Boca Raton, FL, USA, 2010; pp. 265–291. [Google Scholar] [CrossRef]
- Hjorth, M.F.; Zohar, Y.; Hill, J.O.; Astrup, A. Personalized Dietary Management of Overweight and Obesity Based on Measures of Insulin and Glucose. Annu. Rev. Nutr. 2018, 38, 245. [Google Scholar] [CrossRef]
- Ordovas, J.M.; Ferguson, L.R.; Tai, E.S.; Mathers, J.C. Science and Politics of Nutrition: Personalised Nutrition and Health. BMJ 2018, 361, k2173. [Google Scholar] [CrossRef]
- Bermingham, K.M.; Linenberg, I.; Polidori, L.; Asnicar, F.; Arrè, A.; Wolf, J.; Badri, F.; Bernard, H.; Capdevila, J.; Bulsiewicz, W.J.; et al. Effects of a Personalized Nutrition Program on Cardiometabolic Health: A Randomized Controlled Trial. Nat. Med. 2024, 30, 1888. [Google Scholar] [CrossRef]
- Sexual Health. Available online: https://www.who.int/health-topics/sexual-health#tab=tab_2 (accessed on 20 July 2024).
- Mollaioli, D.; Ciocca, G.; Limoncin, E.; Di Sante, S.; Gravina, G.L.; Carosa, E.; Lenzi, A.; Jannini, E.A.F. Lifestyles and Sexuality in Men and Women: The Gender Perspective in Sexual Medicine. Reprod. Biol. Endocrinol. 2020, 18, 10. [Google Scholar] [CrossRef]
- Di Francesco, S.; Caruso, M.; Robuffo, I.; Militello, A.; Toniato, E. The Impact of Metabolic Syndrome and Its Components on Female Sexual Dysfunction: A Narrative Mini-Review. Curr. Urol. 2019, 12, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Levin, R.J. The Pharmacology of the Human Female Orgasm—Its Biological and Physiological Backgrounds. Pharmacol. Biochem. Behav. 2014, 121, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Bahat, P.Y.; Ayhan, I.; Ozdemir, E.U.; Inceboz, Ü.; Oral, E. Dietary Supplements for Treatment of Endometriosis: A Review. Acta Biomed. 2022, 93, e2022159. [Google Scholar] [CrossRef]
- Qin, R.; Tian, G.; Liu, J.; Cao, L. The Gut Microbiota and Endometriosis: From Pathogenesis to Diagnosis and Treatment. Front. Cell Infect. Microbiol. 2022, 12, 1069557. [Google Scholar] [CrossRef]
- Shan, J.; Ni, Z.; Cheng, W.; Zhou, L.; Zhai, D.; Sun, S.; Yu, C. Gut Microbiota Imbalance and Its Correlations with Hormone and Inflammatory Factors in Patients with Stage 3/4 Endometriosis. Arch. Gynecol. Obstet. 2021, 304, 1363–1373. [Google Scholar] [CrossRef] [PubMed]
- Yuan, M.; Li, D.; Zhang, Z.; Sun, H.; An, M.; Wang, G. Endometriosis Induces Gut Microbiota Alterations in Mice. Hum. Reprod. 2018, 33, 607–616. [Google Scholar] [CrossRef]
- Quaranta, G.; Sanguinetti, M.; Masucci, L. Fecal Microbiota Transplantation: A Potential Tool for Treatment of Human Female Reproductive Tract Diseases. Front. Immunol. 2019, 10, 2653. [Google Scholar] [CrossRef]
- Sofi, F.; Cesari, F.; Abbate, R.; Gensini, G.F.; Casini, A. Adherence to Mediterranean Diet and Health Status: Meta-Analysis. BMJ 2008, 337, 673–675. [Google Scholar] [CrossRef]
- Vinciguerra, F.; Graziano, M.; Hagnäs, M.; Frittitta, L.; Tumminia, A. Influence of the Mediterranean and Ketogenic Diets on Cognitive Status and Decline: A Narrative Review. Nutrients 2020, 12, 1019. [Google Scholar] [CrossRef]
Category | Dysfunction | Gender | ICD-10 | DSM-5 |
---|---|---|---|---|
Sexual desire disorders | ||||
Hypoactive sexual desire | M/F | F 52.0 | Male hypoactive sexual desire disorder | |
Sexual aversion and lack of sexual enjoyment | M/F | F 52.1 | Deleted from DSM-5 | |
Excessive sexual drive | M/F | F 52.7 | / | |
Sexual arousal disorders | ||||
Erectile dysfunction | M | N 48.4 | Erectile disorder | |
Psychogenic impotence | M | F 52.2 | / | |
Subjective sexual arousal dysfunction | F | F 52.2 | Female sexual interest–arousal disorder | |
Genital sexual arousal dysfunctions | F | F 52.2 | Female sexual interest–arousal disorder | |
Genital and subjective arousal dysfunction | F | F 52.2 | Female sexual interest–arousal disorder | |
Persistent genital arousal dysfunction | F | F 52.2 | / | |
Orgasmic disorders | ||||
Premature (early) ejaculation | M | F 52.4 | Premature (early) ejaculation | |
Delayed ejaculation | M | F 52.3 | Delayed ejaculation | |
Anejaculation | M | F 52.3 | / | |
Orgasmic dysfunction | M/F | F 52.3 | Female orgasmic disorder | |
Psychogenic Anorgasmy | M/F | F 52.3 | / | |
Sexual Pain Disorders | ||||
Dyspareunia | F | N 94.1 | Genito-pelvic pain–penetration disorder | |
Non-organic dyspareunia | F | F 52.6 | Genito-pelvic pain–penetration disorder | |
Vaginismus | F | N 94.2 | Genito-pelvic pain–penetration disorder | |
Non-organic vaginismus | F | F 52.5 | Genito-pelvic pain–penetration disorder | |
Other Conditions | ||||
Endometriosis | F | N 80 | / | |
Polycystic ovary syndrome | F | E 28.2 | / |
Parameter | Low Adherence to Mediterranean Diet | High Adherence to Mediterranean Diet | Ketogenic Diet |
---|---|---|---|
CRP levels (ng/dL) | ↑ | ↓↓ | ↓ |
Insulin sensitivity (μU/mL) | ↓ | ↑ | ↑↑ |
Fasting glucose (mg/dL) | ↑ | ↓ | ↓↓ |
HoMA-IR | ↑ | ↓ | ↓↓ |
Testosterone (ng/dL) | ↑ | ↓ | ↓ |
Ferriman–Gallwey score | ↑ | ↓ | ↓ |
LH/FSH ratio | ↑ | ↓ | ↓ |
Males | ||||
Type of Study | Type of Dysfunction Studied | Type of Influence | Year | Ref. |
RCT | Erectile dysfunction | MD improved ED in T2D patients compared to the low-fat diet | 2009 | [102] |
Case–control study | Erectile dysfunction | High adherence to MD was inversely related to ED | 2006 | [107] |
Prospective study | Erectile dysfunction | High adherence to MD was inversely associated with ED in 21,469 men | 2020 | [106] |
Observational study | Erectile dysfunction | High adherence to MD showed a low prevalence of overall and severe ED | 2010 | [108] |
RCT | Erectile dysfunction | MD in 65 men with MS improved ED compared to the control group | 2006 | [18] |
Cross-sectional analysis | Infertility | High adherence to MD has been associated with better semen parameters | 2019 | [112] |
Females | ||||
Type of Study | Type of Dysfunction Studied | Type of Influence | Year | Ref. |
RCT | Female Sexual Function Index | MD reduced sexual impairment in newly diagnosed T2D compared to the low-fat diet group | 2009 | [102] |
Longitudinal cohort study | Early menarche | High adherence to MD lowered the risk of early menarche | 2002 | [121] |
Cross-sectional study | Dysmenorrhea | Higher consumption frequency of refined cereal products, processed meat, and sugar was linked to menstrual distress | 2024 | [123] |
Cross-sectional study | Menopausal symptoms | Low adherence to MD was linked to severe menopausal symptoms in postmenopausal obese women | 2022 | [124] |
Prospective cohort study | Menopausal symptoms | Adherence to MD was inversely associated with menopausal vasomotor symptoms in 6040 women aged 50–55 followed over nine years | 2013 | [125] |
Cross-sectional study | Menopausal symptoms | High adherence to MD was inversely related to symptoms of the menopausal transition in 3508 Spanish perimenopausal women | 2015 | [126] |
Systematic review | Menopausal symptoms | Short-term adherence to a MD reduced vasomotor symptoms in peri- and postmenopausal women | 2020 | [162] |
Systematic review | Premenstrual syndrome | A diet low in refined carbohydrates, fats, salt, and liquor and high in admission of natural nourishment rich in B vitamins, vitamin D, zinc, calcium, and omega-3 fatty acids avoided the onset and the symptoms of PMS | 2024 | [128] |
Cohort study | Infertility | High adherence to MD was significantly associated with an increased number of available embryos, fertilized oocytes, and overall embryo yield | 2019 | [136] |
Prospective study | Infertility | High adherence to MD was linked to higher rates of clinical pregnancy and live birth | 2018 | [137] |
Cross-sectional | Endometriosis symptoms | Adherence to the MD was inversely related to the severity of menstrual pain in 311 healthy women | 2020 | [122] |
Systematic review | Endometriosis incidence | MD reduced EM risk | 2024 | [122] |
Prospective study | Endometriosis symptoms | MD reduced pain in terms of dyspareunia, non-menstrual pelvic pain, dysuria, and dyschezia in women with EM | 2023 | [139] |
Systematic review | Endometriosis symptoms | High adherence to MD decreased pain and improved overall condition in women with EM | 2022 | [112] |
Case–control study | Incidence of PCOS | MD reduced inflammatory state and the risk of PCOS | 2022 | [150] |
Observational study | Incidence of PCOS | Low adherence to the MD in patients with PCOS was common in metabolically unhealthy obese ones | 2021 | [121] |
Case–control study | Ovarian function | High adherence to the MD enhanced fertility in women aged 20–45 years who reported having difficulty getting pregnant | 2011 | [152] |
Narrative review | Ovarian function | MD was shown to be beneficial in the regulation of ovarian function | 2022 | [153] |
RCT | Ovarian function in patients affected by PCOS | MD determined a significant change in the anthropometric and biochemical parameters in women affected by PCOS | 2023 | [156] |
RCT | Ovarian function in patients affected by PCOS | MD combined with a low-carbohydrate diet significantly restored the menstrual cycle in women affected by PCOS | 2022 | [157] |
RCT | Female Sexual Function | MD was not linked to FSFI and specific sexual domains’ (desire, arousal, lubrication, orgasm, satisfaction, and pain) improvement | 2007 | [161] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oteri, V.; Galeano, F.; Panebianco, S.; Piticchio, T.; Le Moli, R.; Frittitta, L.; Vella, V.; Baratta, R.; Gullo, D.; Frasca, F.; et al. Influence of Mediterranean Diet on Sexual Function in People with Metabolic Syndrome: A Narrative Review. Nutrients 2024, 16, 3397. https://doi.org/10.3390/nu16193397
Oteri V, Galeano F, Panebianco S, Piticchio T, Le Moli R, Frittitta L, Vella V, Baratta R, Gullo D, Frasca F, et al. Influence of Mediterranean Diet on Sexual Function in People with Metabolic Syndrome: A Narrative Review. Nutrients. 2024; 16(19):3397. https://doi.org/10.3390/nu16193397
Chicago/Turabian StyleOteri, Vittorio, Francesco Galeano, Stefania Panebianco, Tommaso Piticchio, Rosario Le Moli, Lucia Frittitta, Veronica Vella, Roberto Baratta, Damiano Gullo, Francesco Frasca, and et al. 2024. "Influence of Mediterranean Diet on Sexual Function in People with Metabolic Syndrome: A Narrative Review" Nutrients 16, no. 19: 3397. https://doi.org/10.3390/nu16193397